1. Prove: Every field is an integral domain.

2. Let R be a commutative ring with unity. Prove:

 (a) The set U of units of R is an abelian group.

 (b) If ab is a unit of R, then a and b are units of R.

3. Show $S = \{m + n\sqrt{3} \mid m, n \in \mathbb{Z}\}$ is a subring but not an ideal of \mathbb{R}.