Processing math: 100%
Skip to main content

Section 6.2 The Laplace Transform and Initial Value Problems

In this section we will show the connection between ODEs with given initial value conditions and Laplace Transforms. Recall that our previous methods for approaching IVPs involve solving first a homogeneous equation and then using another method, such as undertermined coefficients, to find a particular solution. Using the Laplace transform, we will be able to do this all at once.

First, we need to look at how the Laplace transform acts on derivatives.

Let

\begin{equation*} \mathcal{L}\left\{ f^{\prime}(t)\right\} =\lim_{B\to\infty}\int_{0}^{B}f^{\prime}(t)e^{-st}dt \end{equation*}

and we use integration by parts

\begin{align*} \end{align*}

we have

\begin{align*} \mathcal{L}\left\{ f^{\prime}(t)\right\} \amp =\lim_{B\to\infty}\left[f(t)e^{-st}\right]_{t=0}^{t=B}+\int_{0}^{B}f(t)se^{-st}dt\\ \amp =\left[0-f(0)\right]+s\int_{0}^{\infty}f(t)e^{-st}dt\\ \amp =-f(0)+s\mathcal{L}\left\{ f(t)\right\} , \end{align*}

here we use the condition from Theorem 6.2.1 that says \(\left|f(t)\right|\leq Ke^{at}\) for \(t\geq M\) which implies that \(\lim_{B\to\infty}f(B)e^{-sB}=0\) when \(s>a\text{.}\) Rearranging gives us the desired result.

\(\mathcal{L}\left\{ f^{\prime\prime}(t)\right\} =s^{2}\mathcal{L}\left\{ f(t)\right\} -sf(0)-f^{\prime}(0)\text{.}\) \(\mathcal{L}\left\{ f^{\prime\prime\prime}(t)\right\} =s^{3}\mathcal{L}\left\{ f(t)\right\} -s^{2}f(0)-sf^{\prime}(0)-f^{\prime\prime}(0)\text{.}\)

Subsection 6.2.1 Inverse Laplace Transforms

The Inverse Laplace transform L−1 is the function that satisfies L−1{L[f]}=f. In other words,

L−1{F}=f⟺L{f}=F.
Some example inverse transforms.
L−1{1s}=1.
L−1{1s−1}=et
L−1{10s+1}=10L−1{1s−(−1)}=10e−t.
L−1{6s2+7}=6L−1{1s2+(√7)2}=6√7L−1{√7s2+(√7)2}=6√7sin(√7t).

In general,

L−1{1s−a}=eat.

We'll typically have rational functions for which we need to find inverse transforms. As an example, let's compute L−1{4(s−1)(s+1)}. Whenever we have linear or irreducible quadratic factors in the denominator, we need to use partial fractions:

4(s−1)(s+1)=A(s−1)+B(s+1),

hence

4=A(s+1)+B(s−1),0⋅s+4=(A+B)s+(A−B)

so that

A+B=0A−B=4

and get A=2,B−2. Thus

4(s−1)(s+1)=2s−1−2s+1.

Therefore:

L−1{4(s−1)(s+1)}=L−1{4(s−1)(s+1)}=L−1{2s−1}−L−1{2s+1}=2et−2e−t.

Find \(\mathcal{L}^{-1}\left\{ \frac{6}{s\left(s+4\right)}\right\} \text{.}\)

First

\begin{equation*} \frac{6}{s\left(s+4\right)}=\frac{A}{s}+\frac{B}{\left(s+4\right)} \end{equation*}

so that

\begin{equation*} 6=A\left(s+4\right)+Bs \end{equation*}

or

\begin{equation*} 0s+6=\left(A+B\right)s+4A \end{equation*}

and get

\begin{align*} \end{align*}

so that \(A=-\frac{3}{2}\) and \(B=\frac{3}{2}\) hence

\begin{align*} \mathcal{L}^{-1}\left\{ \frac{6}{s\left(s+4\right)}\right\} \amp =\mathcal{L}^{-1}\left\{ \frac{3/2}{s}+\frac{-3/2}{\left(s+4\right)}\right\} \\ \amp =\frac{3}{2}\mathcal{L}^{-1}\left\{ \frac{1}{s}\right\} -\frac{3}{2}\mathcal{L}\left\{ \frac{1}{\left(s+4\right)}\right\} \\ \amp =\frac{3}{2}\cdot1-\frac{3}{2}\mathcal{L}\left\{ \frac{1}{s-(-4)}\right\} \\ \amp =\frac{3}{2}\cdot1-\frac{3}{2}e^{-4t} \end{align*}

Subsection 6.2.2 Higher order IVPs

We'll now combine the partial fraction technique with the Laplace transform to solve higher order examples.

Solve

\begin{equation*} y^{\prime}=y-4e^{-t},\,\,\,y(0)=1 \end{equation*}

using Laplace transforms.

Step 1: Find the Laplace Transform of the ODE (The going forwards part):

\begin{align*} \mathcal{L}\left\{ y^{\prime}\right\} =\mathcal{L}\left\{ y\right\} -4\mathcal{L}\left\{ e^{-t}\right\} \amp \iff s\mathcal{L}\left\{ y\right\} -y(0)=\mathcal{L}\left\{ y\right\} -4\frac{1}{s+1}\\ \amp \iff s\mathcal{L}\left\{ y\right\} -1=\mathcal{L}\left\{ y\right\} -4\frac{1}{s+1}. \end{align*}

Step 2: Solve for \(\mathcal{L}\left\{ y\right\} \) using algebra: and get

\begin{equation*} \mathcal{L}\left\{ y\right\} =\frac{1}{s-1}-\frac{4}{\left(s-1\right)\left(s+1\right)}. \end{equation*}

Step 3: We want to go backwards and invert this. But first let's do partial fractions:

\begin{equation*} \frac{4}{\left(s-1\right)\left(s+1\right)}=\frac{A}{\left(s-1\right)}+\frac{B}{\left(s+1\right)}, \end{equation*}

hence

\begin{align*} 4 \amp =A\left(s+1\right)+B\left(s-1\right),\\ 0\cdot s+4 \amp =\left(A+B\right)s+\left(A-B\right) \end{align*}

so that

\begin{align*} A+B \amp =0\\ A-B \amp =4 \end{align*}

and get \(A=2,B=-2\text{.}\) Thus

\begin{equation*} \frac{4}{\left(s-1\right)\left(s+1\right)}=\frac{2}{s-1}-\frac{2}{s+1}. \end{equation*}

Step 4: Use the inverse Laplace transform to get

\begin{align*} y=\mathcal{L}^{-1}\left\{ \mathcal{L}\left\{ y\right\} \right\} \amp =\mathcal{L}^{-1}\left\{ \frac{1}{s-1}\right\} -\mathcal{L}^{-1}\left\{ \frac{4}{\left(s-1\right)\left(s+1\right)}\right\} \\ \amp =\mathcal{L}^{-1}\left\{ \frac{1}{s-1}\right\} -\left(\mathcal{L}^{-1}\left\{ \frac{2}{s-1}\right\} -\mathcal{L}^{-1}\left\{ \frac{2}{s+1}\right\} \right)\\ \amp =e^{t}-\mathcal{L}^{-1}\left\{ \frac{2}{s-1}\right\} +\mathcal{L}^{-1}\left\{ \frac{2}{s+1}\right\} \\ \amp =e^{t}-2e^{t}+2e^{-t}\\ \amp =-e^{t}+2e^{-t}. \end{align*}

Solve

\begin{equation*} y^{\prime}+4y=6,\,\,\,y^{\prime}(0)=0 \end{equation*}

using Laplace transforms.

Step 1: Find the Laplace Transform of the ODE (The going forwards part):

\begin{align*} \mathcal{L}\left\{ y^{\prime}\right\} +4\mathcal{L}\left\{ y\right\} =\mathcal{L}\left\{ 6\right\} \amp \iff s\mathcal{L}\left\{ y\right\} -y(0)+4\mathcal{L}\left\{ y\right\} =\frac{6}{s} \end{align*}

Step 2: Solve for \(\mathcal{L}\left\{ y\right\} \) using algebra: and get

\begin{equation*} \mathcal{L}\left\{ y\right\} =\frac{6}{s\left(s+4\right)}. \end{equation*}

Step 3: Partial Fractions (We did this already)

\begin{equation*} \frac{6}{s\left(s+4\right)}=\frac{3/2}{s}+\frac{-3/2}{\left(s+4\right)} \end{equation*}

Step 4: Use the inverse Laplace transform to get

\begin{align*} y=\mathcal{L}^{-1}\left\{ \mathcal{L}\left\{ y\right\} \right\} \amp =\mathcal{L}^{-1}\left\{ \frac{3/2}{s}+\frac{-3/2}{\left(s+4\right)}\right\} \\ \amp =\frac{3}{2}\mathcal{L}^{-1}\left\{ \frac{1}{s}\right\} -\frac{3}{2}\mathcal{L}\left\{ \frac{1}{\left(s+4\right)}\right\} \\ \amp =\frac{3}{2}\cdot1-\frac{3}{2}\mathcal{L}\left\{ \frac{1}{s-(-4)}\right\} \\ \amp =\frac{3}{2}\cdot1-\frac{3}{2}e^{-4t} \end{align*}