Propositions, Theorems, and Corollaries on Size of Sets

Proposition 1: \(\cong \) is an equivalence relation.

Proposition 2: If \(X \cong A \) and \(Y \cong B \), then \(X \times Y \cong A \times B \).

Proposition 3: \(X \not\cong P(X) \)

Proposition 4: If \(X \cong Y \) and \(Y \) is countable, then \(X \) is countable.

Proposition 5: If \(f: X \to Y \) is 1-1 and \(A \subseteq X \), then \(A \cong f(A) \).

Theorem 1: \(\mathbb{N} \times \mathbb{N} \) is countable.

Corollary: \(\mathbb{Z} \times \mathbb{N} \) is countable.

Theorem 2: Every infinite subset of \(\mathbb{N} \) is countable.

Corollary: Every infinite subset of a countable set is countable.

Theorem 3: \(\mathbb{Q} \) is countable.

Theorem 4: \(\mathbb{R} \) is uncountable.