1. Let \(P = \{1, 2, 3, 4, 5, 8, 30, 90, 120\} \) ordered by divides.

 (a) Draw a Hasse diagram for \(P \).

 (b) Find \(\text{lub}\{2, 3\} \), \(\text{lub}\{2, 90\} \), \(\text{lub}\{4, 5\} \), and \(\text{lub}\{3, 4, 5\} \).

 (c) Find \(\text{glb}\{2, 3\} \), \(\text{glb}\{2, 8\} \), \(\text{glb}\{3, 4\} \), \(\text{glb}\{4, 30\} \), and \(\text{glb}\{3, 4, 5\} \).

2. Consider \(\mathcal{P}(\{1, 2, 3, 4, 5, 6\}) \) ordered by \(\subseteq \), and the subsets \(S_1 = \{\{1\}, \{2, 3\}\} \), \(S_2 = \{\{1\}, \{1, 3\}\} \), \(S_3 = \{\{1, 2\}, \{3, 4\}\} \), and \(S_4 = \{\{1, 2\}, \{2, 3\}, \{2, 6\}\} \).

 (a) Find the number of elements in the set of upper bounds of \(S_i \), for \(i = 1, 2, 3, 4 \).

 (b) Find the least upper bound of \(S_i \), for \(i = 1, 2, 3, 4 \).

 (c) Find greatest lower bound \(S_i \), for \(i = 1, 2, 3, 4 \).

3. Give an example of a poset \(P \) which has an antichain \(\{x, y, z\} \) such that \(\text{lub}\{x, y, z\} \) exists, but \(\text{lub}\{x, y\} \), \(\text{lub}\{x, z\} \), and \(\text{lub}\{y, z\} \) do not exist.

4. Prove that if \(P \) is a lattice, then \(\text{lub}\{x_1, \ldots, x_n\} \) exists, for all \(x_1, \ldots, x_n \in P \).

5. Prove that if the greatest lower bound of \(S \) exists in a poset \(P \), then it is unique (i.e., show that if \(x_1 \) and \(x_2 \) are greatest lower bounds of \(S \), then \(x_1 = x_2 \)).