1. Let $P = \{1, 2, 3, \ldots, 10\}$ ordered by divides.
 (a) Draw the Hasse diagram for P.
 (b) Find $\chi(G)$, where G is the Hasse diagram for P.
 (c) Find $P(G, t)$, where G is the Hasse diagram for P.
 (d) Find a partition of P into n antichains, where n is the length of P.
 (e) Find a partition of P into w chains, where w is the width of P.

2. Repeat Problem 2 for $P = \{2, 4, 6, 8, 24, 30, 120\}$ ordered by divides.

3. Let $P = \{2, 3, 4, \ldots, 100\}$ ordered by divides. Find $\text{Max}(P)$ and $\text{Min}(P)$.

4. Draw a Hasse diagram for each isomorphism class of posets with 4 elements.
 Hint: There are 16 isomorphism classes.

5. Give an example of totally ordered sets P and Q such that $P \times Q$ is not totally ordered, where $P \times Q$ is the poset defined in CHW4#4.

6. Let P denote the poset with the Hasse diagram given below.

![Hasse diagram]

 (a) Use the Topological Sorting Algorithm to find a totally ordered refinement \leq'.
 (b) Find $\downarrow(c)$.
 (c) Find all maximal elements of P.
 (d) Find all minimal elements of P.
 (e) Find a partition of P into n antichains, where n is as small as possible.
 (f) Find a partition of P into w chains, where w is as small as possible.