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ABSTRACT

MAYAH TEPLITSKIY Elliptic curves and diophantine stability.

Department of Mathematics, March 15, 2024.

ADVISOR: HATLEY, JEFFREY

In [RW23], Ray and Weston define the notion of diophantine stability at ℓ

for an elliptic curve E/K defined over a number field K and a prime ℓ. We

provide a brief discussion of Galois theory and algebraic number theory, while

building up intuition and implications for possible answers to the following

question: For a fixed elliptic curve E/K and a fixed prime ℓ > 3, what number

fields K allow E/K to satisfy the property of being diophantine stable at ℓ?
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NOTATION

We shall use the following notation throughout this thesis. We write N

for the set of natural numbers, Q for the set of rational numbers, Fp for the

finite field of order p, and GL2(Fp) for the general linear group with matrix

components in Fp. We let K be an algebraic number field, and L/K be a

Galois field extension over K. Then we use Gal(L/K) to denote the Galois

group of the extension L/K, Q̄ to represent the algebraic closure of Q, and

GQ for the absolute Galois group Gal(Q̄/Q).

We write E/K for an elliptic curve E over a field K, O for the point at

infinity, and E[p] for the set of all p-torsion points on E. Then ρ̄E is the

mod p Galois representation ρ̄E : GQ → GL2(Fp) and ρ̄′E : GQ → GL2(Fp)

⟨±1⟩ the

composition of ρ̄E with the natural quotient map.

We let OK be the ring of integers of K. Then D(Pi/p) is the decomposition

group for Pi/p where Pi is a prime that lies over the prime p in OK , and

I(Pi/p) is the inertia group for Pi/p. Finally, FrobPi
represents the Frobenius

element of Pi.
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1. INTRODUCTION

In [RW23], Ray and Weston define the notion of diophantine stability for

elliptic curves and then proceed to study the following question: Let L/K be a

field extension and ℓ be a prime. How many elliptic curves E/K are diophantine

stable at ℓ? Mazur and Rubin had partially answered this question in [MR18],

where they found that the set of elliptic curves which satisfy the property of

being diophantine stable at ℓ has positive density. Ray and Weston showed

that the density of this set is in fact 1.

Let TK,ℓ be the set of elliptic curves E/K that are diophantine stable at ℓ.

Ray and Weston fix an algebraic number field K and a prime ℓ and calculate

the density of TK,ℓ in the set of all elliptic curves. In this thesis, we look at

the inverse problem. We fix an elliptic curve E/K and a prime ℓ and ask for

which number fields K, E/K is an element of TK,ℓ.

In Section 2, we introduce elliptic curves and Galois representations, providing

the necessary background to define diophantine stability. In Section 3, we state

Ray and Weston’s definition for elliptic curves being diophantine stable at a

prime ℓ. In the fourth section, we provide background on prime decomposition

in number fields. In Section 5, we discuss results from [DT02] and use them

to analyze the main question of this thesis. Finally, in Section 6, we work

through a concrete example.
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2. Elliptic Curves

The aim of this thesis is to provide intuition for number fields that make

elliptic curves diophantine stable. Before we look at the definition of diophantine

stability, we will recall some facts about elliptic curves.

Definition 1. An elliptic curve E over a field K is a smooth projective curve

of genus 1 defined over K, together with a specific point O ∈ E which is also

defined over K and is called the point at infinity.

All elliptic curves have a rational point O, and can therefore be written in

Weierstrass normal form, meaning their affine points satisfy equations of the

form:

y2 = x3 + ax2 + bx+ c.

It is worth noting that the points on an elliptic curve form a group under

an operation called point addition, where O is the identity. The specifics of

this group operation aren’t important for the purpose of this thesis. But, the

interested reader can look to Chapter 1 of [ST15] for a detailed discussion of

point addition.

Definition 2. A torsion point on an elliptic curve is a point of finite order.

Let ℓ be a prime. If applying the operation of point addition to a point ℓ

times produces O, then we say the point is an ℓ-torsion point. We denote the

set of ℓ-torsion points by E[ℓ].

Elliptic curves are important because they give us a way to transform

questions about Galois extensions into linear algebra through a Galois representation.

So, what exactly is a Galois representation? Let E/Q be an elliptic curve and
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let GQ denote the Galois group Gal(Q̄/Q), where Q̄ is a fixed algebraic closure

of Q. We call this Galois group the absolute Galois group of Q. It turns out

that E[ℓ] is isomorphic to Fℓ × Fℓ, so we can pick a basis {P,Q} for E[ℓ],

meaning E[ℓ] = {x1P + x2Q|x1, x2 ∈ Fℓ}. It is worth noting that, although

P and Q are likely not defined over Q, they are defined over Q̄. Let σ be an

element of GQ. Then σ(P ) = aσP + cσQ and σ(Q) = bσP + dσQ for some

aσ, bσ, cσ, dσ ∈ Fℓ. Therefore, σ maps to the matrixaσ bσ

cσ dσ


in GL2(Fℓ).

Proposition 1. The mapping ρ̄E : GQ → GL2(Fℓ) described above is a

homomorphism.

Proof. We show that ρ̄E satisfies ρ̄E(σ ◦ τ) = ρ̄E(σ) · ρ̄E(τ). This is the same

as matrix multiplication. We know

ρ̄E(σ) · ρ̄E(τ) =

aσ bσ

cσ dσ

 ·

aτ bτ

cτ dτ

 =

aτaσ + cτbσ bτaσ + dτbσ

aτcσ + cτdσ bτcσ + dτdσ

.
So, we need to show that this is also equal to ρ̄E(σ ◦ τ). We begin by applying

τ to P and Q, which gives τ(P ) = aτP + cτQ and τ(Q) = bτP + dτQ. Then,

applying σ gives

σ(τ(P )) = aτσ(P ) + cτσ(Q)

= aτ (aσP + cσQ) + cτ (bσP + dσQ)

= (aτaσ + cτbσ)P + (aτcσ + cτdσ)Q
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and, similarly

σ(τ(Q)) = bτσ(P ) + dτσ(Q)

= bτ (aσP + cσQ) + dτ (bσP + dσQ)

= (bτaσ + dτbσ)P + (bτcσ + dτdσ)Q

Therefore,

ρ̄E(σ ◦ τ) =

aτaσ + cτbσ bτaσ + dτbσ

aτcσ + cτdσ bτcσ + dτdσ

.
So, we can see ρ̄E preserves matrix multiplication, i.e. ρ̄E(σ ◦ τ) = ρ̄E(σ) ·

ρ̄E(τ). □

In fact, this homomorphism is what we call a Galois representation.

Now, let ker(ρ̄E) be the kernel of ρ̄E. Then, by the first isomorphism

theorem, GQ/ ker(ρ̄E) is isomorphic to a subgroup of GL2(Fℓ). In most cases,

though, it turns out that ρ̄E is surjective. Since GL2(Fℓ) is a finite group,

GQ/ ker(ρ̄E) is the Galois group for some finite extension of Q (particularly,

the fixed field of ker(ρ̄E)), which we will call L. Then we say L is the finite

extension of Q which is cut out by ρ̄E. In other words, it is the fixed field of

ker(ρ̄E).

The kernel of ρ̄E is actually the Galois group of the extension Q̄/L. On the

other hand, ker(ρ̄E) is the kernel of ρ̄E, so it’s the collection of elements of GQ

that get mapped to the identity matrix, or the collection of elements of GQ

that fix every point in E[ℓ]. In other words, L is the field obtained by adjoining

to Q all of the coordinates of the points in E[ℓ], so we write L = Q(E[ℓ]). We

will come back to this field in Section 3 when we define diophantine stability.
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For the purposes of this thesis, we will make the assumption that ρ̄E is

surjective. We therefore include the following theorem, which shows that this

is a mild assumption.

Theorem 1. (Serre, 1972) Let E be an elliptic curve given by a Weierstrass

equation with rational coefficients. Assume that E does not have complex

multiplication. Then for sufficiently large ℓ, the Galois representation

ρℓ : Gal(Q(E[ℓ])/Q) → GL2(Fℓ)

is surjective.

3. Diophantine Stability

Now that we have defined elliptic curves and Galois representations, we are

ready to introduce the notion of diophantine stability defined in [RW23], which

is really the core idea of this thesis. We let ℓ be a prime greater than 3.

Definition 3. Let L/K be a field extension and let E/K be an elliptic curve.

Then, E/K is said to be diophantine stable in L if E(L) = E(K). It is said

that E/K is diophantine stable at ℓ if for all n ∈ Z≥1 and every finite set of

primes Σ of K, there are infinitely many Z/ℓnZ-extensions L/K such that

(1) E(L) = E(K),

(2) all primes in Σ are completely split in L.

Given an elliptic curve E/Q, we say that (E,K, ℓ) satisfies (DS) if E/K is

diophantine stable at ℓ.

It is worth noting that, generally, if L is an extension of K, E(L) is not

necessarily equal to E(K). If E(K) is the collection of points on an elliptic

curve that are defined over the field K, it’s somewhat intuitive that there
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would be more of these points on E that are defined over an extension of K.

And this often happens.

Example. For example, take E to be the elliptic curve with Cremona label

64a4. This curve can be written in Weierstrass form as y2 = x3 + x. Then the

only rational point on E that is defined over Q is (0, 0). But, if we look at

E(Q(i)) where i =
√
−1, we get the point (i, 0), which did not exist in E(Q).

And we can check that this satisfies the elliptic curve equation. Plugging

the point into the equation we get 02 = i3 + i, and then we can simplify to

0 = −i+ i. So, E(Q) ̸= E(Q(i)).

So, elliptic curves E/K that are diophantine stable at ℓ are special in the

sense that they do not pick up points over extensions.

In [RW23], Ray and Weston prove that, density-wise, 100% of elliptic curves

E/K are diophantine stable at ℓ for a fixed number field K and fixed prime

ℓ by defining a set TK,ℓ of elliptic curves, showing that every elliptic curve in

TK,ℓ is diophantine stable at ℓ, and finally, showing that 100% of elliptic curves

are in the set TK,ℓ. We will define the set TK,ℓ, but exclude the other results

since the definition of TK,ℓ is particularly important to our analysis.

Before we do this, we first recall the necessary notation for this section. For

a number field K, we write GK to denote the Galois group Gal(K̄/K). Letting

E/Q be an elliptic curve defined over Q, we write E[ℓ] to denote the ℓ-torsion

group

E[ℓ] := ker(E(Q̄)
ℓ−→ E(Q̄)).

Let ρ̄E : GQ → GL2(Fℓ) denote the Galois representation on E[ℓ]. We will

use Q(E[ℓ]) to denote the field cut out by E[ℓ], or Q̄kerρ̄E,ℓ . Finally, ρ̄′E is the
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Figure 3.1. Field Extension Diagram

Galois representation ρ̄′E : GQ → GL2(Fℓ)
⟨±1⟩ . In other words, ρ̄′E is the composite

map of ρ̄E with the natural quotient map.

We are now ready to define TK,ℓ.

Definition 4. Let TK,ℓ be the set of elliptic curves E/Q such that the following

conditions are satisfied:

(1) ρ̄′E is surjective, and

(2) K(µℓ) does not contain Q(E[ℓ]).

After defining TK,ℓ, Ray and Weston point out that if ρ̄′E is surjective, then

E does not have complex multiplication.

Note that if ρ̄E is surjective, then ρ̄′E is also surjective. So, if an elliptic

curve E/K satisfies ρ̄E being surjective and K(µℓ) does not contain Q(E[ℓ]),

then E/K is in the set TK,ℓ. Therefore, for simplicity, we work with ρ̄E.

The way that Ray and Weston define TK,ℓ allows us to state the problem

we discuss in this thesis more precisely. We begin by constructing Figure 3.1,

the diagram of field extensions pertaining to the definition of TK,ℓ. In order

to satisfy the condition of diophantine stability, we need K(µℓ) not to contain

Q(E[ℓ]). Therefore, we can rephrase the main question we will analyze in this
7



thesis in the following way: For a fixed elliptic curve E/K and a fixed prime ℓ,

what number fields K prevent K(µℓ) from containing Q(µℓ)?

To understand what’s going on in this diagram, we use results from [DT02].

These results allow us to study the prime decomposition of individual primes

in these field towers.

4. Prime Decomposition

Since our goal for this thesis is to use results from [DT02] to investigate how

primes decompose in the field towers from Figure 3.1, we provide a general

review of prime decomposition.

Let L/K be an extension of finite fields that is not necessarily Galois.

Suppose the degree of the extension L/K is n and let p be a maximal ideal in

OK , or the ring of integers of K. Then, the ideal pOL generated in OL by p

has a unique decomposition pOL =
∏g

i=1(Pi)
e(Pi/p) into a product of distinct

maximal ideals Pi with multiplicities e(Pi/p).

We note that the maximal ideals Pi that appear in the expression for pOL

satisfy the property Pi ∩OK = p.

Definition 5. If Pi satisfies the property Pi ∩OK = p, we say Pi lies above p.

In the following lemma we show that for a prime Pi in L that lies above

p, OL/Pi is a finite field and is therefore a finite extension of Fp. Since this

extension is finite, it has a cyclic Galois group. The proof of the following

lemma is taken from Chapter 3 of [Wes99].

Lemma 1. If Pi is a prime in L that lies above the prime p in K, then the

field OL/Pi
∼= Fpf(Pi/p), where Fpf(Pi/p) is a degree f(Pi/p) extension of Fp.
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Proof. We first note that Pi is a maximal ideal in OL, and so, OL/Pi will be a

field. We now need to show this field is finite. Recall that OL
∼= Z[x]/(f(x)),

where f(x) is a minimal polynomial with coefficients in OL. Then OL/Pi
∼=

(Z[x]/f(x))/p ∼= Z[x]/(p, f(x)) ∼= Fp[x]/(f̄(x)), where f̄(x) is f(x) reduced

mod p. This is a field of order pf(Pi/p), and is therefore a finite extension of

Fp. □

The degree f(Pi/p) of this extension is called the inertia degree of Pi over

p.

We note that the proofs of the next few results in this section are taken

from Section 5.2 and Section 6.2 of [Sam67].

Proposition 2. The Pi’s in the expansion of pOL are exactly the prime ideals

of OL that lie above p.

Proof. For a prime ideal R of OL, since R ∩ OK is a prime ideal of OK and p

is a maximal ideal, it follows that the relation R∩OK = p is equivalent to the

relation R ⊃ pOL. We can see that pOL =
∏g

i=1 P
e(Pi/p)
i implies pOL ⊂ Pi for

each i = 1, ..., g. So, Pi appears in the product expression for pOL if and only

if Pi ∩OK = p. □

We call the multiplicity e(Pi/p) the ramification index of Pi over p.

Definition 6. If e(Pi/p) > 1, we say p ramifies in L. When e(Pi/p) = 1, we

say p is unramified.

Note that in any finite extension of Q, all but finitely many rational primes

are unramified.
9



We exclude the proof of the following theorem because it is beyond the scope

of this thesis. The curious reader may look to Theorem 1 of Section 5.2 in

[Sam67] for the proof. It follows immediately after the proof of Proposition 2.

Theorem 2. If L/K is a degree n extension, then
∑g

i=1 eifi = [OL/pOL :

OK/p] = n.

Definition 7. If f(Pi/p) = e(Pi/p) = 1 for every i, we say p splits completely

in L. If f(P1/p) = g = 1, we say p totally ramifies in L. And, if g = e(P1/p) =

1, we say p stays inert in L.

The following result about the ramification and inertia index is crucial to

studying how primes decompose in towers of extensions.

Proposition 3. In a tower of extensions, the ramification index and inertia

degree are both multiplicative.

Proof. Let L/M/K be a tower of field extensions. Let p be a prime inK, P be a

prime inM that lies over p, and P ′ be a prime in L that lies over P . If we factor

p into primes in M , then in the product expansion of pOM , P has the exponent

e(P/p). Then, if we factor in L, the exponent of P ′ will be its exponent in the

product expansion of POL, e(P
′/P ), times the exponent of P in the product

expansion of pOM , e(P/p). Therefore e(P ′/p) = e(P ′/P ) · e(P/p). The proof

for the inertia degree follows from this calculation and from Theorem 2. □

This means, if we have a tower of extensions L/M/K, p is a prime in K,

Pi is one of the primes in M that lies over p, and P ′
i is one of the primes in

L that lies over Pi, then e(P ′
i/p) = e(P ′

i/Pi) · e(Pi/p), where e(P ′
i/p) is the

10



ramification index of P ′
i/p, e(P

′
i/Pi) is the ramification index for P ′

i/Pi, and

e(Pi/p) is the ramification index for Pi/p. The same goes for f and g.

We now turn to the case where L/K is Galois. Here, the ideal pOL generated

in OL by p once again has a unique decomposition into a product of distinct

maximal ideals. But, each of the maximal ideals has the same multiplicity e.

Proposition 4. If p is a maximal ideal of OK, then the maximal ideals that

lie above p, are all conjugate. They have the same residual degree f and the

same inertia degree e. Thus, pOL =
∏g

i=1(Pi)
e.

Proof. The assertion about the ramification index and the residual degree

follows from the fact that an automorphism preserves all algebraic relations.

Let P be one of the Pi’s and assume that another of the Pi’s, which we will

call Q, is not conjugate to P . Since Q and σ(P ), where σ is an element of

Gal(L/K), are maximal and distinct, σ(P ) ̸⊂ Q. The prime avoidance lemma

tells us that there is an element y ∈ Q such that y is not an element of σ(P )

for all σ in Gal(L/K). Consider the norm of y, N(y) =
∏

τ∈Gal(L/K) τ(y).

Since τ(y) is an element of OL for all τ in Gal(L/K), N(x) is an element of

Q ∩ OK = p. On the other hand, y is not an element of τ−1(P ), so τ(y) is

not in P for any τ in Gal(L/K). Since P is prime, N(x) is not in P , which

contradicts that N(x) is an element of p. □

Corollary 1. If L/K is a degree n Galois extension, then n = efg, where

f = [OL/Pi : OK/p] for any of the maximal ideals Pi.

Proof. This follows directly from Proposition 4 and Theorem 2. Since L/K

is Galois, Proposition 4 tells us that e and f are independent of Pi. Then
11



this result is just a special case of Theorem 2, where e1 = · · · = eg = e and

f1 = · · · = fg = f . □

Note that then n
ef

= g. In other words, the degree of the extension divided

by ef is equal to the number g of prime factors of p in OL.

If we let G = Gal(L/K), then G acts on, or permutes, the set of prime

ideals in OL that lie above p. More precisely, for all σ in G, σ(Pi) = Pj for

some 1 ≤ j ≤ g.

For each one of these primes, we can define what’s called the decomposition

group, which we will denote D(Pi/p).

Definition 8. The decomposition group, D(Pi/p), is the set D(Pi/p) = {σ ∈

G | σ(Pi) = Pi}.

In summary, for each prime p, there is a set of prime ideals in L that lie

above p, which we call Pi. The decomposition group permutes the elements

of Pi, without sending elements of Pi to elements of Pj for i ̸= j. Note that

D(Pi/p) is a subgroup of G. In fact, D(Pi/p) is the stabilizer of p in G. It

also turns out that g = |G|
|D(Pi/p)| , or that for every i, |D(Pi/p)| = ef .

In contrast, we can define the inertia group, a subgroup of the decomposition

group, which we will denote I(Pi/p).

Definition 9. The inertia group, I(Pi/p), is the set {σ ∈ G | σ|Pi
= identity}.

The elements of the inertia group act as the identity on each element of Pi,

or they fix the elements of Pi. For every i, the order of the inertia group is e.

In [DT02], Duke and Tóth introduce a matrix that calculates the inertia

degree of primes in Q(E[ℓ]) that lie above p. The inertia and decomposition
12



group play a key role in justifying this calculation. We now provide an

important definition and prove a few lemmas related to the decomposition

and inertia groups that will allow us to prove the matrix does in fact calculate

the inertia index of these primes. The proof of Lemma 2 is taken from [Ste04].

Definition 10. The generator of the group D(Pi/p)
I(Pi/p)

is called the Frobenius

element of Pi.

Note that we will only be working with unramified p’s, and so, the order of

D(Pi/p) is f and the order of I(Pi/p) is 1. Therefore, the Frobenius element

is actually an element of D(Pi/p).

Lemma 2. The Frobenius elements for each of the primes Pi that lie above p

are all conjugate to each other.

Proof. Let τ be an element of Gal(Q(E[ℓ])/Q) and γ be an element of D(Pi/p)

for some i. Then τ(γ(τ−1(Pi))) = Pi if and only if γ(τ−1(Pi)) = τ−1(Pi).

Therefore, τ ◦γ ◦ τ−1 is an element of D(Pi/p) if and only if γ is an element of

D(τ−1(Pi)/p). So, τ
−1D(Pi/p)τ = D(τ−1(Pi)/p). Since Gal(Q(E[ℓ])/Q) acts

transitively on the set of primes lying over p, it follows that the decomposition

groups D(Pi/p) are all conjugate in Gal(Q(E[ℓ])/Q). But, since the Frobenius

element for each of the primes Pi is an element of D(Pi/p), this implies all the

Frobenius elements are conjugate to each other. □

Lemma 3. Let O be the ring of integers of Q(E[ℓ]). Then the Galois group

Gal((O/Pi)/(Z/p)) is isomorphic to D(Pi/p)/I(Pi/p).

Proof. By definition of D(Pi/p), D(Pi/p) stabilizes Pi, meaning it acts on

O/Pi. This gives a surjective map D(Pi/p) → Gal((O/Pi)/(Z/p)). For the
13



proof that this map is indeed surjective, the curious reader can look to [MC16].

By definition of the inertia group, I(Pi/p) is the kernel of this mapping. It

follows that D(Pi/p)/I(Pi/p) is isomorphic to Gal((O/Pi)/(Z/p)). □

We are now ready to introduce the results from [DT02] and begin our

analysis of the main question of this thesis.

5. Counting Arguments about Prime Decomposition

At this point we’ve looked at the question we’re trying to answer and built

up a lot of theory. So, let’s now apply the theory and background we’ve

built up to our actual question. We first note that there are some conditions

that are somewhat clear off the bat. If we make K too small, then we might

make [K(µℓ) : Q] < [Q(E[ℓ]) : Q], in which case it would be impossible for

K(µℓ) ⊃ Q(E[ℓ]). But, that’s not the kind of case we’re going to worry about.

We’re going to be concerned with the case where K is chosen to be big enough,

but the prime decomposition in the extensions Q(E[ℓ])/Q and K(µℓ)/Q is not

compatible in such a way that it would be impossible for K(µℓ) ⊃ Q(E[ℓ]).

One approach to making sure the decomposition of primes in K(µℓ) is

inconsistent with the decomposition of primes in Q(E[ℓ]) would be to see

how a specific prime p decomposes in Q(E[ℓ]) and then to pick a K so that

p decomposes into an incompatible number of primes in K(µℓ). But, in order

to do this, we need to understand how specific primes decompose in Q(E[ℓ]).

To do this, we look to [DT02].
14



Let p be a prime in Q that is a prime of good reduction for E/K . Then,

Duke and Tóth define the following matrix:

σp =

 ap+bp(δp)

2
bp

bp(∆−δp)

4

ap−bp(δp)

2


where |ap| < 2

√
p, ∆p = a2p − 4p, δp = 0 or 1 depending on whether ∆ ≡ 0, 1

mod 4, and ∆p = b2p∆, where bp is positive.

It turns out that, because of the following proposition, the order of σp is

important for our understanding of prime decomposition in Q(E[ℓ]).

Proposition 5. For a prime p ∈ Q that is unramified, the order of the matrix

σp is equal to the inertial degree of p in Q(E[ℓ]).

Proof. Consider the extension Q(E[ℓ])/Q and write O for its ring of integers.

For any unramified prime p ∈ Q, pO = Pe
1 · · · Pe

g . We know that this extension

is Galois, and, more specifically, that it has Galois group GL2(Fℓ). Therefore,

if we call the degree of this extension n, we have that n = efg, where e is the

ramification index and f is the inertial index. Since p is unramified, e = 1,

meaning n = fg.

For each prime Pi, we know that we have the extension (O/Pi)/(Z/p).

Then, by Lemma 1, O/Pi
∼= Fpf and the Galois group of this extension is

cyclic. By Lemma 3, we know that Gal(Fpf/Fp) ∼= D(Pi/p)/I(Pi/p), which is

generated by the Frobenius element. By Lemma 2, the Frobenius elements for

all of these primes Pi are conjugate to one another.

In [DT02], the σp matrix is defined to be a representation of the conjugacy

class of the Frobenius elements for each of the Pi’s, i.e. the σp matrix is a

stand-in for any of the Frobenius elements of the Pi’s. So, Gal(Fpf/Fp) is also
15



generated by σp. Then, ⟨σp⟩ is isomorphic to ⟨FrobPi
⟩, where FrobPi

is the

Frobenius element of Pi. So, the order of the σp matrix in GL2(Fℓ) is the

degree of the extension D(Pi/p)/I(Pi/p), which is f . □

Example. We will now work through an example. Let p = 2 and ℓ = 5.

Then we can make a table of possibilities for ap and ∆p.

a2 ∆2 = (a2)
2 − 4(2) square-free? possible bp possible ∆ = ∆p

b2p

±2 -4 No 1 −4
±1 -7 Yes 1 −7
0 -8 No 1, 2 −8,−2

Taking into account that ∆ must be 0 or 1 mod 4, we can produce the

following five triples (ap, bp,∆):

(i) (1, 1,−7), (ii) (−1, 1,−7), (iii) (2, 1,−4), (iv) (−2, 1,−4), (v) (0, 1,−8).

For each of these triples, we can calculate the σ2 matrix to get:

(i)

 1 1

−2 0

 , (ii)

 0 1

−1 −1

 , (iii)

 1 1

−1 1

 , (iv)

−1 1

−1 −1

 , (iv)

 0 1

−2 0

 .

By Proposition 5, the order of σp in GL2(Fℓ) is equal to the inertial degree

of the primes in Q(E[ℓ]) that lie above p. But, we know that |GL2(F5)| = efg,

and by assumptions made in [DT02], all of the primes we can compute σp for

must be primes of good reduction, which implies that e = 1. So, we can also

use the order of σp to calculate how many primes p splits into in Q(E[ℓ]). We

now list the order of each of these matrices in GL2(F5) and the information it

provides about how the prime 2 splits in Q(E[5]):
16



• The order of matrix (i) in GL2(F5) is 24. Therefore, if E is an elliptic

curve and 2 is a prime of good reduction for E, with a2(E) = 1, then,

in Q(E[5]), 2 splits into 20 primes, each with inertial degree 24.

• The order of matrix (ii) in GL2(F5) is also 24. Therefore, if E is an

elliptic curve and 2 is a prime of good reduction for E, with a2(E) =

−1, then in Q(E[5]), 2 splits into 20 primes, each with inertial degree

24.

• The order of matrix (iii) in GL2(F5) is 4. Therefore, if E is an elliptic

curve and 2 is a prime of good reduction for E, with a2(E) = 2, then,

in Q(E[5]), 2 splits into 120, each with inertial degree 4.

• The order of matrix (iv) in GL2(F5) is also 4. Therefore, if E is an

elliptic curve and 2 is a prime of good reduction for E, with a2(E) =

−2, then, in Q(E[5]), 2 splits into 120 primes, each with inertial degree

4.

• The order of matrix (v) in GL2(F5) is 8. Therefore, if E is an elliptic

curve and 2 is a prime of good reduction for E, with a2(E) = 0, then,

in Q(E[5]), 2 splits into 60 primes, each with inertial degree 8.

We will now finish the example by showing what the implications of these

calculations are for the number field K we would like to produce. Before we do

this, we make the assumption that 2 is a prime of good reduction for E/K . If 2

is not a prime of good reduction for E/K , then we can find another prime that

is and perform the same calculations to find the splitting behavior for that

prime. So, finishing the example, if we wanted to produce a number field K

that would make E/K diophantine stable, we would need one of the following

things to happen:
17



• If a2(E) = ±1, then 2 splits into x primes in K(µ5), where x is not a

multiple of 20.

• If a2(E) = ±1 and 2 splits into 20 primes in K(µ5), then the inertial

degree for those 20 primes is not a multiple of 24.

• If a2(E) = ±2, then 2 splits into x primes in K(µ5), where x is not a

multiple of 120.

• If a2(E) = ±2 and 2 splits into 120 primes in K(µ5), then the inertial

degree for those 120 primes is not a multiple of 4.

• If a2(E) = 0, then 2 splits into x primes in K(µ5), where x is not a

multiple of 60.

• If a2(E) = 0 and 2 splits into 60 primes in K(µ5), then the inertial

degree for those 60 primes is not a multiple of 8.

6. A Concrete Example

We will now work through a similar example to that in the previous section,

but with a specific elliptic curve E and prime ℓ. We choose E to be the elliptic

curve with Cremona label 11a1 and ℓ = 7.

Theorem 3. If [K : Q] < 2016, or one of the following occurs,

• In K(µ7), 2 splits into more than 84 primes, 3 splits into more than

42 primes, or 5 splits into more than 336 primes.

• In K(µ7), the 84 primes 2 splits into have inertial degree greater than

24, the 42 primes 3 splits into have inertial degree greater than 48, or

the 336 primes 5 splits into have inertial degree greater than 6.

then, (E,K, 7) is diophantine stable.
18
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Proof. We know |GL2(F7)| = 2016. So, if [K : Q] < 2016, then (E,K, 7) is

diophantine stable.

Just like before, we want to look at more interesting cases of (E,K, 7) being

diophantine stable, which are related to prime decomposition in Q(E[7]). We

will study how the primes 2, 3, and 5 decompose in this field. From the

LMFDB (linked), we find that a2(E) = −2, a3(E) = −1, and a5(E) = 1.

So, we get the following three triples (ap, bp,∆):

(−2, 1,−4), (−1, 1,−11), (1, 1,−19).

For each of these triples, we can form the σp matrix to get:

σ2 =

−1 1

−1 −1

 , σ3 =

 0 1

−3 −1

 , σ5 =

 1 1

−5 0

 .

We can calculate that σ2 has order 24 in GL2(F7), σ3 has order 48 in GL2(F7),

and σ5 has order 6 in GL2(F7).

So, in Q(E[7]), 2 splits into 84 primes, each with inertial degree 24, 3 splits

into 42 primes, each with inertial degree 48, and 5 splits into 336 primes, each

with inertial degree 6. So, if K(µ7) = Q(E[7]), then the primes split this way

in K(µ7) as well. Therefore, for (E,K, 7) to be diophantine stable, we need

one of the following things to happen:

• In K(µ7), 2 splits into more than 84 primes, 3 splits into more than 42

primes, or 5 splits into more than 336 primes.

• In K(µ7), the 84 primes 2 splits into have inertial degree greater than

24, the 42 primes 3 splits into have inertial degree greater than 48, or

the 336 primes 5 splits into have inertial degree greater than 6.
19



Note that for the second condition, it suffices to just have one prime that p

splits into have greater inertial degree in K(µ7) than it did in Q(E[7]) because

we are making the assumption that K is a Galois extension of Q, so K(µ7) is

as well. Therefore, all the primes Pi in K(µ7) that lay above a specific prime

of good reduction in Q have the same inertial degree. □
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