
Factoring Integers with Elliptic Curves

By

Daniel Tyebkhan

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Submitted in partial fulfillment of the requirements for

Honors in the Department of Mathematics

Union College

March 2023

ABSTRACT

DANIEL TYEBKHAN Factoring Integers with Elliptic Curves.

Department of Mathematics, March 2023.

ADVISOR: HATLEY, JEFFREY

Elliptic curves are abelian groups known for their many applications rang-

ing from the cryptographic standards underlying much of the modern internet,

to number theory where they play a central role in Andrew Wiles’ proof of

Fermat’s Last Theorem. In this paper, we introduce the basic theory of el-

liptic curves, beginning with the Weierstrass equation and a brief overview of

projective space, followed by a discussion of their group law. We then shift to

the realm of factoring and describe how and why Lenstra’s Algorithm works

by leveraging elliptic curves to illuminate prime factors of composite integers.

We conclude with some discussion of our own implementation of Lenstra’s

Algorithm.

ii

ACKNOWLEDGEMENT

I thank the fantastic professors of the Union College Department of Mathe-

matics who guided me through the last four years of mathematical inquiry and

discovery. Especially, I thank this project’s advisor, Professor Jeffrey Hatley,

for his mentorship from my first math class at Union through the completion

of this thesis. His willingness to scour the internet with me to answer questions

coupled with his patience, knowledge, and poignant explanations were critical

in helping me grasp nuances associated with the contents of this work. Along-

side our discussions about music, guitar, and rock climbing, Jeff’s guidance

made this thesis one of the highlights of my college experience.

Additionally, I thank my family – Mom, Dad, Sarah, and Joshua – for their

love and support throughout this journey.

iii

Contents

ABSTRACT ii

ACKNOWLEDGEMENT iii

1. Introduction 1

2. Basics of Elliptic Curves 2

2.1. Elliptic Curves and the Weierstrass Equation 2

2.2. Geometric Addition of Points on Elliptic Curves 3

2.3. Projective Space 6

2.4. Group Theoretic Properties of Elliptic Curves 8

3. Factoring 12

3.1. Classical p− 1 Method 12

3.2. Lenstra’s Algorithm 15

4. Implementation 18

4.1. Results 19

References 21

iv

1. Introduction

The underlying questions dealt with by elliptic curves trace through the

works of Fermat, Abel, and as far back as Diophantus. However, it was the

last century which saw the curves’ formalization by Weil and subsequent rise to

the forefront of number theory with a wide variety of applications in a number

of related fields. In cryptography, they form the basis for much of modern

encryption on the web as they provide a more space-efficient alternative to the

classical RSA model. In the early 1990s, Andrew Wiles used elliptic curves

in his landmark proof of Fermat’s Last Theorem, conquering a centuries old

challenge in mathematics. They also have applications in primality testing

and form the basis for an efficient factorization algorithm by Lenstra.

In this paper, we focus on the application of elliptic curves to factoring.

Factoring plays a central role in many sectors of mathematics, and by exten-

sion, their real-world applications. It is a heavily researched area with many

implications due to its high asymptotic complexity and importance to cryp-

tography. In this paper, we build up the basic theory of elliptic curves, how

they are described, and how they form additive, abelian groups over arbitrary

fields. We then explain how these properties can be leveraged to efficiently

factor integers via Lenstra’s algorithm. We finish with a discussion of the

algorithm’s implementation details and performance.

1

2. Basics of Elliptic Curves

2.1. Elliptic Curves and the Weierstrass Equation.

Definition 1. Formally, an elliptic curve over a field K is a two-variable,

non-singular, cubic curve with at least one K-rational point.

Although there are several representations of elliptic curves, in this paper,

we will work with one known as the Weierstrass Equation.

Definition 2. The Weierstrass Equation for an elliptic curve E over a field

K is

E : y2 = x3 + Ax2 +B

where A and B are elements of K and x, y are variables.

In order for a curve described by the Weierstrass equation to have the desired

properties, we require it to be non-singular and we restrict K to be not of

characteristic 2 or 31. We can test that a curve is non-singular by checking

that the curve’s discriminant, −(4A3 + 27B2), is non-zero.

Figure 2.1 contains examples of elliptic curves over the real numbers with

their equations in Weierstrass form. One interesting thing to note from both

the equation and the figures is that elliptic curves are symmetrical over the x-

axis. This property will be important in defining its group law which involves

reflection over the x-axis.

One other property which bears mentioning is that elliptic curves all contain

a special point at infinity (denoted∞) which will be discussed in §2.3. In fact,

1If the characteristic of K is 2 or 3, a more general equation can be used to describe an
elliptic curve.

2

(a) The elliptic curve y2 = x3 −
x+ 1

(b) The elliptic curve y2 = x3 −
34x+ 37

Figure 2.1. Examples of Elliptic Curves OverR in Weierstrass
Form

this is the required rational point in the definition. Thus we can write the

K-points of an elliptic curve as a set:

E(K) = {∞} ∪ {(x, y) ∈ K2 | y2 = x3 + Ax+B and A,B ∈ K}.

2.2. Geometric Addition of Points on Elliptic Curves. In this section,

we work toward defining an additive group over the points on an elliptic curve

by providing a geometric explanation of point addition. This notion will be

made more rigorous in § 2.4. Consider E(R) and points P,Q ∈ E. We select

R as our field here because it is easy to visualize, but the algebraic equations

we develop from this process hold over any field. We can determine a third

point called P +Q ∈ E(R) through the following process:
3

Figure 2.2. The addition of points P = (1, 2) and Q = (6, 7)
on the elliptic curve y2 = x3 − 34x+ 37. See Example 1.

(1) Draw the line L through P and Q.

(2) Find the third point of intersection between L and E(R), call it P ∗Q.

(3) Reflect P ∗Q over the x-axis to obtain P +Q.

From this geometric definition, we can also see that our group will be abelian

since the line between P and Q is exactly the same as the line between Q and

P .

Example 1. Consider the elliptic curve E : y2 = x3 − 34x + 37 over R. Let

P = (1, 2) and Q = (6, 7). It is easy to verify that P and Q fall on E. We will

compute P +Q according to the above steps.

(1) Compute L to be the line through P and Q. A simple calculation

shows that L is defined by y = x+ 1.

(2) Find P ∗Q by substituting L into E:

(x+ 1)2 = x3 − 34x+ 37
4

Then solving:

0 = x3 − x2 − 36x+ 36

= (x− 1)(x+ 6)(x− 6).

Thus there are roots at x = 1, 6,−6. We already know about 1 and 6

from P and Q respectively so our third point of intersection is P ∗Q =

(−6,−5).

(3) Reflecting P ∗ Q about the x-axis gives us P + Q = (−6, 5) which we

can verify also lies on E.

See Figure 2.2 for a visualization of this process.

The example works out nicely, but the definition as it stands seems to fall

short in a couple of places. Obviously, we need to be able to add a point

to itself so we define P + P by taking L to be the tangent line to E at P .

Then P is a point of double intersection and P +P is obtained by finding the

third point of intersection and reflecting it across the x-axis. Algebraically,

the point of double intersection works out as P will be 2 of the roots of the

cubic obtained from setting L = E.

Also, note that step 2 of our addition process requires that a line through

any two points on the curve will intersect the curve at exactly one other point.

In our examples so far, this fact seems intuitive except in the cases where L

is vertical and appears to only intersect the curve twice. To account for this

case, we work in an extension of the field in which the curve is defined known

as projective space, where L also intersects E at the aforementioned point at
5

infinity. This point lies on all elliptic curves, and all vertical lines, and will be

the group’s identity element.

2.3. Projective Space. Informally, two-dimensional projective space over a

field K, denoted P2
K , is an extension of K to include a set of so-called points

at infinity. These points at infinity are interesting to us since one of them lies

on every elliptic curve over P2
K and all vertical lines in K2 when considered in

P2
K . We denote this point∞. One way to conceptualize∞ is to think of it as a

point sitting infinitely high directly above the y-axis. Then, imagine “curling”

the plane into a sphere. The point at infinity now sits at the very top of the

sphere so any vertical line will naturally “wrap around” and intersect∞. This

means that ∞ is effectively also at the bottom of the y-axis.

Definition 3. Two-Dimensional Projective Space over a field K is the

set of equivalence classes of triples (x, y, z) where x, y, z ∈ K and x, y, z are

not all zero. Two points (x1, y1, z1) and (x2, y2, z2) are said to be equivalent

(written (x1, y1, z1) ∼ (x2, y2, z2)) if there exists a non-zero λ ∈ K such that

(x1, y1, z1) = (λx2, λy2, λz2).

Because the triples depend solely on the ratio of x, y, and z, we denote the

equivalence class of (x, y, z) as (x : y : z).

Definition 4. For a triple (x : y : z) in P2
K , if z ̸= 0, then (x : y : z) =(

x
z
: y
z
: 1

)
. Such points are called the finite points of P2

K . Triples with z = 0

are the points at infinity.

We need a couple other definitions to show that each elliptic curve over a

projective space contains exactly one point at infinity.
6

Definition 5. The two dimensional affine plane over K is

A2
K = {(x, y) ∈ K ×K}.

Note that A2
K ⊂ P2

K and elements can be mapped

(x, y) 7→ (x : y : 1).

Thus we have a way to map affine points on our elliptic curve to points in P2
K .

Definition 6. Recall from linear algebra that a polynomial in K is homoge-

neous of degree n if it is a sum of terms of the form axiyjzk with a ∈ K and

i+ j + k = n. Also, a polynomial F that is homogeneous of degree n satisfies

F (λx, λy, λz) = λnF (x, y, z) for all λ ∈ K.

Thus, given p1 = (x1, y1, z1), p2 = (x2, y2, z2), and p1 ∼ p2, a homogeneous

polynomial F has F (p1) = 0 if and only if F (p2) = 0. This means that the

set of zeros for F in P2
K is well defined. We can make a polynomial f(x, y)

homogeneous of degree n by inserting the appropriate powers of z:

F (x, y, z) = znf
(x
z
,
y

z

)
and

f(x, y) = F (x, y, 1).

Proposition 1. An elliptic curve E given by y2 = x3+Ax+B over projective

space contains exactly one point at infinity, namely (0 : 1 : 0).

Proof. First, write E in homogeneous form:

y2z = x3 + Axz2 +Bz3.
7

Recall that each affine point (x, y) maps to (x : y : 1). To obtain the points

at infinity on E, set z = 0 and solve. This yields x3 = 0, meaning that the

points at infinity are where x = 0, z = 0, and y has any non-zero value (i.e.

(0 : y : 0)). Since 0
y
= 0 for any y, this point is equivalent to the point

(0 : 1 : 0). Since x = 0 was the only solution, (0 : 1 : 0) is the only point at

infinity contained in E. □

Finally, for our addition definition, we need

Proposition 2. All lines which are vertical in K2 run through (0 : 1 : 0).

Proof. A vertical line is given by the equation x = n for some constant n ∈ K.

In homogeneous form, this is xz2 = nz3 or x = nz. This means that the points

on the line are of the form (nz : y : z). Setting z = 0 then gives us the point

(0 : y : 0) and y must be non zero since we cannot have x, y, z all zero. Thus

this point is equivalent to (0 : 1 : 0). □

Because we showed that (0 : 1 : 0) lies on all vertical lines and all elliptic

curves, it is a point of intersection for any vertical line and elliptic curve. In this

paper, when working with curves, we will generally work in affine coordinates

(e.g. (x, y)), treating ∞ as a special case. From this point on, an elliptic

curve over any ring or field should be thought of as implicitly being over the

projective space associated with the relevant algebraic structure.

2.4. Group Theoretic Properties of Elliptic Curves. In this section, we

will prove that the K-points on an elliptic curve form an abelian group.

In § 2.2 we described the process by which points are added together. First

we derive the relevant equations to make these calculations simpler. We begin
8

with two points P1 = (x1, y1) and P2 = (x2, y2) on an elliptic curve E given

by y2 = x3 + Ax+ B. Let L be the line between P1 and P2. We now need to

consider several cases:

(1) Assume that P1 ̸= P2 and neither point is ∞. Then L has slope

m = y2−y2
x2−x1

. Now assume x1 ̸= x2 so L is not vertical. Then L is given

by y = m(x−x1)+ y1. We can then find the final point of intersection

through substitution and the knowledge of two existing roots in the

equation. This yields the point

x = m2 − x1 − x2

y = m(x− x1) + y1

and reflecting across the x-axis gives

x3 = m2 − x1 − x2

y3 = m(x1 − x3)− y1,

our final point.

(2) Assume that x1 = x2, but y1 ̸= y2 so the line L between P1 and P2 is

vertical. As we saw in § 2.3, L will intersect the curve again at∞. But,

in projective space, (0, y, 0) ∼ (0,−y, 0) so the reflection of ∞ is itself.

This also reflects and reinforces our previous geometric interpretation

of∞; because∞ is at both the top and bottom of the y-axis, reflecting

it about the x-axis returns itself. Thus our sum here is simply ∞.

(3) Next, consider the case where P1 = P2 = (x1, y1). Since we are using

the tangent line to E at P1 for addition, we find the derivative of E at
9

P1 to obtain the slope of L:

m =
dy

dx
=

3x2
1 + A

2y1
.

If y1 = 0, m is undefined and L is vertical so we fall back to the

previous case. Otherwise, we can assume y1 ̸= 0. As in the first case,

we have L defined by y = m(x − x1) + y1. Solving similarly for the

third point of intersection (remembering P1 counts as 2 separate points

and represents two roots of the equation), we get

x3 = m2 − 2x1

y3 = m(x1 − x3)− y1

(4) Finally, consider the case in which P2 = ∞. Then L must be vertical

and will therefore intersect E at the reflection of P1 over the x-axis.

Rereflecting this point returns us back to P1 so it follows that

P1 +∞ = P1.

To make these cases more compact we have the following:

Definition 7. Let E be an elliptic curve defined by y2 = x3 + Ax + B. Let

P1 = (x1, y1) and P2 = (x2, y2) be points on E with P1, P2 not both∞. Define

P1 + P2 = (x3, y3) as follows:

(1) If x1 ̸= x2, then

x3 = m2 − x1 − x2

y3 = m(x1 − x3)− y1

10

where m = y2−y1
x2−x1

.

(2) If x1 = x2, but y1 ̸= y2, then P1 + P2 =∞.

(3) If P1 = P2 and y1 ̸= 0, then

x3 = m2 − 2x1

y3 = m(x1 − x3)− y1

where m =
3x2

1+A

2y1
.

(4) If P1 = P2 and y1 = 0, then P1 + P2 =∞.

Also, define

P +∞ = P

for all points P on E.

Now we can show that an elliptic curve does in fact form a group.

Theorem 1. The set of points on an elliptic curve E form an additive, abelian

group under the operation defined in Definition 7.

Proof.

(1) The commutativity property is obvious since, as stated earlier, the line

between P1 and P2 is the same as the one through P2 and P1. This can

also be worked out algebraically from the formulas in the definition.

(2) By definition, ∞ functions as the group identity element.

(3) To get an inverse, we simply need the line through the points to be

vertical, so for a point P , take P−1 to be the reflection of P across

the x-axis. Then P + P−1 = ∞ which is the same as P−1 + P by

commutativity.
11

(4) The proof of associativity is long and involves lots of algebra in pro-

jective space so we omit it here. It can be found in Washington [5].

It is, however, interesting to note that the reason we reflect the third

point of intersection over the x-axis rather than taking it unaltered as

the sum is to satisfy the property of associativity.

□

3. Factoring

Finding the prime factorization of an integer n is the task of finding prime

numbers p1, p2, . . . , pk such that p1p2 · · · pk = n. Here we examine a classical

method of factoring, then an improvement on it which utilizes Elliptic Curves.

For this section it will be helpful to recall:

Theorem 2 (Fermat’s Little Theorem). For an integer a and a prime p with

p ∤ a,

ap−1 ≡ 1 mod p.

3.1. Classical p− 1 Method. Before we look at Lenstra’s Algorithm which

utilizes elliptic curves, we will first examine its classical analogue, the p − 1

algorithm, discovered by Pollard [2]. Lenstra based his algorithm on this

method, so this will help us gather the intuition and see the improvements

made by Lenstra. First we need

Definition 8. An integer m is B-smooth if all of the prime factors of m are

less than or equal to B.
12

Example 2. The number 35 is 7-smooth since 35 = 7·5. It would also be correct

to say that 35 is B-smooth for any B ≥ 7 since clearly all prime factors of 35

would be less than or equal to B.

Similarly, 385 = 5 · 7 · 11 is B-smooth for any B ≥ 11 and 25 = 52 is

5-smooth.

The p−1 algorithm to factor the product of two primes n = pq is as follows:

Algorithm 1 p− 1 Factoring Algorithm

a← randomInteger() mod n
B ← largeInteger()
return Factor(n, a,B)

procedure Factor(n, a, b)
if b = 0 or a < 2 then

return Factor not found
end if
q ← gcd(a− 1, n)
if q > 1 then

return q
end if
return Factor(n, ab mod n, b− 1)

end procedure

Example 3. Let n = 55 and suppose we picked a = 7 and chose B = 15.

Then we calculate gcd(7− 1, 55) = 1 so we don’t have a factor. Now compute

a1 ≡ 715 ≡ 43 mod 55. Since gcd(43 − 1, 55) = 1, we recurse and compute

a2 ≡ 4314 ≡ 34 mod 55. Since gcd(34 − 1, 55) = 11, we have found a factor

in only two iterations of the algorithm.

Why does this work? Assume that p− 1 is B-smooth (it will be for a large

enough B). Then it is likely that B! is a multiple of p−1 since all prime factors

of p − 1 are less than B and are therefore factors of the product B!. If there
13

are multiple occurrences of a prime in the factorization of p−1 these will likely

be picked up in other factors of B!. Also, assume that p ∤ a. We can ensure

this happens by calculating gcd(k, n) for all primes k < a. This is practical

since the selection of a is arbitrary so a can always be picked relatively small.

If we find a value larger than 1, we already have a factor. Otherwise, we know

p ∤ a. By Fermat’s Little Theorem, we now have

a1 ≡ aB! ≡ 1 mod p.

Next assume that q−1 is divisible by some prime ℓ > B. Examining the units

of the group Z/qZ, there are a maximum of q−1
ℓ

with order not divisible by

ℓ and at least (ℓ−1)(q−1)
ℓ

with order divisible by ℓ. This makes it highly likely

that the order of a is divisible by ℓ and meaning that

a1 ≡ aB! ̸≡ 1 mod q.

Since a1 is a multiple of p and not q, we know

gcd(a1 − 1, pq) = p.

In other words, it’s unlikely that you’ll get gcd = n. Thus, we have found one

prime factor of n and uncovering the other is a matter of simple division.

The trick to successfully running the p− 1 method is a good selection of B.

Selecting B too small makes it unlikely that p− 1 will be B-smooth. On the

other hand, B must be small enough that computing the program will even-

tually terminate if the parameters are unsuccessful. According to Washington

[5], 108 can be a good approximate value for B given its “medium” size, but

with access to more powerful computational resources, a larger number may

14

be better. If neither p− 1 nor q − 1 are B-smooth, we must resort to picking

a new value of a and starting over. However, this reselection strategy can be

mitigated by choosing p such that there is a prime ℓ′ with ℓ′|p− 1 and ℓ′ > B.

Then the algebra regarding probabilities of ℓ above shows the chance that

a1 ≡ 1 mod p is at best 1
ℓ′
which becomes very small as ℓ′ increases making

this method effectively useless. Lenstra’s Algorithm overcomes this challenge

by carrying out analogous operations over elliptic curves, allowing the factorer

to change groups entirely if one value of a or B doesn’t work.

3.2. Lenstra’s Algorithm. Lenstra’s Algorithm, which uses elliptic curves

for factorization, overcomes the issue of choosing a new a in the classical

method by allowing the attacker to switch groups entirely if a set of parameters

fails to factor n.

Before we get into the details of the algorithm, let’s look at what happens

if we consider an elliptic curve over a ring which is not a field.

Example 4. Let E be an elliptic curve defined by y2 = x3 − x + 1 mod 35.

While computing (1, 1)+(26, 24), we compute the slope 23
25

which is finite mod

7, but infinite mod 5 because gcd(35, 5) = 5 ̸= 1. This makes the resulting

point “partially” at infinity so it cannot be expressed in affine coordinates as

defined in § 2.3 2. In other words, this fails because 25 has no multiplicative

inverse mod 35 so it does not make sense to talk about 23
25

mod 35. However,

when this failure occurs, we have a denominator which shares a common factor

greater than 1 with our composite modulus and thus can compute a factor of

2In this situation, we could use the Chinese Remainder Theorem and work mod 5 and mod
7 separately to obtain a solution, but this is not possible in all instances. There is a way to
define the group law to work over arbitrary rings which can be found in [5].

15

the modulus. This is the key observation which makes Lenstra’s algorithm

work.

The algorithm is as follows

(1) Choose k random elliptic curves E1, . . . , Ek and a corresponding ran-

dom point Pi on each curve.

(2) Choose an integer B and compute (B!)Pi on Ei for all i.

(3) If step (2) fails on any curve because a slope does not exist mod n (i.e.

the denominator of m from Definition 7 is non-invertible mod n), stop

because a factor has been found.

(4) If step (2) succeeds, choose a larger value of B or a new set of curves

and start over.

In practice, step (2) can be performed in parallel since each curve is completely

independent of the others meaning that you generally want to choose k to be

the maximum number of cores you have available to run the algorithm. Like

in the classical method, (B!)P is computed recursively.

In step (1), random curves can be created as follows:

(1) Select a random integer A mod n and a random pair of integers P =

(u, v) mod n.

(2) Select C such that C ≡ v2 − u3 − Au mod n.

(3) If y2 = x3 + Ax + C is non-singular, we have a desired curve with a

point (u, v). Otherwise, pick new random integers and try again.

Now let’s look at an example of Lenstra’s algorithm.

Example 5. We want to factor 35. Suppose we choose E to be y2 = x3−20x+21

mod 35, and P = (15,−4). Select B = 9. Now we compute (9!)P recursively.
16

First 2P = (0, 14). Then 3(2P) = 2P + 2P + 2P . Doing the first addition

of 2P + 2P according to the group law we obtain a slope with denominator

7. However, 7 is not invertible mod 35 since gcd(7, 35) = 7 ̸= 1 so we have a

factor.

In general, Lenstra’s algorithm works well for numbers with a prime factor

smaller than 1040, but is outperformed by methods such as a quadratic sieve

or number field sieve for larger factors. However, Lenstra’s remains relevant as

some implementations of the sieve methods use Lenstra’s algorithm internally

to look for smaller sized prime factors of numbers that occur in intermediate

steps.

To see why Lenstra’s Algorithm works, we need

Theorem 3 (Hasse). Let E be an elliptic curve over the finite field Fq. Then

the order of E(Fq) satisfies

|q + 1−#E(Fq)| ≤ 2
√
q.

We omit the proof here, but it can be found in Washington [5].

Consider n = pq where p and q are distinct primes and take some elliptic

curve E mod n. We can regard E as an elliptic curve mod p and mod q.

From a slight rearrangement of Hasse’s theoerem, we can see that

p+ 1− 2
√
p < #E(Fp) < p+ 1 + 2

√
p.

We now also need a couple of facts:
17

(1) It is possible, given any integer within the Hasse bound, to construct

a curve with that order using Atkin-Morain’s method [1]. Thus, each

integer in the range actually does occur for some elliptic curve.

(2) As B increases, the density of B-smooth integers in the interval in-

creases.

(3) The distribution of orders of random elliptic curves is uniform enough

for the algorithm to work.

As a result of these statements, the selection of several random elliptic curves

will likely result in at least one with B-smooth order. The more curves we

pick, the higher the probability that we run into such a curve. Assuming E is

such a curve, and P is the chosen point on E, we then likely have (B!)P ≡ ∞

mod p. Because the order of P falls into the range of Hasse’s theorem for Fp,

it is unlikely that (B!)P = ∞ working on E mod q. Thus, while calculating

(B!)P mod n, we will likely obtain a slope with a denominator d which is

divisible by p, but not q. Then gcd(d, n) should be the factor p.

4. Implementation

As a supplement, we wrote a Python implementation of Lenstra’s algorithm

available at [4]. The project contains an implementation of an elliptic curve

over Z/qZ with functions to construct and add projective points on the curve

as well as multiply points by integers. The general structure was inspired by

the SageMath [3] software package.

One interesting detail is the implementation of integer multiplication of

points on an elliptic curve. Naively, a point could be multiplied by a number

n by simply adding the point to itself n times. This is certainly simple to
18

implement, especially if there is an existing function for point addition. How-

ever, given that the algorithm relies on repeatedly multiplying a point by a

steadily increasing integer, making this process more efficient greatly reduces

runtime at larger values. There exist several algorithms to do so, however for

our purposes, we choose the double-and-add method. It takes as input an

integer n and a point P and produces nP as output through the following:

Algorithm 2 Double-and-Add

bits← intToBitString(n) ▷ get the bits of n from least to most significant

product←∞
t← P
for b ∈ bits do

if b = 1 then
product← product+ t

end if
t← t+ t

end for
return prod

This algorithm leverages powers of 2 by repeatedly doubling the point to

be added, then only adding it on powers of 2 present in n. It reduces the run

time from Θ(n) to Θ(log2(n)) which makes a significant difference, especially

as n grows extremely large in the algorithm. It is interesting to note that

while double-and-add works well to speed up our application, it is not used

in implementations of elliptic curves designed for encrypting information since

its run time varies with n and it is thus susceptible to timing attacks.

4.1. Results. Our implementation factored the following numbers running

with 6 threads on an Intel(R) Core(TM) i7-8750H CPU at 2.20GHz.
19

n Time (hh:mm:ss)

35 00:00:00.020

2442534499 00:00:00.025

31287702260288579971 00:00:00.089

2885059163809746558507921121806741040729 11:18:09.86

For smaller n, the time it takes to calculate factors with a brute force ap-

proach would be slighlty faster since it avoids the overhead of Lenstra’s al-

gorithm. However, as n gets large, the runtime increases dramatically. For

example, the 40 digit number factored in 11:18:09.86 would take approximately

465356888944913 days or 1274950380671 years to find the smaller factor on

the same processor. Given that the earth is only expected to survive another 4

billion years, factoring a number that large in the naive manner is impractical.

20

References

[1] A Oliver L Atkin and Francois Morain. “Finding suitable curves for the

elliptic curve method of factorization”. In: Mathematics of Computation

60.201 (1993), pp. 399–405.

[2] J. M. Pollard. “Theorems on factorization and primality testing”. In:

Mathematical Proceedings of the Cambridge Philosophical Society 76.3 (1974),

pp. 521–528. doi: 10.1017/S0305004100049252.

[3] The Sage Developers. SageMath, the Sage Mathematics Software System (Version x.y.z).

https://www.sagemath.org. YYYY.

[4] Daniel Tyebkhan. Simple Lenstra’s Implementation. Version 1.0.0. Mar.

2023. url: https://github.com/DanielTyebkhan/EllipticCurveFactorization.

[5] Lawrence C. Washington. Elliptic curves: number theory and cryptography.

6000 Broken Sound Parkway NW, Suite 300. Boca Raton, FL: Chapman

& Hall/CRC, 2008.

21

https://doi.org/10.1017/S0305004100049252
https://github.com/DanielTyebkhan/EllipticCurveFactorization

	ABSTRACT
	ACKNOWLEDGEMENT
	1. Introduction
	2. Basics of Elliptic Curves
	2.1. Elliptic Curves and the Weierstrass Equation
	2.2. Geometric Addition of Points on Elliptic Curves
	2.3. Projective Space
	2.4. Group Theoretic Properties of Elliptic Curves

	3. Factoring
	3.1. Classical p-1 Method
	3.2. Lenstra's Algorithm

	4. Implementation
	4.1. Results

	References

