1. Let \(P = \{1, 2, 3, 5, 30\} \) ordered by divides.
 (a) Draw the Hasse diagram for \(P \).
 (b) Find the chromatic number \(\chi(G) \), where \(G \) is the Hasse diagram for \(P \).
 (c) Use a counting argument to find the chromatic polynomial \(P(G, t) \), where \(G \) is the Hasse diagram for \(P \).
 (d) Use the Edge Theorem to find \(P(G, t) \), where \(G \) is the Hasse diagram for \(P \).

2. Let \(P = \{3, 6, 15, 12, 30, 60\} \) ordered by divides.
 (a) Draw the Hasse diagram for \(P \).
 (b) Find \(\chi(G) \), where \(G \) is the Hasse diagram for \(P \).
 (c) Use the Union Theorem to find \(P(G, t) \), where \(G \) is the Hasse diagram for \(P \).

3. Show that \(K_n \) has an Eulerian Circuit \(\iff n \) is odd.

4. Draw a Hasse diagram for each isomorphism class of posets with 4 elements.
 Hint: There are 16 isomorphism classes.

5. Let \(P = \{2, 3, 4, \ldots, 100\} \) ordered by divides. Find \(\text{Max}(P) \) and \(\text{Min}(P) \).

6. Let \(\mathbb{Z} \) denote the set of integers, and define
 \[a \sqsubseteq b \iff b - a \text{ is a nonnegative even integer} \]
 (a) Show that \(\sqsubseteq \) is a partial order of \(\mathbb{Z} \).
 (b) Draw a Hasse diagram for the poset \((\mathbb{Z}, \sqsubseteq) \).

7. Given posets \(P \) and \(Q \), let \(P \times Q \) be the poset defined in Graded Homework 4.
 Prove: \((x', y') \) covers \((x, y) \) \(\iff (x' = x \text{ and } y' \text{ covers } y) \) or \((x' \text{ covers } x \text{ and } y' = y) \).