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ABSTRACT

THOMAS FARINA The Relationship Between Zeros of the Riemann Zeta

Function and Primes.

Department of Mathematics, March 25, 2021.

ADVISOR: HATLEY, JEFFREY

This thesis looks at the connection between the distribution of the prime

numbers and the zeros of the Riemann zeta function. To study this connection,

functions that count prime numbers will be used, such as π(x) and Λ(x). On

top of using these functions, techniques from calculus and complex analysis

will be utilized to see the connection further. The main idea that connects

the zeros of the zeta function and the prime numbers is through the Riemann

hypothesis.

ii



ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Jeffrey Hatley first and foremost

for his contribution to my thesis. His guidance and advice has helped me

tremendously and has always pushed me to get the best out of me, for which

I am grateful for. I also thank my friends and family who have listened to me

ramble about math for hours on end and know my passion for this subject.

They have always supported me and have always been the best people to rely

on. To each and every one of you, thank you very much.

iii



Contents

ABSTRACT ii

ACKNOWLEDGEMENTS iii

1. INTRODUCTION 1

2. PRELIMINARIES 2

2.1. RIEMANN ZETA FUNCTION 2

2.2. GAMMA FUNCTION 2

2.3. PRIME COUNTING FUNCTIONS 4

3. PROPERTIES OF THE RIEMANN ZETA FUNCTION 7

4. FUNCTIONAL EQUATION 11

5. ZEROS OF THE ZETA FUNCTION 12

6. PRIMES AND ZEROS 14

BIBLIOGRAPHY 19

iv



1. INTRODUCTION

In 1859, mathematician Bernhard Riemann gave a talk about the most

recent paper he published, which translated is ”On the Number of Primes

Less Than a Given Magnitude”. This paper focused on a function called the

zeta function, which is defined as

ζ(s) =
∞∑
n=1

1

ns
.

Although this function was defined previously, Riemann used techniques from

complex analysis to look for a pattern in the distribution of primes. While

talking about it he casually mentions a conjecture about the zeros of the zeta

function. The conjecture is known as the Riemann hypothesis and is stated

below.

Riemann Hypothesis. The Riemann hypothesis states that the zeros

of the zeta function that lie between 0 ≤ s ≤ 1 have Re(s) = 1
2
.

The language used in the Riemann hypothesis may not make sense right now

but this statement will be explained and looked at later on. While this con-

jecture was made nonchalantly by Riemann at the time, it has still yet to be

proven to this day, even having a $1,000,000 prize for the person who solves

it. While this paper does not attempt to solve the Riemann hypothesis, it

explores the connection between the zeros of the zeta function and the distri-

bution of primes. The purpose is to give a better understanding of how the

two ideas are connected.
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2. PRELIMINARIES

This section will define important functions that will be used later on.

2.1. RIEMANN ZETA FUNCTION. We start by defining the main focus

of the paper.

Definition 1. The Riemann Zeta Function is defined by (the analytic

continuation of) the series

ζ(s) =
∞∑
n=1

1

ns
,

where s ∈ C.

We write s as s = a + bi, where a, b ∈ R, so that the real part of s is

Re(s) = a and the imaginary part is Im(s) = b. This function has appeared

in problems in the past, such as the Basel problem which looked to compute

ζ(2). We will look at different properties of the zeta function later on in the

paper.

2.2. GAMMA FUNCTION.

Definition 2. The gamma function, denoted as Γ(s), is defined as

Γ(s) =

∫ ∞
0

e−tts−1dt.

As an example, we can calculate Γ(1), which is

Γ(1) =

∫ ∞
0

e−tt1−1dt =

∫ ∞
0

e−tdt =
(
−e−t

]∞
0

= lim
t→∞
−e−t + e0 = 0 + 1 = 1

One interesting property of the gamma function is that it generalizes the

factorial function. In order to see this we use the following property of Γ(s).
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Proposition 1. For Re(s) > 0, we have

Γ(s+ 1) = sΓ(s) (1)

Proof. We start by defining the left hand side using the definition of the gamma

function.

Γ(s+ 1) =

∫ ∞
0

e−tt(s+1)−1dt =

∫ ∞
0

e−ttsdt

We can evaluate this integral using integration by parts, letting u = ts and

dv = e−tdt. Then we have du = sts−1dt and v = −e−t. This integral becomes∫ ∞
0

e−ttsdt =
(
−e−tts

]∞
0
−
∫ ∞
0

−e−t(sts−1)dt.

Simplifying the expression gives us

(
−e−tts

]∞
0
−
∫ ∞
0

−e−t(sts−1)dt = lim
x→∞

(
−x

s

ex
+

0s

e0

)
+ s

∫ ∞
0

e−tts−1dt.

The first part of the expression evaluates to 0 and we notice that the second

part has the definition of Γ(s) in it. Thus we get

lim
x→∞

(
−x

s

ex
+

0s

e0

)
+ s

∫ ∞
0

e−tts−1dt = 0 + sΓ(s) = sΓ(s).

�

Knowing this fact, we start seeing the connection to the factorial function.

Let n be a nonnegative integer. We know from the proposition that

Γ(n) = (n− 1)Γ(n− 1).
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Using the proposition again for Γ(n− 1), we get

(n− 1)Γ(n− 1) = n− 1 [(n− 2)Γ(n− 2)]

We can repeat this process until we 1Γ(1), which we know equals 1. Thus we

have

Γ(n) = (n− 1)(n− 2) · · · 1 = (n− 1)!

We can say that Γ(n) = (n − 1)! for nonnegative integers n. This is an

example of analytic continuation since we can use the gamma function to

define more values of the factorial function. The idea of analytic continuation

will appear later on.

2.3. PRIME COUNTING FUNCTIONS. This section covers functions

that help count primes and find prime numbers as well. To start this section,

we look at the most important function that counts prime numbers.

Definition 3. Let π(x) be the prime-counting function, which counts the

number of prime numbers less than or equal to x, where x ∈ R+. In other

words,

π(x) = #{p ≤ x : p is prime}

One important theorem deals with approximating π(x). In the 18th century,

Gauss and Legendre conjectured a way to approximate it for any value of x,

which is

x

lnx
.

Using this, we have the theorem below.
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Figure 2.1. The graph of the first 1000 integers for the two
functions in the Prime Number Theorem [5]

Theorem 1. The Prime Number Theorem states that

lim
x→∞

π(x)
x

lnx

= 1.

Another way to think of this theorem is that the error between the two

functions approaches 0 as x increases towards infinity. The graph in Figure

2.1 shows the two different functions for the first 1000 positive integers.

We now take a look at a functions that help us study primes.

Definition 4. The von Mangoldt function Λ is defined as

Λ(n) =


log p if n = pk, where p is a prime number

0 otherwise
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While Λ(n) is useful at looking at individual primes, we want to use it to

count the number of primes up to a certain number. We make use of the

function below.

Definition 5. The second Chebyshev function ψ is defined on R+ by

ψ(x) =
∑
n≤x

Λ(x)

When looking at the second Chebyshev function and the prime counting

function, it is clear that the two are related in counting up to a certain number

of primes. However, one would notice that ψ(x) also includes values that are

powers of primes. This brings up a concern that these prime powers would

contribute greatly to the value of ψ(x), not making it useful to compare to

π(x). In this case, we can see that most of the contribution for ψ(x) comes

from the primes, not the prime powers. Table 1 shows how much these prime

powers contribute to the second Chebyshev function.

x π(x) π(x) + χ(x) π(x)
π(x)+χ(x)

10 4 7 0.571
25 9 14 0.643
100 25 35 0.714
1000 168 193 0.870
10000 1229 1280 0.960
50000 5133 5217 0.984
100000 9592 9700 0.989

Table 1. Values of x and the contribution of prime powers.
Note that χ(x) is the function that counts the number of prime
powers up to x.

Looking at the table, we see that there are not that many prime powers up

to a certain number. By looking at the ratio between π(x) and π(x) + χ(x),
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we see that the value gets closer to 1 as x gets bigger and bigger. Since the

ratio behaves this way, it shows that prime powers do not contribute much to

ψ(x). More explicitly, the contribution from prime powers pk, with k ≥ 2, is

O(x
1
2 log (x)) [4]. From this deduction, it is reasonable to use the von Mangoldt

function and the second Chebyshev function when studying prime numbers.

3. PROPERTIES OF THE RIEMANN ZETA FUNCTION

The Riemann zeta function is a particular example of a more general class

of objects called Dirichlet series, which is a series of the form

∞∑
n=1

a(n)

ns

where s ∈ C and a(n) is a sequence of complex numbers. The zeta function is

defined by setting a(n) = 1 for all n ∈ N. When studying a series, one thing to

determine is where a series converges or diverges. In this case, we want to see

what values of s converge for ζ(s). We determine this in the following lemma.

Lemma 1. The Dirichlet series which defines the Riemann zeta function con-

verges when Re(s) > 1. If Re(s) ≤ 1, then the function diverges.

Proof. This can be shown with the Integral Test using the function f(x) = 1
xs

.

For this proof we only use values of s that only have a real part and no

imaginary part, since the imaginary portion does not effect magnitude. In the

case that s = 1, the integral is evaluated as

lim
b→∞

∫ ∞
1

1

x
dx = lim

b→∞
(lnx]b1 = lim

b→∞
ln b− ln 1 =∞.
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This means that the function diverges when s = 1. When s 6= 1, the integral

evaluates as ∫ ∞
1

1

xs
dx = lim

b→∞

∫ ∞
1

1

xs
dx

= lim
b→∞

(
x1−s

1− s

]b
1

= lim
b→∞

b1−s

1− s
− 1

1− s

If s > 1, then we have 1− s < 0, making limb→∞ b
1−s = 0. Thus we have

lim
b→∞

b1−s

1− s
− 1

1− s
= − 1

1− s

which converges, making ζ(s) converge for all values with Re(s) > 1. If we

have s < 1, then 1− s > 0, which makes limb→∞ b
1−s =∞. Then we have

lim
b→∞

b1−s

1− s
− 1

1− s
=∞,

which diverges. �

Knowing that the zeta function converges when Re(s) > 1, we can rewrite

it as an Euler Product.

Theorem 2. For ζ(s) with Re(s) > 1, we have

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
where the product runs over all prime numbers. This is the product expansion

of ζ(s), which is known as the Euler Product.
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Proof. We first write out the first few terms of ζ(s)

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ . . .

Multiplying ζ(s) by 1
2s

gives us

1

2s
ζ(s) =

1

2s
+

1

4s
+

1

6s
+

1

8s
. . . (2)

If we subtract (2) from ζ(s), we get

ζ(s)− 1

2s
ζ(s) =

(
1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+ . . . (3)

Now multiplying (3) by the second term that appears in it, 1
3s

, we get

1

3s

(
1− 1

2s

)
ζ(s) =

1

3s
+

1

9s
+

1

15s
+

1

21s
+ . . . (4)

Subtracting (4) from (3) results in(
1− 1

2s

)
ζ(s)−

(
1

3s

(
1− 1

2s

)
ζ(s)

)
=

(
1− 1

2s

)(
1− 1

3s

)
ζ(s)

= 1 +
1

5s
+

1

7s
+

1

11s
+ . . . (5)

If we repeat this process, multiplying the second term to the new equation

and subtracting from the previous one, this results in

· · ·
(

1− 1

7s

)(
1− 1

5s

)(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1 (6)

Dividing both sides by these new terms gives us

ζ(s) =

(
1

1− 1
2s

)(
1

1− 1
3s

)(
1

1− 1
5s

)(
1

1− 1
7s

)
· · · (7)
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We see that the terms that we get are prime numbers. To explain this better,

we can generalize the product on the right hand side of (7) as

(
1

1− 1
ps

)
, where

p is a prime number. We see that this is a geometric series since
∣∣∣ 1ps ∣∣∣ < 1 for

all primes p. We can expand this to get(
1

1− 1
ps

)
= 1 +

1

ps
+

(
1

ps

)2

+

(
1

ps

)3

+ · · · (8)

Since this is for all primes, we expand all the prime numbers as such and

distribute, which results in all natural numbers. This is guaranteed by the

Fundamental Theorem of Arithmetic. Thus (7) can be rewritten as

ζ(s) =
∏
p

(
1

1− 1
ps

)
=
∏
p

(
1− 1

ps

)−1
(9)

�

We can apply this theorem to prove the following result.

Corollary 1. For any value of s that has Re(s) > 1, we have

log ζ(s) = −
∑
p

log (1− p−s)

where p is a prime number.

Proof. Using Theorem 2, we can rewrite log ζ(s) as

log ζ(s) = log

[∏
p

(1− p−s)−1
]
.
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Expanding the Euler Product and using properties of logarithms, we get

log

[∏
p

(1− p−s)−1
]

= log
[
(1− 2−s)−1(1− 3−s)−1 · · ·

]
= log (1− 2−s)−1 + log (1− 3−s)−1 + · · ·

=
∑
p

log (1− p−s)−1

= −
∑
p

log (1− p−s)

�

4. FUNCTIONAL EQUATION

As state in Lemma 1, the Dirichlet series of ζ(s) is only defined for values of

s that have Re(s) > 1. In other words, if we try to compute ζ(−1), it would

be

ζ(−1) =
∞∑
n=1

1

n−1
=
∞∑
n=1

n = 1 + 2 + 3 + 4 + · · · .

This answer does not make sense and has no real use. For our purposes, we

want to look at values of s that have Re(s) < 1 and can be computed in a nice

way. This leads us to the equation below, which is

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s). (10)

This function in (10) is known as a functional equation, which gives us a

way to define more values in the zeta function, specifically for values of s that
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have Re(s) < 1. If we try s = −1 into the function in (10), we get

ζ(−1) = 2−1π−2 sin
(
−π

2

)
Γ(2)ζ(2) = − 1

12
.

Using this functional equation of ζ(s), we can actually make sense of it and

compute ζ(−1) and get an answer of − 1
12

instead of having 1 + 2 + 3 + 4 + · · · .

This equation provide more insight to study the values of the zeta function for

Re(s) < 1 by the symmetry described by the functional equation.

5. ZEROS OF THE ZETA FUNCTION

Making use of the functional equation of the zeta function, we can find the

zeros of the Riemann Zeta function. The zeros of the zeta function fall into

two different categories, which are listed in the proposition below.

Proposition 2. (a) There are no zeros for any s that has Re(s) > 1.

(b) The zeros of ζ(s) that have Re(s) < 0 are at s = −2m for all m ∈ N.

These are called the trivial zeros of the zeta function.

(c) For all of the zeros that have 0 ≤ Re(s) ≤ 1, they lie symmetrically around

the line Re(s) = 1
2
. These zeros are called the non-trivial zeros.

Proof. For part (a), we can use the Euler Product of the zeta function to

determine if there are any zeros when we have Re(s) > 1. In this case to have

ζ(s) = 0, it must be true that(
1− 1

ps

)−1
=

(
1

1− 1
ps

)
= 0

There is no value of p that can make this statement true, meaning that there

are no values of s that make ζ(s) = 0 when Re(s) > 1.
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For part (b), we will use the functional equation from (10), which is

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

From part (a), we know that ζ(s) 6= 0 when Re(s) > 1. In this case we have

Re(s) < 0, which means that the only values that are used for ζ(1 − s) have

Re(s) > 1, making ζ(1− s) 6= 0. Moreover, Γ(s) has no zeros in the complex

plane meaning that we can say that Γ(1 − s) 6= 0. This means that the only

way to find the zeros of ζ(s), we must look at sin
(
πs
2

)
and see where it equals

zero. We know that only values of sin that make it equal to 0 are at θ = 0 and

θ = π. This means that the only integers that make sin
(
πs
2

)
= 0 true are the

even integers. However, we are only looking at values that have Re(s) < 0.

Thus the only possible values that make sin
(
πs
2

)
= 0 and have Re(s) < 0 are

s = −2,−4,−6, . . . , i.e., the negative even integers.

To show that the zeros lie symmetrically around the line Re(s) = 1
2
, we will

make use of the functional equation of ζ(s) from (10). We notice that if we

have ζ(1
2
), then the ζ(1− s) term is also equal to ζ(1

2
). Then if we have s such

that 0 ≤ Re(s) ≤ 1, then we also know that 0 ≤ Re(1 − s) ≤ 1, where s and

1 − s are reflections across the line Re(s) = 1
2
. Thus when ζ(s) = 0, then we

know that that ζ(1− s) = 0 as well and that they are symmetric. �

One of the most important topics of study is the observation of the non-

trivial zeros. The area 0 ≤ Re(s) ≤ 1 is called the critical strip, and it is

commonly believed that all of the non-trivial zeros are located here. These

locations of the non-trivial zeros in the critical strip are the focus of the Rie-

mann hypothesis. Recall that the Riemann hypothesis says that the zeros that

lie between 0 ≤ s ≤ 1 have Re(s) = 1
2
. After looking at the zeros of the zeta
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function at a greater level, we can now redefine the Riemann hypothesis with

more precision.

Riemann Hypothesis. The Riemann hypothesis states that all of

non-trivial zeros lie in the critical strip. In particular, these zeros lie on

the line Re(s) = 1
2
, which is known as the critical line.

These are the zeros that are crucial to understand the relationship between

the zeta function and prime numbers. Knowing more about what the Riemann

hypothesis is will help us see the idea between zeros of ζ(s) and prime numbers.

6. PRIMES AND ZEROS

To explore the connection between prime numbers and the Riemann zeta

function further, we can use techniques with complex analysis and contour

integration to discover more about this. After exploring more about the zeta

function, we can now prove a major theorem that helps connect the prime

numbers to the Riemann zeta function.

Theorem 3. For Re(s) > 1, we have

ζ ′(s)

ζ(s)
= −

∑
n

Λ(n)

ns
(11)

Proof. We first start on the left hand side, where we can rewrite it as the

logarithmic derivative.

ζ ′(s)

ζ(s)
=

d

ds
log(ζ(s))

14



We can then rewrite it as

d

ds
log(ζ(s)) =

d

ds

(
−
∑
p

log(1− p−s)

)

from Corollary 1. Since we are taking the derivative we can apply it to the

term inside the summation and apply it, resulting in

d

ds

(
−
∑
p

log(1− p−s)

)
= −

∑
p

(
d

ds
log(1− p−s)

)

= −
∑
p

(
1

1− p−s
˙log(p)p−s

)

We see that the |p−s| < 1, and knowing this we can rewrite the term 1
1−p−s as

a geometric series, which is

−
∑
p

(
1

1− p−s
˙log(p)p−s

)
= −

∑
p

[
log (p)p−s

(
∞∑
k=0

(p−s)k

)]

We can put p−s into the geometric series and redefine the bounds, as well as

rearrange the sums to get

−
∑
p

[
log (p)p−s

(∑
k=0

(p−s)k

)]
= −

∑
p

[
log (p)

(∑
k≥1

(p−s)k

)]

= −
∑
p

∑
k≥1

log (p)

(ps)k

= −
∑
p

∑
k≥1

log (p)

pks

Looking at this expression, we notice that it is similar to the von Mangoldt

function since the sum of the different primes are counted. Moreover, we can

actually simplify the pks term since the von Mangoldt function counts prime
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powers. Thus the function simplifies to

−
∑
p

∑
k≥1

log (p)

pks
= −

∑
n

Λ(n)

ns

�

Knowing the expression from Theorem 3, we can use it to show the con-

nection between the primes and the zeros of the zeta function. To start off,

we integrate each side of (11) over the perimeter of a box, where we choose a

location such that all integrals in that location do converge. We will denote

the perimeter of the box as B. This gives us

∮
B

ζ ′(s)

ζ(s)
ds = −

∮
B

∑
n

Λ(n)

ns
ds (12)

We multiply both sides of (12) by xs

s
, where we make x an arbitrary param-

eter. After multiplying the expression we can rearrange it to get

∮
B

ζ ′(s)

ζ(s)

xs

s
ds = −

∮
B

∑
n

Λ(n)

ns
xs

s
ds

= −
∮
B

∑
n

Λ(n)
(x
n

)s 1

s
ds

= −
∑
n

Λ(n)

∮
B

(x/n)s

s
ds (13)

On the right hand side of (13), we can evaluate
∮ (x/n)s

s
ds to be 1 if n < x

and 0 if n ≥ x [3]. We will let x go to infinity, meaning that the integral will

evaluate to 1. This also changes the bounds for our summation, letting us look
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at all n ≤ x. Thus, our expression from (13) becomes∮
B

ζ ′(s)

ζ(s)

xs

s
ds = −

∑
n

Λ(n)(1)

∮
B

ζ ′(s)

ζ(s)

xs

s
ds = −

∑
n

Λ(n) (14)

The right hand side of this equation deals with the prime numbers. The left

hand side will tell us about the zeros and poles of ζ(s) in the region, which we

will show now. To simplify the left hand side, we will examine the residues of

ζ′(s)
ζ(s)

xs

s
, which are at the zeros and poles of ζ(s). From observation, we see that

ζ(s) has a pole at s = 1 with residue 1. Since there are many zeros of ζ(s), we

let ρ range over all of the zeros. The residue at each zero is xρ

ρ
, with the proof

of this in [1]. Combining both of these sums, we evaluate the left hand side as

∑
ρ:ζ(ρ)=0

xρ

ρ
− x = −

∑
n≤x

Λ(n) (15)

Note that the x term came from the residue of the pole at s = 1. Multiplying

both sides of (15) by -1 gives us

x−
∑

ρ:ζ(ρ)=0

xρ

ρ
=
∑
n≤x

Λ(n) (16)

With the expression in (16), we begin to see the connection between primes

and the zeros of the zeta function. If the Riemann Hypothesis is true, then we

know that Re(ρ) = 1
2

for all zeros of the zeta function. Then the left hand side

of (16) is approximately x+O(x
1
2 ) [4]. On the right hand side, we can make use

of Theorem 1 and our analysis above to say that the sum evaluates to
∑

n≤x 1

17



due to prime powers not contributing a lot to Λ(n). The Euler Product gave

us an important connection with the logarithmic derivative of ζ(s), relating to

it as a sum over primes via contour integration. After using complex analysis,

we then get information about the location of the zeros related to the number

of primes.
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