1. Given bijections \(f: X \to A \) and \(g: Y \to B \), define \(h: X \times Y \to A \times B \) by \(h(x, y) = (f(x), g(y)) \). Prove: \(h \) is a bijection.

2. Let ~ be the relation on \(\mathbb{R}^2 \) given by
\[
(x, y) \sim (a, b) \iff y - 2x = b - 2a
\]
(a) Prove that ~ is an equivalence relation on \(\mathbb{R}^2 \).

(b) Pick three points in \(\mathbb{R}^2 \), and give a geometric description of \([(a, b)]\) for each of the three points, i.e., describe the graph of \([(a, b)]\).

3. Let \(R \) and \(R' \) be equivalence relations on a set \(X \).
 (a) Show that \(R \cap R' \) is an equivalence relations on \(X \).
 (b) Give an example of a set \(X \) and equivalence relations \(R \) and \(R' \) on \(X \) to show that \(R \cup R' \) need not be an equivalence relation on \(X \).

4. Prove: \([a, b] \cong [c, d]\), for all closed intervals \([a, b]\) and \([c, d]\) of \(\mathbb{R} \).

5. Let \(X \) be a set, and let \(X^{\{1,2\}} \) denote the set of functions \(\{1, 2\} \to X \).
 Prove: \(X^{\{1,2\}} \cong X \times X \).