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ABSTRACT

KHAI DONG Attacks on Discrete-Log Cryptography on Elliptic Curves.

Department of Mathematics, February 27, 2024.

ADVISOR: HATLEY, JEFFREY

This paper discusses the M.O.V. attack [2], which uses the Weil Pairing to

solve a discrete logarithm problem over a specific elliptic curve E by reducing

it to a discrete logarithm problem over a finite field Fpm for some m ∈ N.

The effectiveness of this attack relies on efficiently solving discrete logarithm

problems over the field Fpm , which requires m to be sufficiently small. A large

portion of this paper is dedicated to proving the existence of the Weil Pairing,

an alternating, bilinear, non-degenerate, and Galois invariant pairing, which is

the foundation of the M.O.V. attack.
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NOTATION

We shall use the following notations throughout this paper:

• N = {1, 2, 3, . . . }, being the set of natural numbers

• Z = {. . . ,−2,−1, 0, 1, 2, . . . }, being the set of integers

• Q, being the set of rationals

• [n] := {0, 2, 3, . . . , n− 1}
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1. INTRODUCTION

This paper discusses the M.O.V. attack [2], which uses the Weil Pairing

to solve a discrete logarithm problem over a specific elliptic curve E by re-

ducing it to a discrete logarithm problem over a finite field Fpm for some

m ∈ N. The effectiveness of this attack relies on efficiently solving discrete

logarithm problems over the field Fpm , which requires m to be sufficiently small.

A large portion of this paper is dedicated to proving the existence of the

Weil Pairing, an alternating, bilinear, non-degenerate, and Galois invariant

pairing, which is the foundation of the M.O.V. attack.

In Section 2, we provide background about elliptic curves. Section 3 provides

some general information on discrete logarithm problems and shows how such

problems can be formulated using elliptic curves. Section 3 also provides

some details on Index Calculus, a method to solve discrete logarithm problems

over finite fields. Finally, Section 4 proves the existence of the Weil Pairing,

describes how this pairing can be utilized to solve discrete logarithm problems

over elliptic curves, and shows examples of these attacks.

2. ELLIPTIC CURVES

Definition 1. Let F be a field. An elliptic curve E over F is the graph of an

equation of the form

E : y2 = x3 + Ax+B,

where A,B ∈ F are constants and y2 = x3 + Ax+B is non-singular. Geomet-

rically, this means the graph of E has no cusps, self-intersections, or isolated
1



points.

The equation y2 = x3 +Ax+B is referred to as the Weierstrass form for an

elliptic curve.

By convention, if not stated otherwise, we consider an elliptic curve to be

defined over Q, the set of rational numbers. Moreover, due to elliptic curve

origin in projective geometry, we consider the point ∞ to be on any elliptic

curve E. Intuitively, it is useful to think of ∞ as a point on the top or at the

bottom of the y-axis.

Definition 2. Let F be a field and E be an elliptic curve over F. We define

E(F) = {∞} ∪ {(x, y) ∈ (F)2 : y2 = x3 + Ax+B}.

2.1. ADDITION OF POINTS ON ELLIPTIC CURVES. We first

demonstrate that with 2 points P1, P2 ∈ E(Q), we can generate a third point

P3 ∈ E(Q) (Figure 2.1). We do this by drawing the line L through P1 and P2.

If P1 = P2, we take the tangent line at P1 (or equivalently, P2) as L. Then, if L

cuts E at a third point P ′
3, (for ease of notation, we call this point P ′

3 = P1P2).

We then reflect P ′
3 across the x-axis to obtain P3. Otherwise, if L is parallel to

the y-axis, P3 = ∞.

In more detail, let P1 = (x1, y1), P2 = (x2, y2), and

E : y2 = x3 + Ax+B. (1)

Firstly, we assume P1 ̸= P2 and that neither points are ∞ (points P1 and P2

have rational coordinates). We have 2 cases
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Figure 2.1. Adding Points on an Elliptic Curve

• If x2 ̸= x1, then line L through P1 and P2 has the slope

m =
y2 − y1
x2 − x1

,

and the equation of line L is

y = m(x− x1) + y1. (2)

We then substitute the Equation 2 into Equation 1 to get

(m(x− x1) + y1)
2 = x3 + Ax+B

⇐⇒ x3 −m2x2 + (A+ 2m2x1 − 2my1)x

+ (B + 2mx1y1 −m2x2
1 − y21) = 0.

Solving this cubic polynomial, we obtain P1, P2, and P ′
3 = (x′, y′) where

x′ = m2 − x1 − x2 and y′ = m(x′ − x1) + y1.
3



We reflect P ′
3 across the x-axis to obtain P3 = (x3, y3) where

x3 = m2 − x1 − x2 and y3 = m(x1 − x3)− y1.

We remarked that in this case, since P1 and P2 have rational coordinates

and the slope of line L is rational, P ′
3 and P3 have rational coordinates.

• If x1 = x2, then L is a vertical line through P1 and P2, which will

intersect E at P3 = ∞.

Then, we assume P1 = P2 = (x1, y1) ̸= ∞. We choose L to be the tangent line

at P1. To find L, we use implicit differentiation on Equation 1:

y2 = x3 + Ax+B

=⇒ d

dx
(y2) =

d

dx
(x3 + Ax+B)

⇐⇒ 2y
dy

dx
= 3x2 + A ⇐⇒ dy

dx
=

3x2 + A

2y
.

If y1 ̸= 0, substituting P1 into dy
dx
, we have the slope of L,

m =
dy

dx
(P1) =

3x2
1 + A

2y1
,

and the equation of L being

y = m(x− x1) + y1.

Following the same procedure as before, we obtain P3 = (x3, y3) where

x3 = m2 − x1 − x2 and y3 = m(x1 − x3)− y1.
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Otherwise, if y1 = 0, the line is vertical and P3 = ∞.

Finally, we consider the case when either P1 or P2 is ∞. If P1 = ∞ and P2 ̸= ∞.

The line L through P1 and P2 is a vertical line that cuts E at P ′
2 which is

the reflection of P2 across the x-axis. Reflecting P ′
2 across the x-axis gives

P3 = P2. Similarly, if P1 ≠ ∞ and P2 = ∞, P3 = P1. If P1 = P2 = ∞, we

define P3 = ∞.

We remark that throughout this section, E can be over any field F since

the procedure remains the same as a field F supports addition, subtraction,

multiplication, and division by definition, which means our procedure above

holds. Hence, we formally define this binary operation on P1 and P2 as follows:

Definition 3. Let F be a field and E be an elliptic curve over F. Suppose

P1 = (x1, y1) and P2 = (x2, y2) are points on E(F). If P1 ̸= ∞ and P2 ≠ ∞,

we define P1 +E P2 = P3 = (x3, y3) as follows:

• If x1 ̸= x2, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, and m =
y2 − y1
x2 − x1

.

• If x1 = x2 and y1 ̸= y2, then P3 = ∞.

• If P1 = P2 and y1 ̸= 0, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, and m =
3x2

1 + A

2y1
.

• If P1 = P2 and y1 = 0, then P3 = ∞

Otherwise, if P1 = ∞, P3 = P1, and if P2 = ∞, P3 = P2.

If the elliptic curve is clear from context, we denote P1 + P2 = P3 instead.
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Moreover, we remark that +E is commutative since the line L through P1

and P2 is the same regardless of the order of P1 and P2. This can trivially be

proven by looking at the formula to compute P3 in the definition.

2.2. THE GROUP E(F).

Theorem 1. Let F be a field and E be an elliptic curve over F. The set

E(F) = {∞} ∪ {(x, y) ∈ F2 : y2 = x3 + Ax+B}.

forms an abelian group under the binary operation +E.

Proof. Since +E is commutative, we only have to show that E(F) is a group.

(closure) The closure condition is trivially true by looking at the equation of P3

in the definition of +E as F, being a field, is closed under addition, subtraction,

multiplication, and division.

(identity) ∞ is the identity of the group by definition.

(inverse) Let P = (x, y) ∈ E(F) be an arbitrary point. Let P ′ = (x,−y). If

y = 0, then P = P ′. Thus, P + P ′ = ∞. Otherwise, P and P ′ share the

x-coordinate and y ̸= 0. Thus, P + P ′ = ∞. Therefore, in all cases, P ′ is the

inverse of P , thus, proved the inverse existence.

(associativity) We omit this proof due to its algebra-intensive nature. The full

proof can be found in [5, Chapter 2.4]. □

2.3. TORSION POINTS.

Definition 4. Let E be an elliptic curve over a field F. Let n ∈ N. We define

the set of n-torsion points of E as

E[n] = {P ∈ E(F) : nP = ∞},
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where F is an algebraic closure of F.

We note that E[n] contains points with coordinates in F and not just in F.

Theorem 2. Let E be an elliptic curve over a field F and n ∈ N. If charF ∤ n

or charF = 0, then

E[n] ∼= Z/nZ⊕ Z/nZ.

Due to the proof’s complex nature, we omit the proof for Theorem 2 in this

paper. It can be found in [5, Section 3.2].

2.4. DIVISORS.

Definition 5. Let E be an elliptic curve over a field F. For each point

P ∈ E(F), we define a formal symbol [P ]. Then, we define a divisor D on E

as the formal sum

D =
∑
i

ai[Pi],

where ai ∈ Z and Pi ∈ E(F). Hence, a divisor is an element of a free abelian

group generated by points in E(F). We denote this group Div(E).

Definition 6. Let E be an elliptic curve over a field F. Let

D =
∑
i

ai[Pi]

be a divisor on E. We define the degree and sum of the divisor D, respectively,

as follows:

deg(D) =
∑
i

ai and sum(D) =
∑
i

aiPi.
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We note that the sum function takes sums of points on the elliptic curve E

as defined in Section 2.1.

Definition 7. Let E be an elliptic curve over a field F. We define a function

f on E as a function f(x, y) ∈ F(x, y) that is defined in at least 1 point on

E(F). The function f takes values in F ∪ {∞}.

Definition 8. Let E be an elliptic curve over a field F, f be a function on E,

and P ∈ E(F). Then, f is said to have a zero at P if f(P ) = 0 and to have a

pole at P if f(P ) = ∞.

However, we would want to know more refined information about the poles

and zeros of a function f , particularly, the order of the zeros or poles.

Definition 9. Let E be an elliptic curve over a field F. Let P ∈ E(F). We can

prove that there exists a function uP where uP (P ) = 0, called a uniformizer

at P such that every function f can be written as

f = ur
Pg, where r ∈ Z and g(P ) ̸= 0,∞.

We define the order of f at P by ordP (f) = r.

The way to choose a uniformizer for point P is described in [5, Section 11.1],

and thus proven the existence of uP for all P ∈ E(F).

We remarked that if f has a zero at P , ordP (f) > 0. If f has a pole at P , then

1/f has a zero at P . Hence, if f has a pole at P , then ordP (f) < 0. Otherwise,

if f has neither zero nor pole at P , then ordP (f) = 0.

Now we introduce a special type of divisor.
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Definition 10. Let E be an elliptic curve over a field F and f be a function

on E. We define the divisor of f to be

div(f) =
∑

P∈E(F)

ordP (f)[P ] ∈ Div(E).

We also call a divisor of this form a principal divisor.

The following results are particularly helpful in this paper. However, we

omit the proofs of these statements due to their complexity. These proofs can

be found in [5, Section 11.1].

Proposition 1. Let E be an elliptic curve over a field F and f be a non-zero

function on E. Then,

• f has only finitely many zeros and poles.

• deg(div(f)) = 0.

• If f has no zeros or poles, f is a constant.

Theorem 3. Let E be an elliptic curve over a field F. Let D be a divisor on

E where deg(D) = 0. Then, there exists a function f on E with div(f) = D if

and only if sum(div(f)) = ∞.

For example, referring back to Section 2.1, given points P1, P2 on E and a

line L through P1 and P2, we notice that P ′
3, the third intersection between L

and E, is −(P1 + P2). Thus, sum(div(L)) = P1 + P2 − (P1 + P2) = ∞.

3. DISCRETE LOGARITHM PROBLEMS

Definition 11. Let G be a group. Let a, b ∈ G such that there exists k ∈ N

such that

ak = b.
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The discrete logarithm problem is to find k. Since by the Lagrange Theorem,

a|G| = 1, the answer k should be regarded as defined mod |G|.

Classically, the discrete logarithm problem is defined on the multiplicative

group F×
q of a finite field. However, any group G would work in defining these

problems. Classically, to ensure a full range of possible values for k, we choose

G to be cyclic and a to be a generator of G; however, this may not required.

In cryptography, the discrete logarithm problems have several applications [5,

Chapter 6]; the security of many cryptosystems depends on the hardness of

discrete logarithm problems. Over the years, various methods to solve these

discrete logarithm problems have been developed to give insights into the

hardness of such problems. These methods, however, only work in specific

conditions or are not efficient.

3.1. ELLIPTIC-CURVE CRYPTOGRAPHY. Since E(F) is a group (by

Theorem 1), we can define a discrete logarithm problem with G = E(F). Hence,

we can reformulate a discrete logarithm problem over an elliptic curve E as

follows:

Definition 12. Let Fq be a finite field and E be an elliptic curve. Let

P,Q ∈ E(Fq) such that there exists k such that kP = Q (written additively by

convention). A discrete logarithm problem over E(Fq) is to find k.

We remarked that this cryptographic scheme only requires us to know the

field Fq (which can be described by an integer q), the elliptic curve E (which

can be described by 2 integers A,B in Weierstrass form), and 2 points P,Q in

E(Fq).
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3.2. THE INDEX CALCULUS. This section introduces Index Calculus: a

method that can efficiently solve discrete logarithm problems over finite fields.

The method is particularly useful in breaking discrete logarithm cryptography

over elliptic curves as such a problem can be reduced to a discrete logarithm

problem over a finite field (Section 4).

Let Fq be a finite field where q = pn for some prime p. Let g be a generator

of F×
q ; that is for every h ∈ F×

q , there exists k ∈ Zq−1 where g
k = h. Let h ∈ F×

q

be arbitrary. We define L(h) = k being the discrete logarithm of h with respect

to g and q; that is gL(h) = h mod (q − 1). Then, suppose we have h1, h2 ∈ Fq.

Then, we have

h1h2 = gL(h1)gL(h2) = gL(h1)+L(h2).

This means L(h1h2) = L(h1) + L(h2) mod (q − 1). Therefore, if we pre-

compute the discrete logarithm L for a sufficiently large set of {hi}i ∈ [n] where

h =
∏

i∈I⊆[n] h
αi
i for some I and integers αi’s, we can compute

L(h) =
∑

i∈I⊆[n]

αiL(hi) mod (q − 1)

for any h ∈ Fq. This analysis is the basis for the Index Calculus, where we

pre-compute a set of {L(hi)}i∈[n] to compute the desired L(h).

In the case of field Fq where q is a prime, we choose the {hi} to be a set

of small primes. However, we are more interested in the case where q = pn,

where p is a prime and n ≥ 2 since solving a discrete logarithm problem over

an elliptic curve using the pairings would require solving discrete logarithm
11



problems over Fpn with n ≥ 2 being the minimum.

We observe that elements of Fpn are roots of f(x) = xpn − x in the closure

of Fp. Let ω as a root of f . We have that all element of Fpn has the form∑n−1
i=0 aiω

i where ai ∈ Fp. This means we can choose {hi} to be a set of small

primes in Fp, ω, and their products. For more details, please refer to [1, p. 18].

We remark that by this construction, larger fields would require more time to

perform Index Calculus, and this method might fail if the desired h can not

factor into powers of elements of {hi}.

4. THE M.O.V. ATTACK

In general, the M.O.V. (Menezes-Okamoto-Vanstone) attack [2] reduces the

problem of discrete logarithm over E(Fp) to one in Fq where q = pm and m

depends on E(Fp). As long as Fq is not too much larger than Fp, we can

efficiently solve the simpler discrete log problem over Fq. To achieve such a

reduction, we use the Weil Pairing.

4.1. THE WEIL PAIRINGS.

Definition 13. Let F be a field and n ∈ N such that charF ∤ n. Then, we

define

µn = {x ∈ F : xn = 1}

to be the group of nth roots of unity in F. Since charF ∤ n, xn = 1 has exactly

n roots in F. Any generator ζ of µn is called a primitive nth root of unity.

Theorem 4. Let F be a field, n ∈ N, and E be an elliptic curve over F. Assume

charF ∤ n. Then, there exists a pairing

en : E[n]× E[n] → µn,
12



called a Weil pairing, that satisfied the following properties

(1) en is bilinear. This means that

en(S1 + S2, T ) = en(S1, T )en(S2, T )

and

en(S, T1 + T2) = en(S, T1)en(S, T2)

where S, T, S1, S2, T1, T2 ∈ E[n].

(2) en is non-degenerate; that is, if en(S, T ) = 1 for all T ∈ E[n], then

S = ∞ and if en(S, T ) = 1 for all S ∈ E[n], then T = ∞.

(3) en(T, T ) = 1 for all T ∈ E[n].

(4) en(T, S) = en(S, T )
−1 for all S, T ∈ E[n].

(5) en(σS, σT ) = σ(en(S, T )) for all automorphism σ of F s.t., σ(A) = A

and σ(B) = B.

(6) en(α(S), α(T )) = en(S, T )
deg(α) for all endomorphism α of E.

It’s worth noting that the Weil Pairing is a particularly useful tool in studying

elliptic curves as it is an alternating, non-degenerate, and bilinear pairing. This

resembles the determinant of matrices. However, what makes the Weil pairing

useful in this paper is that it is Galois invariant (5).

We first construct the pairing en : E[n]× E[n] → µn. Let S, T ∈ E[n]. By

Theorem 3, there exists a function fT such that

div(fT ) = n[T ]− n[∞]
13



since deg(n[T ]− n[∞]) = n− n = 0 and sum(n[T ]− n[∞]) = nT − n∞ = ∞

since T ∈ E[n]. We consider the function (fT ◦ n)(P ) = fT (nP ). We know

that fT has a zero of order n at T and a pole of order n at ∞, by definition.

We notice that nP = ∞ if and only if P ∈ E[n], by definition of E[n]. Hence,

fT ◦n has a pole of order n at any P in E[n]. We want to find all zeros of fT ◦n.

We have that (fT ◦ n)(P ) = 0 if and only if nP = T ⇐⇒ n2P = nT = ∞.

Thus, (fT ◦ n)(P ) = 0 if and only if P ∈ E[n2].

Lemma 1. Let P ∈ E[n2]. If (fT ◦ n)(P ) = 0, P = T ′ +R for some R ∈ E[n].

Proof. By Theorem 2, E[n2] forms an abelian group. Since P, T ′ ∈ E[n2], we

have that

P = T ′ + (P − T ′).

We claim that P − T ′ ∈ E[n]. This is true since

n(P − T ′) = nP − nT ′ = nP − T

since nT ′ = T . Since (fT ◦ n)(P ) = 0, nP = T . Thus, n(P − T ′) = ∞. □

Thus, we have that

div(fT ◦ n) = n

( ∑
R∈E[n]

[T ′ +R]

)
− n

( ∑
P∈E[n]

[P ]

)

Then, we choose a T ′ ∈ E[n2] such that nT ′ = T . By Theorem 3 again, there

exists a function gT such that

div(gT ) =
∑

R∈E[n]

([T ′ +R]− [R]).

14



This is true since deg([T ′+R]−[R]) = 0 and sum([T ′+R]−[R]) = T ′+R−R =

T ′. By Theorem 2, E[n] ∼= Zn ⊕ Zn. This means there are n2 points R ∈ E[n].

Thus,

sum(div(gT )) = n2T ′ = ∞

since T ′ ∈ E[n2]. Then, we use a slightly different notation to obtain the

divisors of gn as

div(fT ◦ n) = n

( ∑
R∈E[n]

[T ′ +R]

)
− n

( ∑
R∈E[n]

[R]

)

= n

( ∑
R∈E[n]

(
[T ′ +R]− [R]

))

= n · div(gT )

= div(gnT ).

Let S, T ∈ E[n] be our initial S and T , and P ∈ E(F) be an auxiliary point.

We have that

gT (P + S)n = (fT ◦ n)(P + S) = fT (nP + nS) = fT (nP ) = gT (P )n.

This means (
gT (P + S)

gT (P )

)n

= 1 =⇒ gT (P + S)

gT (P )
∈ µn.

Thus, we define the Weil pairing en : E[n]× E[n] → µn as

en(S, T ) =
gT (P + S)

gT (P )
.

We claim that this defined en is actually independent of the choice of point P .
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Lemma 2. Let P1, P2 ∈ E(F). Then,

gT (P1 + S)

gT (P1)
=

gT (P2 + S)

gT (P2)
.

We omit the proof of Lemma 2 since the proof is topology intensive. This

can be found in [5, Section 11.2].

With the defined en, we present the proof of Theorem 4.

Proof. (1) Let S1, S2 ∈ E[n]. Since en is independent of the choice of P by

Lemma 2, have that

en(S1, T )en(S2, T ) =
gT (P + S1)

g(P )

gT (P + S1 + S2)

gT (P + S1)

=
gT (P + S1 + S2)

gT (P )
= en(S1 + S2, T ).

Hence, en is linear in the first variable. Then, let T1, T2 ∈ E[n]. We define

T3 = T1 + T2. Since T3 = T1 + T2, by Theorem 3, there exists function h such

that

div(h) = [T3]− [T1]− [T2] + [∞].

Moreover, we also have that

div

(
fT3

fT1fT2

)
= n[T3]− n[∞]− n[T2] + n[∞]− n[T1] + n[∞]

= n[T3]− n[T1]− n[T2] + n[∞]

= n([T3]− [T1]− [T2] + [∞])

= n · div(h) = div(hn) =⇒ div(fT3) = div(fT1fT2h
n).
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This means there exists c ∈ F×
such that fT3 = cfT1fT2h

n. Then, similar to

before, we define (fT3 ◦ n)(S) = fT3(nS). Thus, we have that

gnT3
= fT3 ◦ n =⇒ gnT3

= c · (fT1 ◦ n) · (fT2 ◦ n) · (hn ◦ n)

=⇒ gnT3
= c · gnT1

· gnT2
· (hn ◦ n)

=⇒ gT3 = c1/n · cgT1gT2(h ◦ n).

Then, we have that

en(S, T1 + T2) = en(S, T3) =
gT3(P + S)

gT3(P )
=

cgT1gT2(h ◦ n)(P + S)

cgT1gT2(h ◦ n)(P )

=
gT1(P + S)

gT1(P )
· gT2(P + S)

gT2(P )
· h(n(P + S))

h(nP )
= en(S, T1)en(S, T2),

since S ∈ E[n], that is h(n(P + S)) = h(nP + nS) = h(nP ). This finished our

proof in bilinearity.

(3) Let τjT denotes the function P → P + jT . Then, f ◦τjT denote the function

P → f(P + jT ). Then, we have that

div(f ◦ τjT ) = n[T − jT ]− n[−jT ].

Therefore,

div

( n−1∏
j=0

f ◦ τjT
)

=
n−1∑
i=0

(n[T − jT ]− n[−jT ]) = 0.

By Theorem 3,
∏n−1

j=0 f ◦ τjT is constant. Since gn = f ◦ n, we have that

17



( n−1∏
j=0

g ◦ τjT ′

)n

=
n−1∏
j=0

f ◦ n ◦ τjT ′

=
n−1∏
j=0

f ◦ τjT ◦ n (since nT ′ = T )

Since
∏n−1

j=0 f ◦ τjT is constant,
∏n−1

j=0 f ◦ τjT ◦n is constant. Thus,
∏n−1

j=0 g ◦ τjT ′

is constant. Hence, the product evaluates to the same value at P + T ′ and P .

That is

n−1∏
j=0

g(P + T ′ + jT ′) =
n−1∏
j=0

g(P + (j + 1)T ′) =
n−1∏
j=0

g(P + jT ′).

Suppose we choose P such that all terms are finite and nonzero. By canceling

the terms on both sides, we have that

g(P + nT ′) = g(P + T ) = g(P ) (since nT ′ = T ).

Thus,

en(T, T ) =
g(P + T )

g(P )
= 1, as desired.

(4) Let S, T ∈ E[n]. We consider

en(T, S)en(S, T ) = en(S, S)en(T, S)en(S, T )en(T, T ) (by (3))

= en(S + T, S)en(S + T, T ) = en(S + T, S + T ) (by (1))

= 1 (by (3))

Since en(T, S)en(S, T ) = 1, en(T, S) = en(S, T )
−1, as desired.

(2) Let T ∈ E[n] such that en(S, T ) = 1 for all S ∈ E[n]. This means that

18



gT (P + S) = gT (P ) for all P ∈ E(F) and S ∈ E[n]. By Proposition 9.34

[5, p. 300], there exists function h such that gT = h ◦ n. We omit such a

Proposition from this paper since it is not involved anywhere except in this

proof. Since gT = h ◦ n, we have that

gnT = (h ◦ n)n = fT ◦ n

Thus, we have hn = f . Therefore,

n · div(h) = div(f) = n[T ]− n[∞]

=⇒ n · div(h) = [T ]− [∞].

Since h is a function, by Theorem 3, sum(h) = T −∞ = T = ∞, as desired.

Let S ∈ E[n] such that en(S, T ) = 1 for all T ∈ E[n]. By (4), for all T ∈ E[n],

en(T, S)
−1 = 1 ⇐⇒ en(T, S) = 1. Then, non-degeneracy in S follows from

non-degeneracy in T , that is S = ∞.

(5) Let σ be an automorphism of F such that σ(A) = A and σ(B) = B. Then,

we apply σ on every point in constructing en. That is, let S, T ∈ E[n]. We

define fσ
T where

div(fσ
T ) = n[σT ]− n[∞].

Then, we can define define gσT where

div(gσT ) =
∑

R∈E[n]

([σT ′ + σR]− [σR]) = div(gσT
◦ σ)

Then, we have that

σ(en(S, T )) = σ

(
gT (P + S)

gT (P )

)
=

gσT (σP + σS)

gσT (σP )
= en(σS, σT ),

19



as desired.

(6) The proof of (6) can be found in [5, Section 11.2]. □

The following result is helpful in the next section.

Lemma 3. Let {T1, T2} be a Z-basis of E[n]. Then, en(T1, T2) is a primitive

nth root of unity.

Proof. Define ζ = en(T1, T2) ∈ µn. Let d be the order of ζ. To show ζ is a

primitive nth root of unity, we are going to show that d = n.

Let S ∈ E[n]. This means there exists a, b ∈ Z such that S = aT1 + bT2. We

consider

en(S, dT2) = en(aT1 + bT2, dT2)

= en(T1, dT2)
aen(T2, dT2)

b (bilinearity)

= en(T1, T2)
daen(T2, T2)

db (bilinearity)

= ζda1db = 1

Since S is arbitrary, non-degeneration holds. This means dT2 = ∞, which

implies n | d. This means n = d, as desired. □

4.2. THE M.O.V. ATTACK. We first note that en can be computed effi-

ciently [3]. This section shows how we can use the Weil pairing to reduce the

problem of discrete logarithm over E(Fp) to one in Fq where q = pm.

Let E be an elliptic curve over Fp where p is prime. Let P,Q ∈ E(Fp). Let N

be the order of P . Since p is prime, gcd(N, p) = 1 since N ∈ Zp−1. We want to

find k such that Q = kP . First, we claim that is possible to check if k exists

using the Weil pairing.
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Lemma 4. There exists k such that Q = kP if and only if NQ = ∞ and

eN(P,Q) = 1.

Proof. ( =⇒ ) If Q = kP , then NQ = kNP = ∞. Moreover, we have that

eN(P,Q) = eN(P, kP ) = eN(P, P )k = 1k = 1.

( ⇐= ) If NQ = ∞, then Q ∈ E[N ]. Since gcd(N, q) = 1, by Theorem 2,

E[N ] ∼= Zn ⊕ Zn. We choose point R such that {P,R} is a Z-basis for E[N ].

Then, we can write

Q = kP + bR,

where a, b ∈ Z. By Lemma 3, eN(P,R) = ζ is a primitive N th root of unity.

Hence, we have that

eN(P,Q) = eN(P, aP + bR) = eN(P, P )keN(P,R)b = ζb.

This means ζb = eN(P,Q) = 1. Since ζ is a primitive N th root of unity,

N |b. Thus, bR = ∞ (since R ∈ E[N ]). Therefore, Q = kP + ∞ = kP , as

desired. □

We check if k exists by simply evaluating NQ and en(P,Q), both of which

could be computed efficiently.

Proposition 2. Let E be an elliptic curve over Fp. Then, E[N ] ⊆ E(Fpm) for

some m ∈ N.

Proof. Since S ∈ E[N ] ⊆ E(Fp) and there are finite S ∈ E[N ], we can extend

E(Fp) by all elements in E[N ] to obtain E(Fpm) for somem ∈ N, as desired. □
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Proposition 3. Let E be an elliptic curve over Fp and E[N ] ⊆ E(Fpm) for

some m ∈ N. Then, µN ⊆ Fpm.

The proof of a similar statement to this proposition is available in [5, Section

3.3]. With all the pieces, we introduce the M.O.V. attack:

(1) Pick a random T ∈ E(Fqm).

(2) Compute the order M of T .

(3) Let d = gcd(M,N), and let T1 = (M/d)T . Then, the order of T1 is d,

which divides N , implying T1 ∈ E[N ].

(4) Then, we compute ζP = eN(P, T1) and ζQ = eN(Q, T1). We note that

ζdP = eN(P, T1)
d = eN(P, dT1)

= eN(P,∞) = eN(P,NP ) = eN(P, P )N = 1,

and

ζdQ = eN(Q, T1) = eN(Q, dT1)

= eN(Q,∞) = eN(Q, order(Q)Q) = eN(Q,Q)order(Q) = 1.

This means ζP , ζQ ∈ µd. Since d | N , ζP , ζQ ∈ µd ⊆ µN ⊆ Fqm .

(5) Solve the discrete log problem ζQ = ζkdP in Fpm . This problem is

well-defined since k is a solution to this problem:

ζkP = eN(P, T1)
k = eN(kP, T1) = eN(Q, T1) = ζQ.

We can solve this problem with Index Calculus (Section 3.2). This gives

kd = k (mod d). We only get k (mod d) since the order of elements in

µd is in Zd.
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(6) Redo (1) - (5) until the least common multiple of the d’s obtained is N .

This determined k (mod N) by the Chinese Remainder Theorem.

After some number of picks of T in step (1), we can solve the elliptic curve

discrete log problem. It can be shown that d = 1 does not occur very often [2,

Section 5.3.1]. However, the runtime of this method relies on the runtime of

step (5) where we solve a discrete logarithm problem in Fpm , which may be

slow if the size of Fpm (or m) is not sufficiently small.

4.3. EXAMPLE. We consider the elliptic curve E over F11 with Weierstrass

form

E : y2 = x3 + 2

We define a discrete logarithm problem over E using P = (1, 5) and Q = (4, 0).

Firstly, we check if there exists a k such that kP = Q using Lemma 4. Using

SAGEMATH [4], we have that N = order(P ) = 12 and, indeed, 12 · (4, 0) = ∞

over E and e12((1, 5), (4, 0)) = 1; in fact, k = 6. Moreover, we have that

F11m
∼= F11/(x

12 − 1). Since

x12 − 1 = (x+ 1) · (x+ 10) · (x2 + 1) · (x2 + x+ 1)

· (x2 + 5x+ 1) · (x2 + 6x+ 1) · (x2 + 10x+ 1)

in F11, x
12 − 1 completely splits in F11/(x

2 + 1) ∼= F11/(x
12 − 1) ∼= F112 . Thus,

m = 2. Let ω =
√
−1 being a root of x2 + 1. Then, elements of F112 have the

form a+ bω where a, b ∈ F11.

We choose T = (6ω + 7, 8) of order M = 4. Thus, d = gcd(M,N) =

gcd(12, 4) = 4 and T1 = 1T = (6ω + 7, 8). Again, using SAGEMATH,
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e12(P, T1) = 7ω + 8 and e12(Q, T1) = 10. We obtain k = 2 (mod 4).

Again, we choose T = (9ω + 5, 7) of order M = 3. Then, d = gcd(M,N) =

gcd(12, 3) = 3 and T1 = 1T = (9ω + 5, 7). We have e12(P, T1) = ω + 3 and

e12(Q, T1) = 1. Hence, k = 0 (mod 3).

Since lcm(3, 4) = 12 = N , we stopped. By the Chinese Remainder Theorem,

k = 6 (mod 12), as desired.

5. REMARKS

We pointed out that this attack can not deterministically solve any discrete

logarithm problem over an elliptic curve. As mentioned above, if the size of

the field Fpm , which the problem reduced into, is large, the Index Calculus will

not work efficiently. Moreover, computing the order of a point in a group is

as hard as integer factorization. Thus, N and M may not be obtained in a

reasonable time. Moreover, at any iteration of the algorithm, we may only

obtain k (mod d) where d = gcd(M,N) whereas we want to obtain k (mod N).

This means if N is a large prime or order of large primes, even if we pick a good

starting point T , computing M will not efficient, which lowers of efficiency of

the attack.
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