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CHAPTER 1

Speaking Mathematically

Section 1.1 - Variables, Statements

• Variables are simply just placeholders in math that can represent some quantity or some other
object,
� For example, the sentence �Is there a real number x such that x2 = 1?� Can be replaced by

∗ �Is there a real number ♥ such that ♥2 = 1?�
∗ It can also be temporary name, in which you can change afterwards. Like in a computer
program.

• Example: Write using Variables: �Given any real number, its square is non-negative�
� Solution:
� �For any real number x, x2 ≥ 0�
� �For every real number x, x2 ≥ 0�

Definition 1. A universal statement says that a certain property is true for all elements of a set.

Definition 2. An existential statement says some property is true for at least one object.

Definition 3. A conditional statement says that if something is true, then something else has to be
true.

• Example:
� Of (1) All circles are round.
� Of (2) There is an ellipse that is a circle.
� Of (3) If I am in New York, then I am in the U.S.

Definition 4. A universal conditional statement is both universal and conditional.

• Example: Like the one above. �For all real numbers x, if x is nonzero, then x2 is positive.�
• Rewrite it and �ll in the blank:

� If a real number is nonzero, then its square is positive.
� For all nonzero real numbers x, x2 is positive.
� If x is a nonzero real number, then x2 is positive.
� The square of any nonzero real number is positive.
� All nonzero real numbers have positive squares (or squares that are positive).

Definition 5. A universal existential statement is a two-part statement whose �rst part is universal
and second part is existential.

• Example: �Every real number has a cube root.�
� Other forms:
� �All real numbers have cube roots.�
� �For all real numbers x, there is a real number y such that x = y3.�
� Eventually, we'll write things likes �∀x ∈ R,∃y ∈ R such that x = y3.�

Definition 6. An existential universal statement is a two-part statement whose �rst part is exis-
tential and second part is universal.

• Example: �There is a real number whose product with every real number is 0.�
� Other forms:
� �There is a number x such that for all real numbers y, xy = 0.�
� Eventually, we'll write things likes �∃x ∈ R such that ∀y ∈ R, xy = 0�.
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Section 1.2 - The Language of Sets

• A set may be thought of as a well-de�ned collection of objects, called elements (or members).
� Remarks:
� Order doesn't matter, and each object is distinct (so it doesn't matter if they are listed more
than once)
∗ {1, 2, 3} = {3, 2, 1} = {1, 2, 3, 1}

� We use Capital letters for sets; A,S
� We use lower case letters for elements
� a ∈ A means �a is an elements of set A�
� a /∈ A means �a is not an element of set A�

• Ways to specify or de�ne sets:
� Use words: �Let R be th set of real numbers� , i.e. all the points on a number line.
� Set-Roster Notation: {1, 2, 3} or {1, 2, 3, . . . , 99, 100}

∗ Note that � . . . � means that the pattern keeps going.
· But 4 ∈ {1, 2, . . . , 100} but 4 /∈ {1, 3, 100}, or 5.19 /∈ {1, 2, . . . , 100}

� Set-Builder Notation:
∗ Suppose S is a set and P (x) is a property that elements of S may have. Then denotes

{x ∈ S | P (x)} or {x ∈ S : P (x)}

the set of elements x in S such that P (x) is true.
· Here � |� or �:� means �such that�

∗ Example: Let A =
{
y ∈ R | y2 = 1

}
= {−1, 1}

Definition 7. (Set-Roster) The set of integers is the set

Z = {. . . ,−2,−1, 0, 1, 2, . . . } = {0,±1,±2, . . . }

• Also,
� Z+ = {1, 2, 3, . . . } = N, is the set of positive integers, or natural numbers
� Z≥0 = {0, 1, 2, 3, . . . }, is the set of nonnegative integers

Definition 8. (Set-Builder) The set of rational numbers is the set

Q =
{m
n
| m,n ∈ Z and n 6= 0

}
.

• Cartesian Products:

Definition 9. An ordered pair is an object of the form (a, b) where a and b are any objects.

Definition 10. Two ordered pairs are equal, (a, b) = (c, d), provided that a = c and b = d.

Definition 11. If A and B are sets, then the Cartesian product of A and B, denoted A×B, is the
set of ordered pairs (a, b), where a ∈ A and b ∈ B. That is,

A×B = {(a, b) | a ∈ A and b ∈ B} .

• An ordered pair (a, b) is an object that is often inside sets.
� Similarly, we can de�ne an n−tuple (x1, x2, . . . , xn).

• Examples:
� Note (2, 4) 6= (4, 2).

∗ But {2, 4} = {4, 2}
∗ Also (2, 4) 6= {2, 4}, one is an object, the other is a set.

� Let A = {3, 4} × {a, b, c} = {(3, a) , (3, b) , (3, c) , (4, a) , (4, b) , (4, c)}
� Let B = {a, b, c} × {3, 4} = {(a, 3) , (a, 4) , (b, 3) , (b, 4) , (c, 3) , (c, 4)}

∗ Note A 6= B
• The Cartesian Plane:

� This is the most important cartesian product you have probably dealt with in the past.
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� It is
R× R = {(x, y) | x, y ∈ R}

or sometimes we use shorthand

R2 = R× R.
� It corresponds to a unique point in the x− y plane.

• Examples:
� One way is to think of A×B like the x− y plane but with arbitrary sets.

• Subsets:

Definition 12. Let A and B be sets. Then A is called a subset of B, written A ⊆ B (or A ⊂ B)
provided that every element of A is an element of B.

• That is , A ⊆ B means �if x ∈ A, then x ∈ B�
� Question: What kind of statement is this?
� Solution: A universal conditional statement.

∗ Why because we can rewrite this as�For all x ∈ A, then x ∈ B�
• It helps to think of Venn Diagrams.
• Example: If A = {1, 2} and B = {1, 2, 3} then

A ⊆ B.
but

B 6⊆ A.
since 3 /∈ A.

• Example: True or False?
(1) 2 ∈ {1, 2, 3}

� True
(2) {2} ∈ {1, 2, 3}

� False
(3) 2 ⊆ {1, 2, 3}

� False
(4) {2} ⊂ {1, 2, 3}

� True
(5) {2} ⊂ {{1} , {2}}

� False
� Note that this is a set of sets!

(6) {2} ∈ {{1} , {2}}
� True

(7) {{2}} ⊂ {{1} , {2}}
� True

• Strings are optional. See book for the de�nition.



SECTION 1.3 - THE LANGUAGE OF RELATIONS AND FUNCTIONS 8

Section 1.3 - The Language of Relations and Functions

• Relations:
� First we start by de�ning what a relation is

Definition 13. Let A and B be sets. A relation R from A to B is a subset of A×B. Given an ordered
pair (x, y) in R, we say �x is related to y" and write xRy. The set A is called the domain of R and set B
is called the co-domain.

• Note:
� Thus to see if x is related to y is to simply check if (x, y) ∈ R.
� We write x 6 Ry when x is not related to y, i.e. (x, y) /∈ R.

• Examples:
(1) Let A = {1, 2, 3} , B = {a, b, c, d} and de�ne the relation R by

R = {(1, d) , (2, a) , (2, c)} .
(a) Is 1Rb? That is, �is 1 related to b�

(i) Solution: No since (1, b) /∈ R.
(b) Is 2Ra? That is, �is 1 related to b�

(i) Solution: Yes since (2, a) ∈ R.
(c) What is the domain?

(i) Solution: This is given in the problem, which is A = {1, 2, 3}.
(d) What is the co-domain?

(i) Solution: This is given in the problem, which is B = {a, b, c, d}.
(2) De�ne a relation L from R to R as follows:

(x, y) ∈ L i� x < y

(here i� means �if and only if�)
(a) Is 2Lπ?

(i) Solution: Using the de�nition above, to check if 2 is related to π, we need to check
the condition if (2, π) ∈ L. And by the de�nition of L, we need to check if 2 < π.
Since this is true, then YES, 2Lπ!

(b) Is (5, π) ∈ L?
(i) Solution: Using the de�nition above, to check if (5, π) ∈ L we need to check if

5 < π.Which is not true, hence

(5, π) /∈ L.
(3) De�ne a relation C from R to R by

(x, y) ∈ C means that x2 + y2 = 1.

(a) Is (0, 1) ∈ C?
(i) Solution: Using the de�nition above, we need to check if x2 + y2 = 1. Since

02 + 12 = 1,

then yes (0, 1) ∈ C.
(b) Is

(√
2
2 ,
√
2
2

)
∈ C?

(i) Solution: Using the de�nition above, we need to check if x2 + y2 = 1. Since(√
2

2

)2

+

(√
2

2

)2

=
1

2
+

1

2
= 1,

then yes.
(c) Is −1C0 ?

(i) Solution: (BTW, have you noticed yet that we are simply checking if these points
lie in the circle?) Since

(−1)2 + 02 = 1
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then yes.
(d) Is 1C1 ?

(i) Solution: Since

12 + 12 = 2 6= 1

then no!
• You can call C the �circle� relation.
• And L the �less than� relation.
• Arrow Diagram of a Relation:

� One can think of a relation as arrows going from one set A to the other B.
� Example:

�
� Question: What relation does this represent?
� Solution: The domain is A = {1, 2, 3}, the co-domain is B = {a, b, c, d} and the relation is
given by the set of ordered pairs

R = {(1, d) , (2, a) , (2, c)}

• Functions:
• We start with the mathematical de�nition of a function: The de�nition of functions involves think-
ing of a domain, a co-domain, and arrows getting mapped from A to B, but with some additional
properties.

Definition 14. A function F from A to B is a relation from A to B satisfying
(1) For all x ∈ A, there exists y ∈ B such that (x, y) ∈ F .
(2) For all x ∈ A and y, z ∈ B, if (x, y) ∈ F and (x, z) ∈ F , then y = z.

• Remarks: Let's break down what this is saying:
� Part 1 is just saying that every element of x in A gets mapped to at least one element in B.

∗ Draw out some arrow example to illustrate this
∗ Actually, try drawing a BAD exanmple that violates this

� Part 2 is just saying that elements in the domain can't be mapped to multiple things
∗ Draw out some arrow example to illustrate this
∗ What property of functions is this? The vertical line test!

� Also note here, that a function F is actually a set of ordered pairs! (which is the graph of a
function on how we normally are used to thinking of functions)

� Not every relation is a function!
• Examples: Which of the following relations are functions from A = {1, 2, 3} to B = {a, b, c, d}.



SECTION 1.3 - THE LANGUAGE OF RELATIONS AND FUNCTIONS 10

•
� Part (a) No, Violates Part 1 of the De�nition of a function .
� Part (b) No, Violates Part 2, of the De�nition of a function. (The vertical Line test)

∗ We can think of this as a graph! Try graphing this on a A×B plane!
� Part (c) Yes this is a funtion!

∗ Try graphing this on a A×B plane!
� Part (d) Yes this is a funtion!

∗ Try graphing this on a A×B plane!
• Notation: We usually write F : A→ B to mean F is a function from domain A to co-domain B.

� And we take F (x) to mean the unique value y such that (x, y) ∈ F .
� Though mathematically a function F is actually a set of A×B:

F = {(x, y) ∈ A×B | y = F (x)}
� Example: Most functions you dealt with are given by a formula, for example F : R → R
de�ned by

F (x) = x2.



CHAPTER 2

The Language of Compound Statements

Section 2.1 - Logical Form and Logical Equivalence

• First, I will assume that everyone here agrees what true, false, and what a sentence. I won't de�ne
this mathematically.

Definition 15. A statement (or proposition) is a sentence that is true or false but not both.

• For each statement, we can assign a value of T or F to it.
� Examples:

(1) 1 + 1 = 2,
(a) T

(2) 1 + 1 = 5
(a) F

(3) Schenectady is in NY
(a) T

(4) The millionth digit of π is 7.
(a) Anyone know if this is true? This is actually false! The true digit is 1.

� An example that is NOT a Mathematical Statement:
∗ �This sentence is false�

· Because a sentence can only be T or F, but no both.
· If it is T, then it has to be F (by reading the statement)
· If it is F, then also has to be T.
· So it's both TRUE or FALSE. Bad!

Compound Statements:

• We are going to de�ne some symbols in mathematical logic.
� The next de�nition has a �piecewise function�

Definition 16. Let p and q be statements.
(1) ∼ p (or ¬p) is read �not p� and is called the negation of p. It is the statement de�ned by

∼ p :

{
TRUE when p is FALSE

FALSE when p is TRUE

(2) p ∧ q is read �p and q� and is called the conjunction of p and q. It is the statement de�ned by

p ∧ q :

{
TRUE when both p and q are TRUE

FALSE otherwise (i.e., at least one is FALSE)

(3) p ∨ q is read �p or q� and is called the disjunction of p and q. It is the statement de�ned by

p ∨ q :

{
TRUE when at least one of p and q is TRUE

FALSE otherwise (i.e.,both p and q are FALSE)

• Remarks:
� Order of Operations:
� The statement �p ∧ q ∨ r � is ambiguous

∗ It needs parantheses
∗ In logic, ∧,∨ are considered coequal (no PEMDAS here)

11
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∗ So we really need paranthese here to specify what is being applied �rst: such as (p ∧ q)∨r
or p ∧ (q ∨ r)

� ∼ is done �rst: so ∼ p ∧ q = (∼ p) ∧ q
� As already discussed, Parantheses can override what goes �rst.
� Other info:
� ∨ is the �inclusive or�

∗ True when at leasy one is true, or both
� �But� means �and�
� �neither p nor q� means ∼ p∧ ∼ q.

Truth Tables:

• A truth table is an organizational tool used to help determine the truth/falsity of a compound
statement.
� To form a truth table,

∗ list all possible conditions of the simple statements in a compound statement, and
∗ then compute T/F of the compound statement based on the de�nitions of the logical
connectives.

• Truth tables will be usefull later when we are trying to prove two statements are equivalent
• Example: Let us construct the truth tables for the basic connectives we have just de�ned: ¬p ,
p ∧ q and p ∨ q

p ¬p

T F

F T

p q p ∧ q

T T T

T F F

F T F

F F F

p q p ∨ q

T T T

T F T

F T T

F F F

Statement Forms and Truth Tables:

• We will want to combine various statements and connectives together to be able to build more
complex sentences.

Definition 17. A statement form (or propositional form) is a well-formed expression made up of
statement variables (p, q, r, . . . ) and logical connectives (∼,∧,∨, . . . ).

Remark. The phrase �well-formed" means it becomes a statement when actual statements are substi-
tuted for the variables (∨ ∨ pp is not well formed)

• Example: Construct a truth table for (p ∧ q)∨ ∼ r.
� Solution: First �gure out the number of inputs: p, q, r and �gure out all possible combinations:

∗ And then apply them:

p q r p ∧ q ∼ r (p ∧ q)∨ ∼ r
T T T T F T
T T F T T T
T F T F F F
T F F F T T
F T T F F F
F T F F T T
F F T F F F
F F F F T T

Logical Equivalence (via truth tables).

• How do we determine when two statements are actually equivalent?
� For example, is true that ∼ (p ∨ q) ≡∼ p∧ ∼ q ?
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Definition 18. Two statement forms P and Q are logically equivalent, denoted P ≡ Q , if they have
identical truth values for every possible assignment of truth values to their statement variables.

• Example: Use a truth table to show ∼ (p ∨ q) ≡∼ p∧ ∼ q
� Solution: We contruct a truth table for both statements (side by side).

∗ But �rst remember since we have p, q as are statement variables, then there are 4 possible
combinations of their pairing.

∗

p q
(3)
p ∨ q

(4)

∼ (p ∨ q)
(5)
∼ p

(6)
∼ q

(7)
∼ p ∧ ∼ q

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

∗ Comparing columns (4) and (7), we see that the two statements in question have the
same truth values under all possible conditions. Hence they are logically equivalent!

• De Morgan's Law: The example above is actually one of DeMorgan's Law, which is very impor-
tant in math and logic!
� It tell us how to negate �and� and �or� statements

• Here is the complete De Morgan's Laws:

Proposition. (De Morgan's Laws)
The following are true:

∼ (p ∧ q) ≡∼ p∨ ∼ q
∼ (p ∨ q) ≡∼ p∧ ∼ q

Tautologies and Contradictions:

Definition 19. A tautology is a statement form that is always true, regardless of the truth values
assgined to its variables.

A contradiction is one that is always false, regardless of the truth values assigned to its variables.

• Remark: The book often uses t for a generic tautology and c for a generic contradiction.
� Examples:

∗ Part (a): The statement p∨ ∼ p is a tautology
· Solution: To prove this, construct a truth tbale yourself and check that all the
output values are always True.

∗ Part (b): The statement p∧ ∼ p is a contradiction
· Solution: To prove this, construct a truth tbale yourself and check that all the
output values are always False.

Summary of Logical Equivalences:

• We can summarize various logical equivalences in a Theorem. (Theorem 2.1.1 in the book)
• Some of these we have shown already, some you will be asked to prove in the homework.

Theorem. (Theorem 2.1.1 Logical Equivalences)
Given any statement variables p, q and r, a tautology t and a contradiction c, the following logical

equivalences hold:
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1. Commutative laws: p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p
2. Associative laws: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
3. Distributive laws: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
4. Identity laws: p ∧ t ≡ p p ∨ c ≡ p
5. Negation laws: p∨ ∼ p ≡ t p∧ ∼ p ≡ c
6. Double negative law: ∼ (∼ p) ≡ p
7. Idempotent laws: p ∧ p ≡ p p ∨ p ≡ p
8. Universal bound laws: p ∨ t ≡ t p ∧ c ≡ c
9. De Morgan's laws ∼ (p ∧ q) ≡∼ p∨ ∼ q ∼ (p ∨ q) ≡∼ p∧ ∼ q
10. Absorption laws: p ∨ (p ∧ q) ≡ p p ∧ (p ∨ q) ≡ p
11. Negation of t and c ∼ t ≡ c ∼ c ≡ t

• Thus you can prove equivalences, by simplying using these already known equivalences.
• Example (problem 48): Show (p∧ ∼ q) ∨ (p ∧ q) = p using the equivalences already known.

� Solution:

(p∧ ∼ q) ∨ (p ∧ q) ≡ p ∧ (∼ q ∨ q) , by the distributive property

≡ p ∧ (q∨ ∼ q) , by the commutative property for∨
≡ p ∧ t, by the negation law for ∨
≡ p, by the identity law for ∨
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Section 2.2- Conditional Statements

• Conditional Statements:
• Premise: Let's say you walk into a store and the store owner has the following promise(contract)
to you:

"If I pay for an item, then I receive the item"

� This is a conditional statement.
� We can think of p = ”pay for an item” and q = "receive the item”
� And rewrite this sentence in symbols:

”p→ q”

� Question: In what situation would this statement (as a whole) be false?
∗ Suppose you do �pay� ( i.e. the input fot p is True), but then you don't receive the item
(q is false):
· Then the statement �p → q� is False, because you didn't get what you were
promised!! (Promise broken)

� All other cases are true! (i.e. the promise is not broken in all other cases)
∗ If you do pay (p is true), and you receive it (q is true)
∗ If you don't pay (p is false), and you don't receive it (q is false): WELL obviously you
didn't receive it so of course you didn't receive it.

∗ If you don't pay (p is false), and you receive it (q is true): Because you didn't go to the
store anyway and buy anything, so the promise was that to receive it you must have
�rst paid for it. The promise is still true!. So it's still true (Or maybe you stole it!)

• We can break the values of these �� in a Truth Table:

�

p q p→ q
T T T
T F F
F T T L99when this happens, we say it is �vacuously true�
F F T L99when this happens, we say it is �vacuously true

� Vacuously true: means it is true by default
� Example:

If 0 = π then 1 = 2

∗ This is a Vacuously TRUE statement, because the �rst part is false anyways, so the
conclusion can be anything.

Definition 20. The conditional of q by p is �p implies q� and denoted by p→ q. It is the statement
de�ned by

p→ q is

{
FALSE when p is TRUE and q = FALSE

TRUE Otherwise

• Remarks:
� Other terminology: �If p, then q" is equivalent to �q if p."
� In p→ q, p is called the hypothesis and q is called the conclusion.

• Order of Operations: In logic, the order of operations is
� ∼ is performed �rst,
� then ∧ and ∨,
� and �nally →
� Example: p ∧ q → r is equivalent to (p ∧ q)→ r

• Truth Tables:
• Just like last section, we can similarly construct truth tables involving →:
• Example: Construct the truth table for p∨ ∼ q →∼ p:

� Solution:
� Hint: when doing �→� easier to �nd the False statement (T → F ) and mark those as F , since
all other possibilities must be T .
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�

p q ∼ q p∨ ∼ q ∼ p p∨ ∼ q →∼ p
T T F T F F
T F T T F F
F T F F T T
F F T T T T

Logical Equivalence and →.
• Example 1: Prove (using truth tables) that

p ∨ q → r ≡ (p→ r) ∧ (q → r)

� Solution:
� Hint: when doing �→� easier to �nd the False statement (T → F ) and mark those as F , since
all other possibilities must be T .

�

p q r p ∨ q r p→ r q → r p ∨ q → r (p→ r) ∧ (q → r)

T T T T T T T T T
T T F T F F F F F
T F T T T T T T T
T F F T F F T F F
F T T T T T T T T
F T F T F T F F F
F F T F T T T T T
F F F F F T T T T

• Example 2: (Representing If/then as Or) The following equivalence is true

p→ q ≡∼ p ∨ q
� Solution: HW problem. You will need to show that they share the same truth table!

• Example 3: (The negation of conditional Statement)The following equivalence is true

∼ (p→ q) ≡ p∧ ∼ q
Show this.
� Solution: We can use Truth tables. Or let us use the logical equivalences we already know:

∼ (p→ q) ≡∼ (∼ p ∨ q) , by Example 2

≡ (∼∼) p∧ ∼ q, by De Morgan's Law

≡ p∧ ∼ q, by the double negation law.

More Related Statements.

Definition 21. The contrapositive of p→ q is ∼ q →∼ p.

Definition 22. The converse of p→ q is q → p.

• De�nition: The inverse of p→ q is ∼ p→∼ q.
• In Math, the contrapositive is very important, and often makes proving things easier. The reason
being the following theorem:

Theorem. A conditional statement is logically equivalent to the contrapositive: That is,

p→ q ≡∼ q →∼ p.

Proof. The proof of this is in the Homework (#26). Show the truth tables are the same. �

• Example: Let r denote the (if-then) statement

"If I am at Union College, then I am in Schenectady"

In order words this is the conditional statement p→ q where

p = "I am at Union College"

q = "I am in Schenectady"
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� Part (a): Write the contrapositive of r.
∗ Solution: We need ∼ q →∼ p: �I am not in Schenectady, then I am not at Union
College�

� Part (b): Write the converse of r.
∗ Solution: We need q → p: �I am in Schenectady, then I am at Union College�

� Part (c): Write the negation of r.
∗ Solution: Recall that the negation is ∼ (p→ q) ≡ p∧ ∼ q:

· �I am at Union College and I am not in Schenectady�
� The original statement is T, hence its contrapositive is true.
� Also the converse in this example is NOT true.
� But the negation of a a true statement will always be false.

Biconditional.

Definition 23. The biconditional of p and q is written p↔ q (or ”p i� q� or �p ⇐⇒ q�), read �p if
and only if q� , and it means that both

p→ q and q → p.

Truth Table: Using Truth tables, The biconditional p ←→ q is true exactly when p and q have the
same truth values.

p q p→ q q → p (p→ q) ∧ (q → p) p↔ q

T T T T T T
T F F T F F
F T T F F F
F F T T T T

• �p Only if q�:
� means if q doesn't happen, then p won't happen. That is, ∼ q →∼ p, or equivalently p→ q.
� Example: �John will break the world's record for the mile run only if he runs the mile under
four minutes�
∗ Rewrite:(∼ q →∼ p): If John doesn't run the mule under four minutes he will not break
the world's record

∗ Rewrite:(p → q): �If John breaks the world's record for the mile run then he will have
run the mile under four minutes�

� Caution: �p only if q� does not mean �p if q�
• �p if q�:

� Means p← q

More Language.

• �p is necessary for q� means ∼ p→∼ q, or q → p
• �p is su�cient for q� means p→ q
• �p is necessary and su�cient for q � means p↔ q (also p i� q)
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Section 2.3 - Valid and Invalid Arguments

• We will brie�y cover Section 2.3.
� Only need pages 66-69

• De�nition: An argument is a sequence of statements.
• Example1:

� If .33333333.... = a
b for some integers a, b then .33 . . . is a rational number.

� It is true that .333333 · · · = a
b where a = 1 and b = 3.

� Therefore .333333 . . . is a rational.
• De�nition: An argument form is a sequence of statement forms
• Example 1 revisited: The example above has the following argument form:

� If p, then q
� p
� ∴ q

• Remark:
� All statements in an argument form are called premises (or assumption, hypothesis)
� Last bullet: Conclusion

∗ ∴ means therefore

Definition 24. An argument form is valid if when the premises are all true, then the conclusion is true,
no matter what statements are substituted for the statement variables in the premises. A valid argument
form is called a rule of inference.

• An argument is called valid if its form is.
• See page 67 to determine if an argument form is valid using truth tables.

.

Valid argument forms.

• There are many argument forms
� See page 76 (Edition 5)
� Here are two.

Definition 25. The following rule of inference is called modus ponens

If p, then q.

p

∴q

• Remark: This says, from p → q and p, we may conclude qq. Our previous example is modus
ponens.

• We gave an example this already in Example 1.

Definition 26. The following rule of inference is called modus tollens

If p, then q.

∼ q
∴ ∼ p

• Remark: This type of argument is using what we know about contrapositive.
• The following is an example of a modus tollens argument.

� Which can be used in a court of law.
• Example2:

� If I am the axe murderer, then I can use an axe.
� I cannot use an axe.
� Therefore, I am not the axe murderer.



CHAPTER 3

The logic of Quanti�ed Statements

Section 3.1 Introduction to Predicates and quanti�ed Statements I.

Definition 27. A predicate is a sentence that contains a �nite number of variables and becomes
a statement (T or F ) when speci�c values are substituted for the variables. The domain of a predicate
(variable) is the set of all values that may be substituted in place of the variable.

• Example: The sentence

P (x) : “x2 > x”

is a predicate with domain R�
� This sentence is not a �statement�, because we don't kow for which x this sentence is tru for.
� It only becomes a statement when we plug actual numbers in.

∗ sub-Example:
∗ P (2) : which is ”22 > 2”, is a true statement, while
∗ P ( 1

2 ): which is � 14 >
1
2 �, is not a true statement.

Definition 28. If P (x) is a predicate with domain D, then the truth set of P (x) is the set of all
elements of D that make P (x) true. It is denoted by

{x ∈ D | P (x)} .

• Example1: Find the truth set of the predicate

P (x) : “x2 > x”

� Solution: Graph x2 and x and using calculus you'll see that the truth set is

Truth Set =
{
x ∈ D | x2 > x

}
= (−∞, 0) ∪ (1,∞).

• Example2: Find the truth set of the predicate Q(n) with domain D

Q(n) :“n2 < 10”

D = Z+

� Solution: Since D = {1, 2, 3, . . . } , and

12 = 1

22 = 4

32 = 9

42 = 16,

...

and since any other square will certainly be greater than 10, then we must have that the truth
set is given by

Truth Set =
{
n ∈ D | n2 < 10

}
= {1, 2, 3} .

19
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Quanti�ers: Universal and existential statements revisited.

• We will de�ne two symbols ∀,∃,which are a type of quantifer.
� These two symbols are one of the most important symbols when stating mathematical state-
ments!

� It is used very, very often!
• Notation:

� The symbol ∀ means �for every�, �for all�, �for each�.
� The symbol ∃ means �there exists�, �there is�.

Definition 29. (Takes over De�nition 1) A universal statement is one of the form

∀x ∈ D,Q(x)

where Q(x) is a predicate with domain D. It is de�ned to be true if Q(x) is true for every x in D, and false
if Q(x) is false for at least one x in D.

• Example: Rewrite the universal statement using the quantifer ∀

”The square of every real number is always nonnegative”

� Solution: �∀x ∈ R, x2 > 0�
• Remarks:

� A counterexample to the statement �∀x ∈, Q(x)� is an element c ∈ D that makes Q(c) false.
� The statement �∀x, P (x)→ Q(x)� is called a �universal conditional statement�

• Example: Find a counterexample to the following universal statement:

“∀n ∈ Z,
n

2
∈ Z”

� Solution: A counterexample would be x = 3 since 3
2 /∈ Z.

Definition 30. (Takes over De�nition 2) An existential statement is one of the form

∃x ∈ D such that Q(x)

where Q(x) is a predicate with domain D. It is de�ned to be true if Q(x) is true for at least one x in D, and
false if Q(x) is false for every x in D.

• Example: Write the statement

“∃x ∈ R such that x2 = 1”

using informal language.
� Solution: �There exists a real number whose square is 1�

Universal Conditional Statements.

• A universal conditional statement is

“∀x, if P (x) then Q(x)”

• This is one of the most common statements in math:
� Example:

“∀x ∈ R, if x > 2 then x2 > 4”

• Remarks:
� Sometimes we shorten statements, for example the statement is often shortened to just

“if x > 2 then x2 > 4”

� Hence often P (x) really means ∀x, P (x).
∗ I mean it'd obvious that if x > 2, then clearly it's a real number.
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Some more Notation.

• Equivalent forms:

“∀x ∈ D,Q(x)” ≡ “if x ∈ D, then Q(x)”

“∃x ∈ D such that Q(x)” ≡ “∃x such that x ∈ D and Q(x)”

• Notation: The book uses

P (x) =⇒ Q(x) to mean ∀x, P (x)→ Q(x)

P (x) ⇐⇒ Q(x) to mean ∀x, P (x)↔ Q(x)
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Section 3.2 Predicates and Quanti�ed Statements II

Negation and Quanti�ers:

• Consider the following statement:

�For all students in this room, the student is taller than 4feet."

� Is this true? Let's just assume everyone this in this class is at least 4 feet.
� What is the negation of this statement? What would this statement false?
�

�There is at least one student that is NOT 4 feet tall"

• Negation of Universal Statements:

∼ (∀x ∈ D,Q(x)) ≡ ∃x ∈ D such that ∼ Q(x)

• Negation of Existential Statements:

∼ (∃x ∈ D, such that Q(x)) ≡ ∀x ∈ D,∼ Q(x)

• Example: Consider the statement

“No math courses have �nal exams”

� Part (a): Write this formally
∗ Solution: “∀ math courses x, x has no �nal exam”

� Part (b): Write the formal negation:
∗ Solution: “∃ a math course x such that x has a �nal exam”

� Part (c): What is the informal negation
∗ Solution: Some math courses have �nal exams.

• Remark:
� If D is �nite , say D = {x1, x2, . . . , xn} then the following are logically equivalent:

“∀x ∈ D,Q(x)” ≡ Q(x1) ∧ · · · ∧Q(xn)

and
“∃x ∈ D, such that Q(x)” ≡ Q(x1) ∨ · · · ∨Q(xn)

� Example: Let D = {0, 1, 2} and Q(x) = “x ≥ 1” then

“∀x ∈ {0, 1, 2} , x ≥ 1”
?≡ “0 ≥ 1” ∧ “0 ≥ 1” ∧ “0 ≥ 1”,

F
?≡ F ∧ T ∧ T

F
�≡ F

• (Negation of If/Then)What is the negation of →? Recall ∼ (p→ q) ≡ p∧ ∼ q,
� Then

∼ (∀x ∈ D,P (x)→ Q(x)) ≡ ∃x ∈ D such that P (x)∧ ∼ Q(x)

or similarly

∼ (∃x ∈ D,P (x)→ Q(x)) ≡ ∀x ∈ D such that P (x)∧ ∼ Q(x)

• Example: Write the negation of the statement

“∀n ∈ Z, if n is prime then n is odd or n = 2”

� Solution:
∗ First as a self check, this statement is clearly true, hence its negation should be false:
∗ Now P (x) = �n is prime�
∗ Q(x) = �n is odd or n = 2�
∗ (de Morgan's Law): ∼ Q(x) = �n is even and n 6= 2�,
∗ Putting it all together

“∃n ∈ Z, such that n is prime and n is even and n 6= 2”

which is clearly false.
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• Remark: We don't negate the universe of elements we live in

Vacuous Truth of Universal Statements:

• A statement of the form
∀x ∈ D, (P (x)→ Q(x))

is said to be vacuously true or true by default if P (x) is false, for all x ∈ D.
� Why, consider its negation and consider P (x) = F

∼ (∀x ∈ D, (P (x)→ Q(x))) ≡ ∃x ∈ D, such that P (x)∧ ∼ Q(x)

≡ ∃x ∈ D, such that F∧ ∼ Q(x)

≡ ∃x ∈ D, such that F

≡ F
taking ∼ of both sides we have

(∀x ∈ D, (P (x)→ Q(x))) ≡ T.
• Example: The following statement is vacuously true:

“∀x ∈ Z, (x = π → x = 1)”

Converse and Contrapositive of a Universal Conditional Statement:

Definition 31. The contrapositive of the statement ∀x ∈ D,P (x)→ Q(x) is

∀x ∈ D,∼ Q(x)→∼ P (x)

and the converse is
∀x ∈ D,Q(x)→ P (x).

• Read page 128-129 for use of �necessary�, �su�cient�, and �only if� in this contect.
• The Language has basiclly the same meaing except now we're using predicates with variables.
• Example: Find the Contrapositive of the statement

“∀x ∈ R if x ≥ 3 then x2 ≥ 9.”

� Solution:

“∀x ∈ R if x2 < 9 then x < 3.”
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Section 3.3 - Statements with Multiple Quanti�ers.

• Compare the following two statements:
(1) p : �∀ positive integers x, ∃ a positive interger y such that x < y�
(2) q: �∃ a positive integers y such that ∀ positive intergers x, x < y �

• Questions:
(1) Is p true?

� [Yes, given x, take y = x+ 1. ]
(2) Is q true?

� [No, such a y would be �the largest integer�]
• Conclusion:

“∃y such that ∀x” is not the same as “∀x, ∃y such that”

Negations of Multiply Quanti�ed Statements.

• We can negate to get:

∼ (∀x,∃y such that Q(x, y)) ≡ ∃x such that ∼ (∃y such that Q(x, y))

≡ ∃x such that ∀y,∼ Q(x, y)

• Similarly,

∼ (∃x such that ∀y, Q(x, y)) ≡ ∀x, ∃y, such that ∼ Q(x, y).

• Example: Write the negation of the following statement p. Which one is true p or ∼ p?
p ≡ “∀x ∈ {0, 1, 2} ,∃y ∈ {0, 1, 2} such that xy ≥ y”

� Solution:
� The negation is

∼ p ≡ “∃x ∈ {0, 1, 2} such that ∀y ∈ {0, 1, 2} , xy < y”

� Now for p we can check

x = 0 : “0 · 0 ≥ 0?”, or “0 · 1 ≥ 1?”, or “0 · 2 ≥ 2?”

yes

x = 1 : “1 · 0 ≥ 0?”, or “1 · 1 ≥ 1?”, or “1 · 2 ≥ 2?”

yes

x = 2 : “2 · 0 ≥ 0?”, or “2 · 1 ≥ 1?”, or ‘‘2 · 2 ≥ 2?”

yes

� So p is true, so that ∼ p is false.
• Remark: We don't negate the universe of elements we live in (or the domain)

� for example, don't negate ∀x ∈ D with ∃x /∈ D.
• Example: True or False?

� Part (a): ∀x ∈ R,∃y ∈ R such that x+ y =
√

2
∗ Solution: True

� Part (b): ∃y ∈ R such that ∀x ∈ R, x+ y =
√

2
∗ Solution: False



CHAPTER 4

Elementary Number Theory and Methods of Proof

Section 4.1/4.2 Direct Proof and Counterexample I. and II.

• In this Chapter and section we'll learn about integers and their properties.
• Assumptions:

� Let us assume we all know the basic laws of algebra and properties of the real numbers R.
∗ For example the commutative laws, associative law, etc ...

� We also assume that the set of integers

Z = {0,±1,±2, . . . }

is closed under +,−,×. but not ÷.
∗ What this means is that if n,m ∈ Z then n+m will also be an integer.
∗ Similarly, n,m ∈ Z then n−m will also be an integer.
∗ And, n,m ∈ Z then n×m will also be an integer.
∗ But, division is not closed in the set of integers. Meaning, if you divide two integers,
that number may not necessarily be an integer. For example 1÷ 2 = 1

2 /∈ Z.
• Even and Odd:

� So now we will de�ne what an even and odd number means. What do you think is the
de�nition of even and odd, if you were to give a de�nition?

� Or another question, let's say I give you a whole number, how can you write a computer
program to tell if that number is even or odd?
∗ One way to do it is to make a list of all odd and even numbers and simply ask the
computer check if it's in the odd list or even lisr. But there is an in�nite number
integers. And computer would never be able to make an in�nite list.
∗ These are good questions to think about.

• Here are the mathematical de�nitions.

Definition 32. An integer n is even if and only if there exists k ∈ Z such that n = 2k.

Definition 33. An integer n is odd if and only if there exists k ∈ Z such that n = 2k + 1.

• Remark:
� Notice that mathematical de�nitions always go both ways. Meaning they have �if and only if�

∗ Even if it's not there written explicitly.
� This means that if I tell you we know for a fact that the number n is even, then that means

n = 2× some integer.

� Vice Versa, let's say I discover that n = 2× some integer, then

n is an even number.

� The same goes for odd.
• Examples:

� Part (a): Prove 8 is even.
∗ Solution: Go back to the de�nition. The integer 8 is even because we can write it as

8 = 2 · 4

and because we know 4 ∈ Z.
� Part (b): Prove 15 is odd.

25
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∗ Solution: Go back to the de�nition. The integer 15 is odd because we can write it as

15 = 2 · 7 + 1

and because we know 7 ∈ Z.
� Part (c): Prove −15 is odd.

∗ Solution: Go back to the de�nition. The integer −15 is odd because we can write it as

−15 = 2 · (−8) + 1

and because we know −8 ∈ Z.

Definition 34. An integer n is prime provided that n > 1 and for all positive integers r and s,

if n = rs, then either r = n or s = n.

An integer n is composite provided that n > 1 and

n = rs

for some integers r, s with 1 < r < n and 1 < s < n.

• Remark: What is this saying? n is prime if and only if it can only be divisible by itself. All other
positive integers are composite (meaning can be divided by some other integer other than itself)

Proving Existential Statements (constructive proofs of existence).

• The majority of proofs of existence statements (at this level) are constructive.
• Constructive Proofs of Existential Statements: Meaning, to prove the statement

“∃x ∈ D,P (x)”

you simply need to produce an x and verify P (x) holds (and also that it is in D).
• Example: Prove

“There exists a prime p > 7 such that p+ 2 is prime”

� Solution:
� Before you prove. You �rst need to do some work. Can you think of any candidates?

Proof. Let p = 11. Then p+ 2 = 11 + 2 = 13 and 13 is prime. �

• Example: (Exercise Section 4.1, #7) Prove there are real numbers a and b such that

√
a+ b =

√
a+
√
b.

• Solution:
• Again before writing a proof down, you need to do some scratch work. Once you found it, then
you can formally write the proof.

Proof. Let a = 1 and b = 0. Then
√
a+ b =

√
1 + 0 =

√
1 = 1

But also
√
a+
√
b =
√

1 +
√

0 = 1.

Hence for these values of a and b we have,
√
a+ b =

√
a+
√
b.

�



SECTION 4.1/4.2 DIRECT PROOF AND COUNTEREXAMPLE I. AND II. 27

Disproving Universal Statements by Counterexample.

• To disprove,
“∀x, P (x)”

you simply have to �nd counterexample.
� That is, �nd x and verify ∼ P (x).

• Example: Disprove

“∀x, y ∈ R, xy = 1→ x = 1 and y = 1‘”

� Solution:
� It is not hard to �nd a counterexample. Say x = 2 and y = 1

2 . Now write a proof formally.

Proof. Note that x = 2, y = 1
2 is a counterexample to this statement because

xy = 2 · 1

2
= 1

but
x 6= 1 and y 6= 1.

�

• Example: Disprove: For all nonnegative real numbers a and b,
√
a+ b =

√
a+
√
b.

� Solution: As usual, before writing up the proof try to do some scracth work.

Proof. For a counterexample, let a = 1 and b = 1. Then
√
a+ b =

√
1 + 1 =

√
2,

However, √
a+
√
b =
√

1 +
√

1 = 2.

Since √
2 6= 2,

then we found values a, b such that √
a+ b 6=

√
a+
√
b.

Hence the original statement is disproved. �

Proving Universal Statements of the form ∀x ∈ D,P (x)→ Q(x).

• Special Case - Method of Exhaustion: When there are only �nitely many elements in D
satifying P (x), then we can verify Q(x) for each x.
� Example: Prove using the method of exhastion: For each natural number n less than 3,
n2 − n+ 11 is prime.

� Solution: Recall the natural numbers are N = {1, 2, 3, . . . }

Proof. Recall that since n = 1, 2 are the only natural numbers less than 5, then we can check each one:

When n = 1, we have 12 − 1 + 11 = 11 which is prime,

When n = 2, we have 22 − 2 + 11 = 13 which is prime.

Hence the result. �

• In reality, do you think we can e�ciently always prove by exhaustion? No! Because most sets are
in�nite, and we can't check an in�nite number of things.
• About Proofs:

� One can think of a proof as simply as an algorithm or computer code. It is specially useful
when we have in�nite number of possibilities in which a computer can't check. But we can
imagine that if we can write a correct logical proofs, then it's the same thing as writing a
correct computer code in which we can put into a magical computer that allows you to check
in�nite possibilities.

� So don't think of proofs as nothing else other than a computer code.
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� If you are able to write correct proofs, then you'll be able to correctly write correct algorithms
(in any language).

• General Case: How to prove ∀x ∈ D,P (x)→ Q(x)
(1) Express statement clearly ∀x ∈ D,P (x)→ Q(x) and �gure out what D,P (x), Q(x) are.
(2) Start the proof with

(a) �Suppose x is an arbitrary of D and suppose P (x) holds.....�
(b) Or you can say, �Let x ∈ D be arbitrary. Assume P (x). .....�

(3) Then prove Q(x) holds using
(a) de�nitions,
(b) known properties,
(c) or other results

(4) Last sentence:
(a) �Hence, Q(x), as desired.�

• Example 1: Prove:

“The sum of any two even integers is even.”

using symbols
”∀n,m ∈ Z, if n,m are even, then n+m is even.”

� Solution:
� Before writing the proof formally. First let us do some scratch work:
� How would I go about proving this.
� Well, I know n,m are even. Use the de�nition you know about evens:

∗ Since n is even, then there exists k ∈ Z such that n = 2k
∗ Since m is even, then there exists l ∈ Z such that m = 2l.

� Ok, now let's add them together

n+m = 2k + 2l

and we need to show this sum is even, hence we need to show

n+m = 2× some integer

in fact, we can factor the 2 out to get,

n+m = 2k + 2l = 2(k + l).

� Woohoo! sinve k + l ∈ Z, then we �nd an integer such that

n+m = 2× some integer.

� Now let's write the proof down

Proof 1:

Proof. Suppose n,m ∈ Z are arbitrary numbers and suppose n,m are even. We want to show n + m
is even. by the de�ntion of even, there exists integers k and l such that

n = 2k,

m = 2l.

Then
n+m = 2k + 2l = 2 (k + l) .

Since k, l ∈ Z then k + l is also an integer since Z is closed. Thus, n+m is even, as desired. �

• There is no one way of writing a proof. Here's another way of writing the proof to the Example
1 above.

Proof 2:

Proof. Suppose n,m ∈ Z and n,m are both even. There n = 2r and m = 2s, for some r, s ∈ Z. Let
k = r + s. Then, since r, s ∈ Z and Z is closed under addition, we know k ∈ Z. Moreover,

n+m = 2r + 2s = 2(r + s) = 2k.

Thus, n+m is even, as desired. �
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• Find the mistake: Finally, �nd the mistake is this proof for Example1:

Wrong Proof:

Proof. Suppose n,m ∈ Z and n,m are both even. There n = 2k and m = 2k, for some k ∈ Z. Let
k = r + s. Then

n+m = 2k + 2k = 2 (k + k) .

Since k ∈ Z then k + k is also an integer since Z is closed. Thus, n+m is even, as desired. �

• Mistake?
� The mistake is that we used the same k for n and m. Remember n,m are arbitrary integers,
hence they don't have to have the same even multiple.

• Homework: Read Section 4.2 (pages 173-177). No Seriously!
� There is good advice there about good proof writing and about common mistakes.
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Section 4.3 Direct Proof and Counterexample III. Rational Numbers

• We start with the de�nition of rational numbers.

Definition 35. A real number r is rational if and only if there exist a, b ∈ Z with b 6= 0 such that
r = a

b . The set of rational numbers is denoted by

Q =
{
x ∈ R | x =

a

b
, a, b ∈ Z, b 6= 0

}
.

A real number that is not rational is called irrational.

• Example: Examples of rational numbers include
� 1

3 ,
� .88888.... and −0.45.
� In fact, any decimal number with a repeating pattern is rational. Like

.26381827454545454545........

is rational.
� But

π,
√

2, e

are not rational numbers. For now it is now so obvious why π,
√

2, e are irrational. We will
look at prof later one.

• Here's an important property we'll use often.
• Zero Product Property:

If a, b 6= 0, then ab 6= 0.

� You may be more familiar with the contrapositive of this statement:

If ab = 0, then either a or b is zero.

Theorem. (Theorem 4.3.2 in book) The sum of any two rational numbers is rational

• Example: Prove 4.3.2
� Solution:
� First let us do some scratch wook before writing a formal proof.
� Suppose r = a

b , s = c
d are rational and b, d 6= 0. Then let's trying adding them together:

r + s =
a

b
+
c

d
=
ad+ bc

bd
=

integer

some other integer 6= 0

� Since this is a fraction of integers then r + s is a rational number.
� Now let's write a formal proof:

Proof. Suppose r and s are rational. Then there exists integers a, b, c, d with b, d 6= 0 such that r = a
b

and s = c
d . Thus,

r + s =
a

b
+
c

d
=
ad+ bc

bd
.

Since Z is closed under × and +, then ad + bc and bd are integers. Further, we know that bd 6= 0 since
neither b or d are zero (Zero product property). Therefore, r + s is a rational number, as needed. �
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Section 4.4 Direct Proof and Counterexample IV: Divisibility Properties

• We start with a de�nition.

Definition 36. Let n, d ∈ Z. Then n is divisible by d if and only if n = dk for some k ∈ Z and d 6= 0.

• Other Terminology:
� n is a multiple of d,
� d is a factor of n,
� d is a divisor of n,
� d is a divisor of n,
� d divides n , written

d | n.
∗ This is the one that is most commonly used in (upper level) mathematics. This is the
one I will use most frequently.

∗ Think of n
d = k or n = dk.

∗ Also, the notation d | n is a statement, not a number.
• Examples:

� Part (a): Does 3 | 15?
∗ Yes since 15 = 3 · 5 and 5 ∈ Z.

� Part (b): Is 7 a factor of 28?
∗ Yes, 28 = 7 · 4 and 4 ∈ Z

� Part (c): Does 3 | 8?
∗ No, 8 = 3 · 83 but 8

3 /∈ Z
� Part (d): What are the divisors of 1?

∗ They ±1. This is proved on page 191.

Theorem. (Theorem 4.4.3, Transitivity of Divisibility) For all a, b, c ∈ Z, if a | b and b | c , then a | c.

• Example: Prove Theorem 4.4.3.
� Solution:
� Scratch Work:
� Okay, so how do we start writing proofs? First just write the de�nitions of the assumptions
given in the theorem.

� Given: Okay, so what do I know? I know a, b, c ∈ Z and I know a | b and b | c. So write that
�rst:

b = ak, for some k ∈ Z
c = bl, for some l ∈ Z

� Want to show what? Want to show a | c, or in other words, need to show

c = a · (some integer).

∗ Let us �nd this integer.
∗ Using what we know we have

c = bl = (ak) l = a · (kl)
∗ Woohoo! we found the integer! It is kl !

� Let's write the formal proof:

Proof. Suppose a, b, c ∈ Z and that a | b and b | c. By the de�nition, this means

b = ak, for some k ∈ Z
c = bl, for some l ∈ Z.

Thus,
c = bl = (ak) l = a · (kl) .

Call n = kl. Since Z is closed under multiplication, then we know kl ∈ Z. Thus
c = an, where n is an integer.
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Then it follows that a | c, as desired. �
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Section 4.5 Direct Proof and Counterexample V: Division Into Cases; the
Quotient-Remainder Theorem.

• Consider the following theorem:

Theorem. (Theorem 4.5.1, The Quotient-Remainder Theorem) Given an integer n and a positive in-
teger d, there exists unique integers q and r such that

n = dq + r, and 0 ≤ r < d.

Here q is called the quotient and r is called the remainder.

Proof. See book for a proof. �

• What is this Theorem saying:
� This theorem tells us what happens when you can't divide two integers. It basically says that
there is always a remainder.

� If you are trying to divide n by d, then this gives the best approximate way of doing this.
• Example1:

� Part(a): If n = 55 and d = 4 , then

55 = 4·?+?

= 4 · 13 + 3

∗ q = 13 and r = 3.
� Part (b): If n = −55 and d = 4, then

−55 = 4(?)+?

= 4 · (−14) + 1

Definition 37. Given a non-negative integer n and a positive integer d,

ndiv d = the integer quotient of n divided by d

and
n mod d = the integer remainder of n divided by d

• Example1-revisited:
� Part(a): 55 div 4 = 13 and 55 mod 4 = 3.
� Part(b): Find 38 div 5 and 38 mod 5.

∗ Note that 38 = 5·?+?
∗ We have that 38 = 5 · 7 + 3 hence

38 div 5 = 7

38 mod 5 = 3

• Representation of Integers
• Let's rewrite here the Quotient-Remainder (O-R) Theorem using symbols:

∀n ∈ Z,∀d ∈ Z+,∃!q, r ∈ Z s.t.n = dq + r, and 0 ≤ r < d.

� Here ∃! means �there exists a unique�.
• One interesting application of the Quotient-Remainder Theorem is that it proves the following
statement.

Theorem. Every integer is either even or odd but not both.

• Remark: This may seem obvious to us. But how do we know we haven't missed a number that is
neither even or odd? There is no way we can check all the integers, since they are in�nite.

• Here is why this theorem is true:
� Sketch of Proof: Using the Q-R Theorem with n ∈ Z being any integer and d = 2, we have
that there exists a unique q, r ∈ Z such that

n = 2q + r, where 0 ≤ r < 2.

� But the only integers r that satify 0 ≤ r < 2 are r = 0, 1.
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� Hence n is either
n = 2q or n = 2q + 1.

� Meaning either n is even or odd.
• Generalization: In fact, you can generalize this type of argument to break the integers into pieces:

� Using d = 3, in the E-R Therem being any integer N and with d = 3, we have that there
exists a unique q, r ∈ Z such that

n = 3q + r, where 0 ≤ r < 3.

� But the only integers r that satify 0 ≤ r < 3 are r = 0, 1, 2.
� Q-R when d = 3: Hence every integer n can be write as either

n = 3q, n = 3q + 1 or n = 3q + 2.

∗ Example: If n = 5 use the previous result to �gure out which one n belongs to

5 = 3q?

5 = 3q + 1? or

5 = 3q + 2?

∗ Solution: The answer is the third option with q = 1:

5 = 3 · 1 + 2.

• Proof by cases:
• Example(Harder): Use the Q-R statement with d = 3 to prove the following statement:

“The square of any integer has the form 3k or 3k + 1 for some integer k”

� Solution:
� First start with a sketch by (1) Writing what you know, the given (2) Understand what you
want to show (3) Use what you know to prove it

� Sketch of Proof:
� (1) What do we know? In this case, the problem tellus you use the Q-R statement with d = 3:
For any integer n ∈ Z there exists a unique q, r ∈ Z such that

n = 3q + r, where 0 ≤ r < 3.

� But the only integers r that satify 0 ≤ r < 3 are r = 0, 1, 2. Thus this splits n into 3 cases:
� Either

∗ Case 1: n = 3q,
∗ Case 2: n = 3q + 1, or
∗ Case 3: n = 3q + 2.

� (2) What do you want to show? (WTS) I want to show n2 can be written as (a) n2 = 3k or
(b) n2 = 3k + 1 for some k. We need to �nd k!

� (3) Try to prove it:
∗ Case 1: If n = 3q, then

n2 = (3q)
2

= 9q2 = 3 ·
(
3q2
)

= 3
(
3q2
)︸ ︷︷ ︸

k

and the k is equal to k = 3q2. Thus n2 can be written in the type (a):

n2 = 3k.

∗ Case 2: If n = 3q + 1, then

n2 = (3q + 1)
2

= 9q2 + 6q + 1 = 3
(
3q2 + 2q

)
+ 1

= 3
(
3q2 + 2q

)︸ ︷︷ ︸
k

+ 1

and the k is equal to k = 3q2 + 2q. Thus n2 can be written in the type (b):

n2 = 3k + 1
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∗ Case 3: If n = 3q + 2, then

n2 = (3q + 2)
2

= 9q2 + 12q + 4 = 3
(
3q2 + 4q + 1

)︸ ︷︷ ︸
k

+ 1

and the k is equal to k = 3q2 + 4q + 1. Thus n2 can be written in the type (b):

n2 = 3k + 1.

� The formal proof would look like this:
� Try it yourself as an exercise to write the formal Theore/proof of this Example:

Theorem. If n ∈ Z then n2 is either equal to 3k or 3k + 1 for some integer k.

Proof. Suppose n ∈ Z. Using the Quotient Remainder Theorem with d = 3, there exists a unique
q, r ∈ Z such that

n = 3q + r, where 0 ≤ r < 3.

But the only integers r that satify 0 ≤ r < 3 are r = 0, 1, 2. Thus this splits n into 3 cases. Either

Case 1:n = 3q

Case 2:n = 3q + 1, or

Case 3:n = 3q + 2.

We want to prove n2 is either of the form (a) 3k or of the form (b) 3k + 1.
Case 1: If n = 3q, then

n2 = (3q)
2

= 9q2 = 3 ·
(
3q2
)

= 3
(
3q2
)︸ ︷︷ ︸

k

and the k is equal to k = 3q2. Since Z is closed under multiplication then k ∈ Z. Thus n2 can be written in
the type (a):

n2 = 3k.

Case 2: If n = 3q + 1, then

n2 = (3q + 1)
2

= 9q2 + 6q + 1 = 3
(
3q2 + 2q

)
+ 1

= 3
(
3q2 + 2q

)︸ ︷︷ ︸
k

+ 1

and the k is equal to k = 3q2 + 2q. Since Z is closed under multiplication and addition then k ∈ Z. Thus n2
can be written in the type (b):

n2 = 3k + 1.

Case 3: If n = 3q + 2, then

n2 = (3q + 2)
2

= 9q2 + 12q + 4 = 3
(
3q2 + 4q + 1

)︸ ︷︷ ︸
k

+ 1

and the k is equal to k = 3q2 + 4q+ 1. Since Z is closed under multiplication and addition then k ∈ Z. Thus
n2 can be written in the type (b):

n2 = 3k + 1.

This is what we desired to show. �

• Example: See Theorem 4.5.3 and its proof in the book for more practice in using the Q-R Theorem
in a proof.
� Exercise 27 is done similarly.
� Execise 29 is the Example we did today.
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Section 4.6 - Direct Proof and Counterexample VI: Floor and Ceiling.

• We start by de�ning the �oor and ceiling function for real numbers.

Definition 38. Given a real number x, the �oor of x, denoted bxc, is the unique integer n such that

n ≤ x < n+ 1.

Definition 39. Given a real number x, the ceiling of x, denoted dxe, is the unique integer n such that

n− 1 < x ≤ n.

• Remarks:
� The �oor function is basically the function that rounds any real number x down to the closest
integer n

� The ceiling function is basically the function that rounds any real number x up to the closest
integer n

• Example:
� Part (a): If x = 21

4 then ⌊
21

4

⌋
= 5⌈

21

4

⌉
= 6

since 21
4 = 5.25 and 5 < 5.25 < 6.

� Part (b): If x = − 3
4 then ⌊

−3

4

⌋
= −1⌈

−3

4

⌉
= 0.

� Part (c): If x = .999 then

b.999c = 0

d.999e = 1.

� Part (d): If x = 5 then

b5c = 5

d5e = 5.

Theorem. (Theorem 4.6.2) For any integer,⌊n
2

⌋
=

{
n
2 if n is even
n−1
2 if n is odd

• Example: Prove the odd case in Theorem 4.6.2. That is, prove

“If n is odd then
⌊n

2

⌋
=
n− 1

2
.”

(The even case is for Homework)
� Sketch of Proof:
� Given: What is given is that n is odd. That means

n = 2k + 1 for some k ∈ Z.

� De�nitions: I also know the de�nition of �oor function bxc, it is equal to the unique integer j
such that

j ≤ x < j + 1.

� I want to show: that
⌊
n
2

⌋
= n−1

2 .
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� Try to prove it: Well �rst let's just plug in n = 2k + 1 and get⌊n
2

⌋
=

⌊
2k + 1

2

⌋
=

⌊
k +

1

2

⌋
but since

k < k +
1

2
< k + 1

then rounding down we have that⌊n
2

⌋
=

⌊
2k + 1

2

⌋
=

⌊
k +

1

2

⌋
= k

� But remenber that n = 2k + 1 , solving for n we get k = n−1
2 thus⌊n

2

⌋
= k =

n− 1

2
.

as needed.
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Section 4.7 - Indirect Argument: Contradiction and Contrapositive.

• Sometimes a direct proof (all the proofs we've done so far were direst) are impossible or mayve
very di�cult.
� Thus we look for di�erent ways of proving theorems.

• Proof by Contradiction:
� Outline of Method:
� (1) Assume that the statement you want to show is actually false.
� (2) Show that by assuming it's false actually leads to a �contradiction� (something absurd that
we know is not true)

� (3) Conclude that the original statement must have been true.
• Example: Prove �There is no integer that is both even and odd�.

� Sketch of proof:
� Assume by contradiction that the statement is false. Meaning, that there is an integer that
is both even and odd. Let n ∈ Z be this integer that is both even and odd. Then this means

n = 2k, for some k ∈ Z
n = 2l + 1, for some l ∈ Z.

� Now we need to �nd something absurd!
� Try using the only thing that you know: That n = 2k and n = 2l + 1. I don't know. Maybe
let's try setting them equal to each since they are equal.

2k = n = 2k + 1

or

2k = 2l + 1

� Then let's bring the variables to the same side.

2k − 2l = 1

and divising by 2 we get

k − l =
1

2
.

� Okay. Does anybody see anything absurd yet?
∗ Well since k, l ∈ Z and since Z is closed under subtraction then

k − l =
1

2
∈ Z

which is absurd since we know 1
2 /∈ Z.

∗ Thus this is a contradiction. Hence the original statement must have been true.
� Formal proof:

Proof. Assume by contradiction that the statement is false. Meaning, that there is an integer that is
both even and odd. Let n ∈ Z be this integer that is both even and odd. Then this means

n = 2k, for some k ∈ Z
n = 2l + 1, for some l ∈ Z.

Thus means

2k = 2l + 1.

After doing some algebra

k − l =
1

2
.

But k, l ∈ Z and since Z is closed under subtraction then

k − l =
1

2
∈ Z,

which is absurd since we know 1
2 /∈ Z. Thus this is a contradiction. Hence the original statement must have

been true. �
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• Proof of an If/Then by Contrapositive:
� Sometime proving p→ q is harder. But remember that �p→ q� is equivalent to its contrapos-
itive �∼ q →∼ p�.

• Example (The even number Theorem): Prove using the contrapositive the statement

“For n ∈ Z if n2 is even, then n is even.”

� Solution:
� A direct proof of this would be di�cult because it would involve taking square roots. Which
we'd like to avoid/

� First let's write the contrapositive:

“For n ∈ Z if n is odd, then n2 is odd.”

� Let's go straight to proving it. Thought you should always try to write the sketch of the proof
�rst.

Proof. We will prove by contrapositive. Suppose n ∈ Z and that n is odd. By the de�nition of odd
this means

n = 2k + 1, where k ∈ Z.
Squaring we have

n2 = (2k + 1)
2

= 4k2 + 4k + 1 = 2
(
2k2 + 2k

)︸ ︷︷ ︸
l

+ 1.

Let l = 2k2 + 2k, and we know that l ∈ Z. Thus
n2 = 2l + 1

hence n2 is odd. �

• Example: Try yourself to prove the similar statement:

“For n ∈ Z if n2 is odd, then n is odd.”

using the contrapositive.
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Section 4.8 - Two Classical Theorems

• Here we present two very classical and important theorems in math and theoretical computer
science.

Theorem. 1 The number
√

2 is irrational

Theorem. 2 The set of prime numbers is in�nite.

• We'll focus on Theorem 1.
• But Theorem 2 is very important, and computers have been able to �nd the largest prime number
known to humans, so far.

• See the wikipedia page: https://en.wikipedia.org/wiki/Largest_known_prime_number
� https://en.wikipedia.org/wiki/Largest_known_prime_number
� Where as of August 20,2020, the largest known prime number is

n = 282,589,933 − 1.

� This is a massiv number with over 24 million digits.
� Unfortunately we'll never know all of them.
� But we can prove that there is an in�nite number of them! And the proof is not too hard. See
the book.

• Irrational Numbers:
• Before proving Theorem 1 about

√
2.

• We'll focus on proving an easier theorem.
• Example: Prove the statement

“If r is irrational then 5r + 3 is irrational.”

using Theorem 1.
� Solution:
� Sketch of Proof:
� It is very hard to prove a number is irrational. It is much easier to prove it is rational.
� So let us prove by contradiction.
� Suppose the statement is not true. Meaning suppose r is irrational but somehow 5r + 3 is
rational. But if it's rational then

5r + 3 =
a

b
where a, b ∈ Z, b 6= 0.

� Let's �nd something absurd (a contradiction).
� Remember that the problem gave you hint. Use the fact that you know r is irrational.
� So let's solve for it

5r + 3 =
a

b
⇐⇒ 5r =

a

b
− 3

⇐⇒ r =
a

5b
− 3

5

but by �nding a common denominator

r =
a− 3b

5b

but a− 3b and 5b are integers hence this means r is a rational number, which is absurd!
� Thus we found a contradiction. Hence the original statement must have been true. That 5r+3
is actually an irrational number.

� Formal Proof:

Proof. Let us prove by contradiction. Suppose the statement is not true. But this means 5r + 3 is
rational. But if it's rational then

5r + 3 =
a

b
where a, b ∈ Z, b 6= 0.

https://en.wikipedia.org/wiki/Largest_known_prime_number
https://en.wikipedia.org/wiki/Largest_known_prime_number
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Thus

5r + 3 =
a

b
⇐⇒ 5r =

a

b
− 3

⇐⇒ r =
a

5b
− 3

5
by �nding a common denominator

r =
a− 3b

5b
but a−3b and 5b are integers hence this means r is a rational number, which is absurd! This is a contradiction.
Hence the original statement must have been true. That 5r + 3 is actually an irrational number. �

• Example: A similar proof would be prove the statement:

“Suppose n,m ∈ Z and x is irrational, then n+ xm is irrational.”

• Proof of Theorem 1:
• Now let's prove the famous theorem. I'll restate it here again:

Theorem. 1 The number
√

2 is irrational.

Proof. (Proof by contradiction) Suppose that the statemement is not true and that
√

2 is rational.
Then √

2 =
a

b
, where a, b ∈ Z, b 6= 0.

Now assume that the fraction a
b is reduced. (Has no common divisors). We can do this with any fraction.

Now, let's come up with a contradiction. Squaring both sides we get

2 =
a2

b2

and
2b2 = a2. (Equation 1)

Now since a2 = 2(b2), then we now that a2 is even. By the Even Number Theorem (from section 4.7), then
a is also even. This means,

a = 2k, for some k ∈ Z.
Substituting this in Equation 1, we have that

2b2 = a2 ⇐⇒ 2b2 = (2k)
2

⇐⇒ 2b2 = 4k2

⇐⇒ b2 = 2k2,

and this shows that b2 is even. Again by the Even Number Theorem, then this means b is even a well.
(Do you see the contradiction yet?) We just proved that both a, b are even, but remenber that we said

above that a, b have no comon diviors. But if they are both even, then clearly they have 2 as a common
divisor. Thus this is a contradiction. Hence the original statement must have been true. That is,

√
2 is

irrational. �



CHAPTER 5

Sequences, Mathematical Induction, and Recursion

Section 5.1 - Sequences

• Informally, a sequence is a list.
� It can be �nite: a1, a2, . . . , an
� It can be in�nite: a1, a2, . . .

• Examples:
� (1) Consider the in�nite sequence a1, a2, . . . given by ai = i+1

i+2 . This is the sequence

2

3
,

3

4
,

4

5
, . . .

� (2) Write out the �rst �ve terms of the sequence a2, a3, . . . where ak = (−1)k
2k

.(Note we can
start the sequence with any index)
∗ Solution:

1

4
,−1

8
,

1

16
,− 1

32
,

1

64
.

Finding an explicit formula for a Sequence.

• Example: Find an explicit formula for the sequence

1,−1

4
,

1

9
,
−1

16
,

1

25
, . . .

� Part(a): Find a formula where you start with a1, a2, a3, . . .
∗ Solution:

· First look how the signs are changing: 1,−1, 1,−1. So whenever you have an
alternating sequence, it will have a factor of

(−1)
power

.

· Note that (−1)
k+1

works.
· The denominators are 12, 22, 32, . . .hence

ak =
(−1)

k+1

k2
.

� Part(b): Find a formula where you start with a0, a1, a2, . . .
∗ Solution:

ak =
(−1)

k

(k + 1)2
.

Summation notation.

• Notation: For a �xed integer n,

n∑
k=1

ak = a1 + a2 + · · ·+ an.

Similarly,
n∑

k=m

ak = am + a2 + · · ·+ an.

42
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• Example: Evaluate

6∑
k=2

(
k2 + 1

)
� Solution:

6∑
k=2

(
k2 + 1

)
=
(
22 + 1

)
+
(
32 + 1

)
+
(
42 + 1

)
+
(
52 + 1

)
+
(
62 + 1

)
= 5 + 10 + 17 + 26 + 37

= 95

Expressing a Finite Sum in Summation Notation.

• Exanple: Write 1− 1
2 + 1

3 −
1
4 + 1

5 in summation notation:
� Solution:

5∑
k=1

(−1)
k+1 1

k
or

4∑
k=0

(−1)
k 1

k + 1
.

Product Notation.

• Notation: For a �xed integer n,

n∏
k=1

ak = a1 · a2 · · · · · · · an.

• Similarly,
n∏

k=n

ak = an · a2 · · · · · · · an.

• Example: Evaluate

3∏
k=1

k

k + 1
:

� Solution:

3∏
k=1

k

k + 1
=

1

1 + 1
· 2

2 + 1
· 3

3 + 1

=
1

2
· 2

3
· 3

4

=
1

4
.

Factorial Notation.

• We start with a de�nition.

Definition 40. Given n ∈ N, we de�ne n! = n (n− 1) · · · 3 · 2 · 1 also 0! = 1.

• Example:
(1) 5! = 5 · 4 · 3 · 2 · 1 = 120
(2) 10!

9! = 10·9!
9! = 10

(3) (n+1)!
n! = (n+1)·n!

n! = n+ 1
(4) And

(n− 2)!

n!
=

(n− 2)!

n (n− 1) (n− 2)!

=
1

n (n− 1)

=
1

n2 − n
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Properties of Sums and Products.

• The following properties are very useful:

Theorem. The following hold for any n ∈ N

(1)

n∑
k=1

(ak + bk) =

n∑
k=1

ak +

n∑
k=1

bk

(2)

n∑
k=1

(cak) = c

n∑
k=1

ak where c ∈ N or c = f(n)

(3)

n∏
k=1

(ak · bk) =

(
n∑

k=1

ak

)
·

(
n∑

k=1

bk

)
• Example: Express

n∑
k=1

(
k2 + 1

)
+ 3

n∑
k=1

(
1− 2k2

)
as a single sum.
� Solution: Using the properties above we obtain

n∑
k=1

(
k2 + 1

)
+ 3

n∑
k=1

(
1− 2k2

)
=

n∑
k=1

(
k2 + 1

)
+

n∑
k=1

3
(
1− 2k2

)
=

n∑
k=1

[(
k2 + 1

)
+ 3

(
1− 2k2

)]
=

n∑
k=1

(
k2 + 1 + 3− 6k2

)
=

n∑
k=1

(
4− 5k2

)
.
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Section 5.2 - Mathematical Induction - Proving formulas

• Consider the following sum
n∑

i=1

i = 1 + 2 + · · ·+ n

� There's got to be a better way to compute this sum rather than summing term by term.
� For example, the sum

1 + 2 + · · ·+ 100

� Do you know what this sum is? It turns out it's

5050.

� But I didn't �gure this out by adding every term. It turn's there is a nice formula for it:
n∑

i=1

i =
n (n+ 1)

2
.

• Example:
� Part(a): Compute 1 + 2 + 3 + · · ·+ 100 using the formula:

∗ Solution: Using n = 100, we have

100∑
i=1

i =
100 · 101

2
= 50 · 101 = 5050.

� Part (b): What about 1 + 2 + 3 =?
∗ Solution: Well obviously we know that 1 + 2 + 3 = 6. But, just as a reality check, let's
use the formula to con�rm this:

3∑
i=1

i =
3 · 4

2
=

12

2
= 6.

• The following principle is useful then proving formulas like the these:
� Please make sure you have this memorized:

• The Principle of Mathematical Induction:
� Let P (n) be a property that is de�ned for integers n and let a be a �xed integer. Suppose the
following two properties hold:
(1) P (a) is true
(2) ∀k ≥ a, if P (k) is true, then P (k + 1) is true.

� Then P (n) is true for all n ≥ a.
• Method of Proof: How to prove P (n) is true for all n ≥ a.

� Base case: Show P (a) is true.
� Inductive hypothesis: Assume the formula holds for n = k.
� Inductive step: Show the formula is true for n = k + 1.

• Example: Prove that for all integers n ≥ 1,

1 + 2 + · · ·+ n =
n (n+ 1)

2
,

using mathematical induction.

Proof. For n ∈ N let P (n) be the statement

1 + 2 + · · ·+ n =
n (n+ 1)

2
.

Base Case: For n = 1, we have that the left hand side is

LHS = 1

and the right hand side is

RHS =
1 · 2

2
= 1.

Thus the formula is true for n = 1.
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Inductive hypothesis: We assume the formula holds for n = k. That is, assume

1 + 2 + · · ·+ k =
k(k + 1)

2
. (?)

is true.
Inductive step: Using the inductive hypothesis, we want to show that the formula holds for n = k + 1,

that is

1 + 2 + · · ·+ (k + 1) =
(k + 1)(k + 2)

2
. (??)

To prove this, we start with the Left Hand side(LHS),

1 + 2 + · · ·+ (k + 1) = 1 + 2 + · · ·+ k︸ ︷︷ ︸+(k + 1)

=
k (k + 1)

2︸ ︷︷ ︸+ (k + 1) , by inductive hypothesis (?)

=
k (k + 1)

2
+

2 (k + 1)

2

=
k (k + 1) + 2 (k + 1)

2

=
(k + 1) (k + 2)

2
, by factoring k + 1.

Thus we have shown (??).
Thus by induction, the formula holds for all integers n ≥ 1. �

• Geometric Sum:
• The sequence,

a, ar, ar2, ar3, . . .

is called a geometric sequence with ratio r.

Theorem. (Geometric Sum)
For any real number r 6= 1 and any integer n ≥ 0,

1 + r + r2 + · · ·+ rn =
rn+1 − 1

r − 1
.

Or using summation notation,
n∑

k=0

rk =
rn+1 − 1

r − 1
.

• Remark:
� Note the formula doesn't work when r = 1. Since

1 + 11 + · · ·+ 1n 6= 11+1 − 1

1− 1
.

• Examples:
� Part (a): Use the geometric sum formula to compute

1 + 2 + 4 + 8 + · · ·+ 210.

� Solution: This sum is the sum

1 + r2 + r3 + · · ·+ r10
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where r = 2. Hence

10∑
k=0

2k =
210+1 − 1

2− 1

=
211 − 1

1
= 2048− 1

= 2047

� Part (b): Use the geometric sum formula to compute

25 + 26 + · · ·+ 212.

� Solution: We have

25 + 26 + · · ·+ 212 = 25
(
1 + 2 + · · ·+ 27

)
= 32

(
28 − 1

2− 1

)
= 32(256− 1)

= 8160.

• Example: Prove

n∑
k=0

rk =
rn+1 − 1

r − 1
,

for all n ≥ 0.
� Solution:

Proof. For n ∈ N let P (n) be the statement

1 + r + r2 · · ·+ rn =
rn+1 − 1

r − 1
.

Base Case: For n = 0, we have that the left hand side is

LHS = 1

and the right hand side is

RHS =
r0+1 − 1

r − 1
=
r − 1

r − 1
= 1.

Thus the formula is true for n = 0.
Inductive hypothesis: We assume the formula holds for n = k. That is, assume

1 + r + r2 · · ·+ rk =
rk+1 − 1

r − 1
. (?)

is true.
Inductive step: Using the inductive hypothesis, we want to show that the formula holds for n = k + 1,

that is

1 + r + r2 · · ·+ rk+1 =
rk+2 − 1

r − 1
. (??)
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To prove this, we start with the Left Hand side(LHS),

1 + r + r2 · · ·+ rk+1 = 1 + r + r2 · · ·+ rk︸ ︷︷ ︸+rk+1

=
rk+1 − 1

r − 1︸ ︷︷ ︸+rk+1, by inductive hypothesis (?)

=
rk+1 − 1

r − 1
+

(r − 1) rk+1

r − 1

=
rk+1 − 1 + rk+2 − rk+1

r − 1

=
rk+2 − 1

r − 1
.

Thus we have shown (??).
Thus by induction, the formula holds for all integers n ≥ 0. �

• Example (HW Problem, if time): Prove

n∑
k=1

k2 =
n (n+ 1) (2n+ 1)

6
,

for all n ≥ 1.
� Solution:

Proof. For n ∈ N let P (n) be the statement

n∑
i=1

i2 =
n (n+ 1) (2n+ 1)

6
.

Base Case: For n = 1, we have that the left hand side is

LHS = 1

and the right hand side is

RHS =
1 (1 + 1) (2 + 1)

6
=

6

6
= 1.

Thus the formula is true for n = 1.
Inductive hypothesis: We assume the formula holds for n = k. That is, assume

k∑
i=1

i2 =
k (k + 1) (2k + 1)

6
. (?)

is true.
Inductive step: Using the inductive hypothesis, we want to show that the formula holds for n = k + 1,

that is

k+1∑
i=1

i2 =
(k + 1) (k + 2) (2(k + 1) + 1)

6

=
(k + 1) (k + 2) (2k + 3)

6
. (??)
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To prove this, we start with the Left Hand side(LHS),

k+1∑
i=1

i2 = 1 + 22 + 32 · · ·+ k2︸ ︷︷ ︸+ (k + 1)
2

=
k (k + 1) (2k + 1)

6︸ ︷︷ ︸+ (k + 1)
2
, by inductive hypothesis (?)

=
k (k + 1) (2k + 1)

6︸ ︷︷ ︸+
6 (k + 1)

2

6

=
k (k + 1) (2k + 1) + 6 (k + 1)

2

6

=
(k + 1) [k (2k + 1) + 6 (k + 1)]

6

=
(k + 1)

[
2k2 + k + 6k + 6

]
6

=
(k + 1)

[
2k2 + 7k + 6

]
6

=
(k + 1) (k + 2) (2k + 3)

6

Thus we have shown (??).
Thus by induction, the formula holds for all integers n ≥ 1. �
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Section 5.3 - Mathematical Induction: Applications

• Recall
• The Principle of Mathematical Induction:

� Let P (n) be a property that is de�ned for integers n and let a be a �xed integer. Suppose the
following two properties hold:
(1) P (a) is true
(2) ∀k ≥ a, if P (k) is true, then P (k + 1) is true.

� Then P (n) is true for all n ≥ a.
• Mathematical inductions can be used to prove any statement that has a variable n ∈ N. It doesn't
have to be just formulas, like in the previous section.

Divisibility Examples:

• Example: Use induction to prove 6 | (7n − 1) for all integers n ≥ 0.
� Divides: Recall, what does a | b mean? it means

b = am for some m ∈ Z.

� Solution:

Proof. For n ≥ 0 let P (n) be the statement

6 | (7n − 1) .

Base Case: For n = 0, we want to show 6 |
(
70 − 1

)
, which means 6 | 0. But this is true since

0 = 6 · 0 and 0 ∈ Z.

Thus the statement is true for n = 0.
Inductive hypothesis: We assume the statement holds for n = k. That is, assume

6 |
(
7k − 1

)
.

This means that

7k − 1 = 6m for some m ∈ Z. (?)

Inductive step: Using the inductive hypothesis, we want to show that the formula holds for n = k + 1,
that is

6 |
(
7k+1 − 1

)
.

Meaning, we want to show that

7k+1 − 1 = 6 (some integer) . (??).

To prove this, we start with the Left Hand side(LHS) of (??).

7k+1 − 1 = 7 · 7k︸︷︷︸−1

= 7 · (6m+ 1)︸ ︷︷ ︸−1, by inductive hypothesis (?)

= 7 · 6m+ 7− 1

= 7 · 6m+ 6

= 6 (7m+ 1) .

Thus we have shown (??), with the integer being 7m+ 1 ∈ Z (because Z is closed under multiplication and
addition).

Thus by induction, the statement holds for all integers n ≥ 0. �
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Formulas for Recursion Relations:

• Example: Use induction to prove the following: If a1, a2, . . . is a sequence de�ned by the recursion{
a1 = 35

an = 7an−1 for n ≥ 2,

then an = 5 · 7n, for all integers n ≥ 1.
� Solution:

Proof. Let an be the sequence de�ned by the recursion above. For n ∈ N let P (n) be the assertion
that

an = 5 · 7n.
Base Case: For n = 1, we have that a1 = 35 by de�nition, and using the fomula

5 · 71 = 35

hence a1 = 5 · 71 and so P (1) holds.
Inductive hypothesis: We assume P (k) holds for n = k where k ≥ 1. That is, assume

ak = 5 · 7k. (?)

Inductive step: Using the inductive hypothesis, we want to show that the formula holds for n = k + 1.
Meaning, we want to show that

ak+1 = 5 · 7k+1. (??).

To prove this, we start with the Left Hand side(LHS) of (??): (Recall we can only prove this using recursion
de�ned in the problem, and equation (?))

ak+1 = 7ak, by de�nition of recursion and since k + 1 ≥ 2

= 7 · ak︸︷︷︸
= 7 · 5 · 7k︸ ︷︷ ︸, by inductive hypothesis (?)

= 7 · 5 · 7k

= 5 · 7k+1.

Thus we have shown (??)..
Thus by induction, the statement holds for all integers n ≥ 1. �
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Section 5.4 - Strong Induction

• We use the principle of Strong Induction, whenever we need to assume multiple things from the
past are true.

• This is surprisingly useful in computer science in showing the time complexity in recursion relations.
• The Principle of Strong Induction:

� Let P (n) be a property that is de�ned for integers n and let a ≤ b be integers. Suppose
(1) P (a), P (a+ 1), . . . , P (b) are true
(2) ∀k ≥ b, if P (a), P (a+ 1), . . . , P (k) are true, then P (k + 1) is true.

� Then P (n) is true for all n ≥ a.
• Example: Use strong induction to prove the following: If b1, b2, . . . is sequence de�ned by the
recursion relation: 

b1 = 4

b2 = 12

bn = bn−1 + bn−2 for n ≥ 2.

Prove: The sequence bn is divisible by 4, for all integers n ≥ 1.
� Solution:

Proof. Let bn be the sequence de�ned by the recursion relation above. For n ∈ N let P (n) be the
assertion that

“bn is divisible by 4”.

Base Case: (we now have 2 base cases) We need to show P (1) and P (2) are true. Since b1 = 4 and
b2 = 12 = 3 · 4 is it clear that both are integers are divisible by 4.

Inductive hypothesis: We assume for k ≥ 2, P (1), P (2), . . . , P (k) all hold. That is, assume

“b1 is divisible by 4”

“b2 is divisible by 4”

...

“bk−1 is divisible by 4”

“bk is divisible by 4” (?)

Inductive step: Using the inductive hypothesis, we want to show that the statement holds for n = k+ 1.
Meaning, we want to show that

“bk+1 is divisible by 4”. (??)

To prove this, we start with the Left Hand side(LHS) of (??): (Recall we can only prove this using recursion
de�ned in the problem, and statements in (?))

Now

bk+1 = bk + bk−1, by de�nition of recursion

= bk︸︷︷︸+ bk−1︸︷︷︸
= 4r︸︷︷︸+ 4s︸︷︷︸, for some r, s by inductive hypothesis (?)

= 4 (r + s)

This shows that bk+1 is divisible by 4. Thus we have shown (??).
Thus by strong induction, the statement holds for all integers n ≥ 1. �

• Example: Use strong induction to prove the following: If c1, c2, . . . is sequence de�ned by the
recursion relation: 

c1 = 1
2

c2 = 1
3

cn = cn−1 · cn−2 for n ≥ 3.

Prove: The sequence cn satis�es 0 < cn ≤ 1 for all integers n ≥ 1.
� Solution:
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Proof. Let cn be the sequence de�ned by the recursion relation above. For n ∈ N let P (n) be the
assertion that

“0 < cn ≤ 1”.

Base Case: (we now have 2 base cases) We need to show P (1) and P (2) are true. Since c1 = 1
2 and

c2 = 1
3 is it clear that both are integers are strictly bigger than 0 and smaller than 1.
Inductive hypothesis: We assume for k ≥ 1, P (1), P (2), . . . , P (k) all hold. That is, assume

“0 < c1 ≤ 1”

“0 < c2 ≤ 1”

...

“0 < ck−1 ≤ 1”

“0 < ck ≤ 1” (?)

Inductive step: Using the inductive hypothesis, we want to show that the statement holds for n = k+ 1.
Meaning, we want to show that

“0 < ck+1 ≤ 1”. (??)

To prove this, we can only do this using recursion de�ned in the problem, and statements in (?))
Now

ck+1 = ck · ck−1, by de�nition of recursion

= ck︸︷︷︸ · ck−1︸︷︷︸
≤ 1 · 1, by inductive hypothesis (?)

= 1

similarly,

ck+1 = ck · ck−1, by de�nition of recursion

= ck︸︷︷︸ · ck−1︸︷︷︸
≥ 0 · 0, by inductive hypothesis (?)

= 0.

This shows that 0 ≤ ck+1 ≤ 1 . Thus we have shown (??).
Thus bystrong induction, the statement holds for all integers n ≥ 1. �

• Example: Prove: For all integers n ≥ 2, n is divisible by a prime.
� Solution:

Proof. For n ≥ 2, let P (n) be the assertion that

“ there exists prime p such that p | n”.

Base Case: We need to show P (2) is true. Since n = 2 is obviouly divisible by the prime p = 2, then
P (2) is true.

Inductive hypothesis: We assume for k ≥ 2, P (2), P (2), . . . , P (k) all hold. That is, assume

“ there exists prime p such that p | 1”

“ there exists prime p such that p | 2
...

“ there exists prime p such that p | (k − 1)

“ there exists prime p such that p | k (?)

Inductive step: Using the inductive hypothesis, we want to show that the statement holds for n = k+ 1.
Meaning, we want to show that

“ there exists prime p such that p | (k + 1). (??)
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To prove this, we split into 2 cases.
Case 1: Suppose k + 1 is prime.
Then choose p = k + 1 then clearly p | k + 1.
Case 2: Suppose k + 1 is not prime.
Then this means k + 1 is composite and hence

k + 1 = rs

here 2 ≤ r < k + 1 and 2 ≤ s < k + 1. Since we know P (r) is true, then k is divisible by a prime. This
means p | r and r | k + 1, hence by the transitivity of divides, we have that

p | k + 1

as desired.
Thus by principle of strong induction, the statement is true for all n ≥ 2. �



CHAPTER 6

Set Theory

Section 6.1 - Set Theory: De�nitions and the Element Method of Proof

• We start with a de�nition

Definition 41. (takes over De�nition 12) Let A and B be sets. Then A is a subset of B, denoted
A ⊆ B, provided that

∀x (x ∈ A→ x ∈ B)

• This means: �For all x ∈ A then x ∈ B�
• It is easier to visualize using Venn Diagrams.
• Other terminology:

� Other terminology for A ⊆ B are,
∗ A ⊂ B
∗ A is contained in B
∗ B contains A
∗ B is a superset of A

• Remark:
� To show A * B: Show that there exists x ∈ A but x 6∈ B.

• Examples:
� {1, 2} ⊂ {1, 2, 3}
� {1, 2, 4} * {1, 2, 3}
� {0, 1, 2} 6* Z+

� {1, 2} ⊂ Z+

� {1, 2} /∈ Z+but 1, 2 ∈ Z+

• How to prove A ⊂ B:
� Proof: �Let x ∈ A be arbitrary element. Then .......(do work to show) x ∈ B, as desired. �

• Example: Describe the following sets

A = {m ∈ Z | m = 8r − 7 for some r ∈ Z}
B = {n ∈ Z | n = 4s+ 1 for some s ∈ Z}

and show A ⊂ B.
� Solution:
� Note that

A = {. . . ,−15,−7, 1, 9, 17, . . . }
B = {. . . ,−15,−11,−7,−3, 1, 5, 9, 13, 17, . . . }

Proof. Let x ∈ A be arbitrary. We want to show x ∈ B.
If x ∈ A then

x = 8r − 7 for some r ∈ Z.

We want to show x ∈ B, meaning that

x = 4 (some integer) + 1.

55
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By algebra,

x = 8r − 7

= 8r − 8 + 1

= 4 (2r − 2) + 1.

Let s = 2r − 2. Since Z is closed under multiplication and subtration then s ∈ Z, hence we showed that

x = 4s+ 1 for some s ∈ Z
thus x ∈ B. �

• Here are some more de�nitions

Definition 42. (Set Equality) If A and B are sets, then A = B provided that both A ⊆ B and B ⊆ A.

Definition 43. A is a proper subset of B provided that A ⊆ B and A 6= B.

Operations on Sets.

Definition 44. Let A and B be sets. Then
(1) The union of A and B is the set A ∪B = {x | x ∈ A or x ∈ B}
(2) The intersection of A and B is the set A ∩B = {x | x ∈ A and x ∈ B}
(3) A minus B is the set A−B = {x | x ∈ A and x /∈ B}. This is also (more commonly) written A\B

and is also called the set di�erence, A minus B.

• Also helpful to picture a Venn Diagram:

•
• Example: Let

A = {1, 2, 3, 4}
B = {2, 3, 8} .

Then

A ∪B = {1, 2, 3, 4, 8}
A ∩B = {2, 3}
A−B = {1, 4}
B −A = {8}

• We can generalize to man unions and intersectons.

Definition 45. Given sets A1, A2, A3, . . . and a nonegative integer n, de�ne:

(1)

n⋃
i=1

Ai = A1 ∪ · · · ∪An = {x | x ∈ Ai for at least one i = 1, 2, . . . , n}

(1)

∞⋃
i=1

Ai = {x | x ∈ Ai for at least one i ≥ 1}

(3)

n⋂
i=1

Ai = A1 ∩ · · · ∩An = {x | x ∈ Ai for all i = 1, 2, . . . , n}

(3)

∞⋂
i=1

Ai = {x | x ∈ Ai for all i ≥ 1}

• Notation: The sets A1, A2, . . . are said to be mutually disjoint if Ai and Aj are disjoint (i.e.
Ai ∩Aj = ∅) for any pair i 6= j
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• Example: Let

Ai =

{
x ∈ R | 0 ≤ x ≤ 1

i

}
=

[
0,

1

i

]
.

� Then we compute the following:

3⋃
i=1

Ai = [0, 1] ∪
[
0,

1

2

]
∪
[
0,

1

3

]
= [0, 1]

and
∞⋃
i=1

Ai = [0, 1] .

Also
3⋂

i=1

Ai = [0, 1] ∩
[
0,

1

2

]
∩
[
0,

1

3

]
=

[
0,

1

3

]
and �nally

∞⋂
i=1

Ai = {0} .

• The Empty Set:

Definition 46. The empty set, denotes ∅, is the set with no elements.

∅ = {} .

• Question: Consider any set A, then is ∅ ⊂ A?
� Solution: Yes, the empty set is a subset of every set!

Power Set.

Definition 47. Let A be a set. The power set of a set A, denotes P (A), is the set of all subsets of A.
That is,

P (A) = {X | X ⊆ A} .

• Remarks:
� The elements of P(A) are sets! Don't get confused/
� B ∈ P(A) ⇐⇒ B ⊂ A
� P (A) always contains the sets ∅ and A.
� When A is �nite, then the number of elements in P (A) is 2#(A).

• Examples: What is
� Part (a): The power set of a two-element set?

∗ Solution:
P ({x, y}) = {∅, {x} , {y} , {x, y}} .

� Part (b): The power set of a one-element set?
∗ Solution:

P ({x}) = {∅, {x}} .
� Part (c): The power set of the emptyset?

∗ Solution:
P (∅) = {∅} .

∗ Note that P (∅) 6= ∅ . It contains one element. (Remember - thinking of a set as a
�shbowl, we think of the empty set as an empty �shbowl. Then the set containing the
empty set is a �shbowl containing an empty �shbowl!)

• HW Problem: Find P ({x, y, z}). How many elements does it have?
• Example: Let A = {1, 2, 3}

� Is 1 ∈ P (A)?
∗ No

� Is {2} ∈ P (A)?
∗ Yes
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� Is {∅} ∈ P (A)?
∗ No

� Is {∅} ⊂ P (A)?
∗ Yes

� Is ∅ ∈ P (A)?
∗ Yes

� Is ∅ ⊂ P (A)?
∗ Yes
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Section 6.2 - Set Proofs; properties of sets

• See Theorems 6.2.1 and Theorems 6.2.2 for some set properties.
• We will learn how to prove several properties of sets.

Proving X ⊆ Y .
• We will learn how to prove how one set is a subset of another.
• Procedure: To prove X ⊆ Y

� Proof:
� (1) Assume x ∈ X is an abitrary element.
� (2) Show, after doing some work, that x ∈ Y . �

• Some advice: The work part, involves using the de�nitions and basic logic.
� You need to unravel the de�nitions.
� Think of �unraveling de�nitions� like opening a box. At step, write down what you know each
part means.

� For example, If you write �x ∈ A ∩ B�. Then you need to remember how ∩ is de�ned , this
means �x ∈ A and x ∈ B�

• Here are some examples.
• Example 1: Prove A ⊆ A ∪B

� Solution:

Proof. Assume a ∈ A is arbitrary. Then a ∈ A or a ∈ B , because the former is true. Thus,
a ∈ A ∪B, as desired. �

• Example 2: Prove A× (B − C) ⊆ A×B
� Solution:

Proof. Assume (x, y) ∈ A × (B − C) is an arbitrary element. Then this means that x ∈ A
and y ∈ B − C. Thus, y ∈ B but y /∈ C.

Since we know x ∈ A and y ∈ B, then this means that (x, y) ∈ A×B, as desired. �

Proving a set is empty.

• The typical proof to show a set is empty involves contradiction.
• Procedure: To prove X = ∅

� Proof:
� (1) Assume for contradiction that X 6= ∅. Then this means we can �nd an x ∈ X
� (2) Show, after doing some work, that you can a contradiction (something absurd).
� Hence, X should have been empty in the �rst place. Thus X = ∅. �

• Example 3: Prove A ∩ (B −A) = ∅
� Solution:

Proof. Assume for the sake of contradiction that A ∩ (B −A) 6= ∅. Then this means that
there exists an x ∈ A ∩ (B −A). Then this means that x ∈ A and x ∈ B − A. Since x ∈ B − A,
then this means that x ∈ B but x /∈ A.

In particular, we just showed that x ∈ A and x /∈ A, which is absurd (a contradiction).
Hence, the original statement must have been true, meaning we showed that A ∩ (B −A) = ∅, as
desired. �

Proving two sets are equal.

• Procedure (Proof by Mutual inclusion): To prove X = Y
� Proof:
� To show two sets are equal, we show each is a subset of the other.
� Part (a) First we show X ⊆ Y .....
� Part (b): Now we show Y ⊆ X......
� Combining the two sections of our proof, by Mutual Inclusion we conclude X = Y . �

• Example 4: Prove the distributive law: For all sets A,B and C,

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
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� Solution:

Proof. To show two sets are equal, we show each is a subset of each other.
Part(a): We show A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C):
Let x ∈ A∪ (B ∩ C) be an arbitrary element. Then this means x ∈ A or x ∈ B ∩C . We split

this into two cases.
[We WTS: x ∈ (A ∪B) ∩ (A ∪ C)].
Case 1 : If x ∈ A. Then in this case we know that since x ∈ A then x ∈ A ∪ B (by Example

1), and also similarly x ∈ A ∪ C (also by Example 1). Since x ∈ A ∪ B and x ∈ A ∪ C, then we
have that

x ∈ (A ∪B) ∩ (A ∪ C) ,

which is what we wanted to show.
Case 2 : If x ∈ B ∩ C. Then in this case we know that since x ∈ B and x ∈ C.
Since x ∈ B then x ∈ (A ∪B) (by Example 1). Similarly, since x ∈ C then x ∈ (A ∪ C). Since

x ∈ A ∪B and x ∈ A ∪ C, then we have that

x ∈ (A ∪B) ∩ (A ∪ C) ,

which is what we wanted to show.
As Cases 1 and 2 exaust all possibilities of Part (a), then we showed that in each case that

x ∈ (A ∪B) ∩ (A ∪ C) .

Thus we showed that if x ∈ A ∪ (B ∩ C) then x ∈ (A ∪B) ∩ (A ∪ C), which means

A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C) .

Part(b): We show (A ∪B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C):
Let x ∈ (A ∪B)∩ (A ∪ C) be an arbitrary element. Then this means x ∈ A∪B and x ∈ A∪C

.
[We WTS: x ∈ A ∪ (B ∩ C)].
We split this into two cases. Because, at the end of the day, either x ∈ A or x /∈ A.
Case 1 : Suppose x ∈ A. Then in this case, it means x ∈ A or x ∈ (B ∩ C) since the former is

true. Hence
x ∈ A ∪ (B ∩ C) ,

as desired.
Case 2 : Suppose x /∈ A. Then recall from above, since x ∈ A∪B and x ∈ A∪C, but x /∈ A ,

then it must be that
x ∈ B and x ∈ C.

Hence x ∈ (B ∩ C). This means that x ∈ A or x ∈ (B ∩ C), since the latter is true. This means

x ∈ A ∪ (B ∩ C) ,

as desired.
As Cases 1 and 2 exaust all possibilities of Part (b), then we showed that in each case that

x ∈ A ∪ (B ∩ C) .

Thus we showed that if x ∈ (A ∪B) ∩ (A ∪ C) then x ∈ (A ∪B) ∩ (A ∪ C), which means

(A ∪B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C) .

Combining the two parts of our proof, by Mutual Inclusion we conclude that

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

as desired. �



CHAPTER 7

Functions

Section 7.1 - Functions de�ned on general sets

• Recall from De�nition 14, paraphrased,
� �A function f from X to Y is a relation from domain X to co-domain Y such that every x ∈ X
is related to a unique y ∈ Y . �

• Here it is formally:

Definition. A function F from A to B is a relation from A to B satisfying
(1) For all x ∈ A, there exists y ∈ B such that (x, y) ∈ F .
(2) For all x ∈ A and y, z ∈ B, if (x, y) ∈ F and (x, z) ∈ F , then y = z.

• Note that, before our notion of a function, is actualy of its graph F .
• Notation and Terminology:

� We write f : X → Y to say �f is a function from X to Y �
� The unique output for input x is denoted by f(x), and called the value of f at x, or the
image of x under f .

� The range or image of f is the set

range of f = image of f = {y ∈ Y | y = f(x), for some x ∈ X} .

� If f(x) = y, then x is called a preimage of y or an inverse image of y.
� The set of all preimages of y is called the inverse image of y, written f−1(y), that is,

f−1 (y) = {x ∈ X | f(x) = y} .

∗ I.e. f−1 (y) is a set, since there may be more than one preimages.
∗ Example: If f(x) = x2, then

f−1 (4) = {−2, 2} .

Arrow Diagrams.

• Example: Consider the following function f : X → Y where

X = {1, 2, 3}
Y = {a, b, c, d} .

de�ned by

f(1) = b

f(2) = d

f(3) = b.

� Part (a): Draw an arrow diagram:
∗ Solution:

61
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∗
� Part (b): What is the domain of f

∗ Solution:
∗ Domain is the set {1, 2, 3}

� Part (c): What is the co-domain of f
∗ Solution:
∗ Co-domain is the set {a, b, d, c}

� Part (d): What is the range/image of f
∗ Solution:
∗ The range/image is the set {b, d}

� Part (e): What is the inverse image of a, b, c, d:
∗ Solution:

f−1 (a) = ∅
f−1 (b) = {1, 3}
f−1 (d) = ∅
f−1 (d) = {2} .

Functions de�ned by formulas.

• Examples:
� Part (a): Consider f : R→ R de�ned by f(x) = x2.

∗ The range/image of f is [0,∞)
� Part (b): Consider g : Z\ {0} → N de�ned by g(x) = x2.

∗ The range/image of g is
{

1, 22, 32, 42, . . .
}

= {1, 4, 9, 16, . . . }
� Part (c): Consider h : Z→ R de�ned by h(x) = 3

√
x.

� Part (d): Consider any sequence a1, a2, a3 . . . of real numbers. Then we can de�ne a function

a : N→ R
de�ned by a(k) = ak

� Part (e): Consider f : P ({1, 2, 3, 4})→ Z de�ned by

f (S) = # (S)

= the number of elements in set S.

∗ For example,

f ({1, 2, 4}) = 3,

f ({4}) = 3,

f (∅) = 0,

∗ The image/range of f is {0, 1, 2, 3, 4}.

Definition 48. (Equality of Functions) Suppose f and g are functions from X to Y . Then f equals
g, written f = g, provided that f(x) = g(x), for all x ∈ X.
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Definition 49. Given a set X, the identity function X is the function IX : X → X de�ned by
IX(x) = x.

• Example: Find IR (5) and IR
(√

5
)
.

� Solution: We have IR (5) = 5 and IR
(√

5
)

=
√

5.

Boolean Functions.

• De�ne

{0, 1}n := {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n times

Definition 50. An (n−place) Boolean function is a function f : {0, 1}n → {0, 1}.

• Such a function is often presented in an input/output table with n columns (for the inputs) and
one column for the output. Across the rows, we put the entries of the ordered n-tuples with the
value of the function on this entry in the last column.

• Example:

� Here is an input/output table for a 2-place boolean function f : {0, 1}2 → {0, 1}:

∗

P Q R

1 1 1
1 0 1
0 1 0
0 0 1

� The corresponding arrow diagram:

�
• Remainders:

� Before doing the next example, we recall Quotient-Remainder Theorem and the notation n
mod d = remainder when divising by d.

� In particular,

5 mod 2 = 1

8 mod 2 = 0

9 mod 2 = 1

0 mod 2 = 0

• Example:
� Consider the 3-place boolean function

f : {0, 1}3 → {0, 1}

de�ned by f (x1, x2, x3) := (x1 + x2 + x3) mod 2

∗ The input/output table for f is
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∗

x1 x2 x3 f (x1, x2, x3)

1 1 1 (1 + 1 + 1) mod 2 = 3 mod 2 = 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0

� The corresponding arrow diagram:

�

A function that is not well de�ned.

• A function is not well-de�ned if it fails to satify at least one condition of being a function.
• Example: Why is the following �function� is not well-de�ned

f : Q→ Z

f
(m
n

)
= m for all ,m, n ∈ Z, n 6= 0.

� Solution:
� At �rst glance, it seems like a perfectly �ne function.
� But this is not well-de�ned. Because rational numbers can be written in di�erent forms, for
example suppose x = 1

2 then

f (x) = f

(
1

2

)
= 1

but you can also write x = 1
2 = 500

1000 so that using this formula we have

f (x) = f

(
500

1000

)
= 1000

but this is BAD, because functions can only assign a unique value to each x.
� So f is not a well-de�ned function.
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Section 7.2 - One-to-one and Onto Functions.

One-to-one Functions.

• We start with a de�nition

Definition 51. Letf : X → Y be a function. Then f is one-to-one provided that

∀x1, x2 ∈ X, if f(x1) = f(x2) then x1 = x2

or equivalently,

∀x1, x2 ∈ X, if x1 6= x2 then f(x1) 6= f(x2).

• Example: Figure out if the following functions f : {1, 2} → {a, b} are one-to-one.

•
• .
• To prove f : X → Y is one-to-one:

� Proof Method:
� Let x1, x2 ∈ X and suppose f (x1) = f (x2). Then....after some work.... show x1 = x2. �

• To prove f : X → Y is NOT one-to-one:
� Proof Method:
� Produce somehow two distinct inputs, x1 6= x2 such that f (x1) = f (x2).

• Tips to determine if a given function is one-to-one:
� Start by studying f(x1) = f(x2). Play with this equation, and see if this forces x1 = x2. If
so, then f is one-to-one.

� If in playing, you discover that it is possible that x1 does NOT necessarily need to equal x2,
then you should be able to
∗ produce two di�erent actual values x1 and x2
∗ then show that f (x1) = f (x2).

• Question: What test do we have for �graphable" functions to help us see if f is one-to-one?
� Answer: The Horizotal Line test! If a function passes the horizontal line test, then f is
one-to-one.

• Example: Prove or Disprove: f is one-to-one
� Part (a): f : R→ R de�ned by f(x) = 2x+ 1.

∗ Solution:
∗ Using the horizonal line test, it is clear this funciton is one-to-one. Here is a proof.

Proof. To show f is one-to-one, let x1, x2 ∈ R and assume f (x1) = f (x2). Then this
means

2x1 + 1 = 2x2 + 1 ⇐⇒ 2x1 = 2x2

⇐⇒ x1 = x2,

which is what we needed to show. �

� Part (b): f : R→ R de�ned by f(x) = x2 + 5.
∗ Solution:
∗ Using the horizonal line test, it is clear this funciton is NOT one-to-one. For any
horizontal line, it passes through 2 points!
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∗ For example, x1 = 2 and x2 = −2 are di�erent but yet maps to the same point.
∗ Here is a proof.

Proof. To show f is not one-to-one, we must produce x1, x2 ∈ R such that x1 6= x2 but
f (x1) = f (x2). Taking

x1 = 2

x2 = −2

we see that

f (2) = 9 and f(−2) = 9

hence f(x1) = f(x2), which is what we needed to show. �

� Part (c): L et f : R → R de�ned by f(x) = x2 + 5. We already know from the previous
example that f is NOT one-to-one. So here is wrong proof that f is one-to-one. Find the
mistake!

Proof. To show f is one-to-one, let x1, x2 ∈ R and assume f (x1) = f (x2). Then this
means

x21 + 5 = x22 + 5 ⇐⇒ x21 = x22

⇐⇒ x1 = x2,

which is what we needed to show.

∗ Solution
∗ The mistake is this WRONG proof is that

x21 = x22 does not imply that x1 = x2.

∗ When you take square root of both sides you get:

x21 = x22 implies |x1| = |x2| .

∗ But if |x1| = |x2|, this DOES NOT mean x1 = x2.

�

Onto Functions.

• Intuition: Every element of Y gets �hit" by f , i.e., the range is all of Y .

Definition 52. Let f : X → Y . Then f is onto provided that

∀y ∈ Y, ∃x ∈ X such that y = f(x).

• Examples: Onto or not? f : {1, 2} → {a, b}

�
• .
• To prove f : X → Y is onto:

� Proof Method:
� Let y ∈ Y be arbitrary.
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� Produce somehow....after some work.. a candidate x ∈ X(usually dependent on y) and verify
that f(x) = y. �

• To prove f : X → Y is NOT onto:
� Proof Method:
� Produce somehow a particular element y ∈ Y and
� show, for this y, that for all x ∈ X, f(x) 6= y. There are two ways you can do this:

∗ (Directly) With y in hand,
· Let x ∈ X be arbitrary, and then
· verify that f(x) 6= y.

∗ (indirectly - by contradiction) With y in hand,
· Assume, for the sake of contradiction, that there is an element x ∈ X such that
f(x) = y.
· The proceed logically and derive a contradiction.

• Tips to determine if a given function is onto:
� Start by studying f(x) = y. Play with this equation, and see if this places any restrictions on
y. If so, then f is likely not onto.

� Also, try to solve for x to �nd a preimage of y.
∗ If there are some y's for which this is impossible (and by this, I mean not mathematically
possible, not �it's really hard and I can't do it"), then f is not onto.

• Question: What test do we have for �graphable" functions to help us see if f is onto?
� Answer: Bear Hug! If a function f : X → Y bear hugs all elements of Y , then it is onto.

• Example: Prove of Disprove: f is onto.
� Part (a): f : R→ R de�ned by f(x) = 2x+ 1.
� Solution:
� By graphing, this function, you'll notice that this function bearhugs all of the y-axis. Hence
it is onto.

� Sketch work: Looking for at the equation f(x) = y we have

y = 2x+ 1

can we solve for x? Yes, x = y−1
2 .

� Formal Proof:

Proof. To show that f is onto, let y ∈ R. We must produce x ∈ R such that f(x) = y. Take
x = y−1

2 .Then x ∈ R, the domain, further

f(x) = f

(
y − 1

2

)
= 2

(
y − 1

2

)
+ 1

= y − 1 + 1

= y,

thus, f is onto. �

� Part (b): f : R→ R de�ned by f(x) = x2 + 5.
� Solution:
� Sketch work: By graphing, this function, you'll notice that this function DOES NOT bearhug
all of the y-axis. In fact, it completely misses everything below y = 5.

� For example, pick y = 0. Can you �nd f(x) = 0, in other words, can �nd x such that

x2 + 5 = 0 ⇐⇒ x2 = −5

no because a negative number can't be positive. (well this is like a proof by contradiction)
� Formal Proof:

Proof. To show that f is not onto, we must produce y ∈ R such that f(x) 6= y for any x ∈ R.
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Take y = 0, then y ∈ R, and assume for contradiction that f(x) = y, for some x ∈ R. Then
x2 + 5 = 0 ⇐⇒ x2 = −5,

which is a contradiction, since a real number square cann never be negative. Hence f is not onto. �

Definition 53. Let f : X → Y . Then f is a bijection or a one-to-one correspondence provided
that f is both one-to-one and onto.

• Example: Show that f : Z→ Z de�ned by

f(n) = 5n− 10

is a one-to-one but not onto. Therefore, not a bijection..
� Solution:
� Sketch of Proof:
� First do a sketch. One-to-one is easier to prove.

f(n1) = f(n2) ⇐⇒ 5n1 − 10 = 5n2 − 10

⇐⇒ 5n1 = 5n2

⇐⇒ n1 = n2,

� For onto we study the equation

y = f(n) ⇐⇒ y = 5n− 10

⇐⇒ n =
y + 10

5
but notice, that this is bad, because there is no way that

y + 10

5
is always an integer. For example, pick y = 1.

Proof. First we show f is one to one: This means we need to show that if f(n1) = f(n2)
then n1 = n2. Suppose f(n1) = f(n2), then

f(n1) = f(n2) ⇐⇒ 5n1 − 10 = 5n2 − 10

⇐⇒ 5n1 = 5n2

⇐⇒ n1 = n2,

as needed. Hence f is one-to-one.
Now we show that f is not onto. We must produce y ∈ R such that f(n) 6= y for any n ∈ Z.
Take y = 1, then y ∈ Z, and assume for contradiction that f(n) = 1, for some n ∈ Z. Then if

this is true, then

1 = 5n− 10 ⇐⇒ 11 = 5n

⇐⇒ n =
11

5
.

which is a contradiction, since n = 11
5 /∈ Z. Hence f is not onto. �



CHAPTER 8

Properties of Relations

Section 8.1 - Relations on Sets

• Recall, that a relation R is simply a subset

R ⊆ A×B
and is called a (binary) relation R from A to B.

Definition 54. Let R be a relation from A to B. The inverse relation R−1 from B to A is de�ned
by

R−1 = {(y, x) ∈ B ×A | (x, y) ∈ R} .

• Remark:
� Remember that not all relations are functions.
� Don't get the inverse relation with an inverse fuction. An inverse relation need not be a
function!

• Example: Let R be the �divides� relation from A = {2, 3, 4} to B = {2, 6, 7, 8}, that is,
(x, y) ∈ R if and only if x | y.

� Part (a): Express R and R−1 as sets of ordered pairs.
∗ Solution:
∗ We need to check each possibility and we get

R = {(2, 2) , (2, 6) , (2, 8) , (3, 6) , (4, 8)}
then by simply by inverting the order of the order pairs we get

R−1 = {(2, 2) , (6, 2) , (8, 2) , (6, 3) , (8, 4)}
� Part (b): Draw the arrow diagrams for R and R−1.

∗ Solution:
∗ Draw R �rst. To draw R−1, we could just reverse the arrowheads. or we could rewrite
as below

∗
� Part (c): Are R and R−1 functions?

∗ Solution:
∗ R is not a function since 2 is related to more than one element: (2, 2) , (2, 6) ∈ R.
∗ R−1 is not a function since 7 is not sent anywhere.

69
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· This wouldn't have happened if R was onto. (even though R isn't even a function)
∗ Other reasons, for R−1 not being a function? 6 is related to more than one element:

(6, 2), (6, 3) ∈ R−1
· This wouldn't have happened if R was one-to-one. (even though R isn't even a
function)

• Remark: If R happens to be a one-to-one function and onto, then so is R−1.

Relations on sets.

• We start with a de�nition

Definition 55. A relation on a set A is a relation from A to A.

• Example:
� Let A denote the set of strings of length 3 consisting of x's and y's, (For example xxy is a
string, oryyx)

� De�ne a relation R from A to A by: If s, t are strings then

sRt ⇐⇒ s and t start with the same 2 characters.

� Part (a): List the elements of A.
∗ Solution:
∗ We have

A = {xxx, xxy, xyx, xyy, yxx, yxy, yyx, yyy}

� Part (b): Is xxyRxxx?
∗ Solution:
∗ Yes because both strings start with the same 2 characters, in this case xx.

� Part (c): Is xyxRyyx?
∗ Solution:
∗ No because both strings do not start with the same 2 characters. One starts with xy
and the other starts with yy.

� Part (d): Is (yxy, yxx) ∈ R?
∗ Solution:
∗ Yes because both strings start with the same 2 characters, in this case yx.

Directed Graph of a Relation on a (single) set A.

• IDEA:
� As of now, a relation A to A, treats the domain and co-domain as two separate set of points
� Instead of doing this, we can instead represent A only once and draw an arrow from each point
of A to each related point.

• Example: Draw the directed graph of the string relation (above).
� Solution:

�
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A relation on an in�nite set.

• Example:(The Congruence Modulo 2 Relation) De�ne a relation E on Z by

mEn if and only if m− n is even

� Note: There are equivalent ways to phrase this relation (using some easy to prove results).
Can you think of any?
∗ mEn if and only if 2 | (m− n)
∗ mEn if and only if m mod 2 = n mod 2, or
∗ mEn if and only if m and n have the same remainder when dividing by 2.
∗ mEn if and only if m and n have the same parity

• Example: List 5 integers that are realted to 1 by E.
� Solution: 31, 35,−3,−9
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Section 8.2 - Re�exivity, Symmetry, and Transitivity.

• Question: What should R satisfy so that related objects can be treated as equal?
� In other words, think about which properties of the symbol �=� makes objects equal?
� The answer to this question is the following de�nition.
� Meaning, think that are equal usually have the following properties:

Definition 56. Suppose R is a relation on a set A. Then
(r) R is re�exive means: ∀x ∈ A, xRx
(s) R is symmetric means: ∀x, y ∈ A, if xRy, then yRx.
(t) R is transitive means: ∀x, y, z ∈ A if xRy and yRz, then xRz.

• Remark:
� Using ordered pairs this means:
� (r) R is re�exive means: ∀x ∈ A, (x, x) ∈ R
� (s) R is symmetric means: ∀x, y ∈ A, if (x, y) ∈ R, then (y, x) ∈ R.
� (t) R is transitive means: ∀x, y, z ∈ A if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

• Examples: Is R re�exive? symmetric? transitive?
� Part (a): Let A = {a, b, c, d} with all the relations being aRa, aRb, bRa, bRd, dRb, dRd

∗ Solution: Let's check each type
∗ (r) No, need bRb and cRc
∗ (s) Yes!
∗ (t) No, need bRb, aRd and dRa

� Part (b): Let A = {1, 2, 3} with R = {(1, 1) , (2, 2) , (3, 3) , (2, 3) , (2, 1)}
∗ Solution: Let's check each type
∗ (r) Yes!
∗ (s) No, need (3, 2) and (1, 2)
∗ (t) Yes

� Part (c): Let A = R with R =
{

(x, y) ∈ R2 | x < y
}

∗ Solution: Let's check each type
∗ (r) No need (1, 1)
∗ (s) No, need (3, 2)
∗ (t) Yes

� Part (d): Let A = R with R =
{

(x, y) ∈ R2 | x = y
}

∗ Solution: Let's check each type
∗ (r) Yes
∗ (s) Yes
∗ (t) Yes

• Examples: Let A = {1, 2, 3}. Construct a relation on A which is:
� Part (a): Relexive only

∗ Solution:
∗ Start by writing some relations that would make it what you want.
∗ Let

R =

 (1, 1) , (2, 2) , (3, 3)︸ ︷︷ ︸
need at least these to be re�exive

, (1, 2) , (2, 3)


· This is not symmetric since 1R2 but 2 6 R1
· This is not transitive since 1R2 and 2R3 but 1 6 R3.

� Part (b): Symmetric only
∗ Solution:
∗ Start by writing some relations that would make it what you want.
∗ Let

R =

 (1, 2) , (2, 1)︸ ︷︷ ︸
at least this makes symmetric
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· Other options are possible
· This is not re�exive since 3 6 R3
· This is not transitive since 1R2 and 2R1 but 1 6 R1.

� Part (c): Transitive only
∗ Solution:
∗ Start by writing some relations that would make it what you want.
∗ We get

R =

 (1, 2) , (2, 3), (1, 3)︸ ︷︷ ︸
at least this makes symmetric


· This is not re�exive since 3 6 R3
· This is not symmetric since 1R2 but 2 6 R1.

Properties of Relations on In�nite Sets (Writing proofs).

• Example: De�ne a relation R on Z by

mRn if and only if 3 | (m− n) .

� Part(a): Show R is re�exive.
� We will unravel these de�nitions to help us prove what we need to prove.
� Solution:

Proof. We must show that ∀m,n ∈ Z,mRm. This means, we must show that 3 | (m−m).
This is obvious since clearly 3 | 0. Thus mRm, and it follows that R is re�exive. �

� Part(b): Show R is symmetric.
� Solution:

Proof. We must show that � ∀m ∈ Z if mRn then nRm.� This means, we must show that

“if 3| (m− n) then 3 | (n−m) .”

In other words, this means

“if (m− n) = 3k, for some k ∈ Z then (n−m) = 3(some integer)”

So let us suppose that (m− n) = 3k, then by multiplying by −1 we get

(n−m) = 3 (−k) .

Since −k ∈ Z then we showed that 3 | (n−m)
Thus nRm, and it follows that R is symmetric. �

� Part(c): Show R is transitive.
� Solution:

Proof. We must show that � ∀x, y, z ∈ Z if xRy and yRz then xRz.� This means, we must
show that

“if 3| (x− y)and 3| (y − z) then 3 | (x− z) .”
In other words, this means

“if (x− y) = 3k, and (y − z) = 3lfor some k, l ∈ Z then (x− z) = 3(some integer)”

So let us suppose that (x− y) = 3k and (y − z) = 3l then by substitution (and solving the two
former equations for x and z) we have

(x− z) = (3k + y)− (y − 3l)

= 3k + y − y + 3l

= 3k + 3l

= 3 (k + l) .

Since k + l ∈ Z then we showed that 3 | (x− z)
Thus if xRy and yRz then we just showed that xRz, and it follows that R is transitive. �
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Section 8.3 - Equivalence Relations

Equivalence Relations (making �di�erent� objects equal).

• We start with a de�nition.

Definition 57. A binary relation R on a set A is an equivalence relation provided that it is re�exive,
symmetric, and transitive.

• Example: R de�ned on Z by

mRn if and only if 3 | (m− n) .

is an equivalence relation.
� We literally just proved this in the last example!

• Example: Is R an equivalence relation on A = {1, 2, 3} ?
� Part (a): When R = {(1, 1) , (2, 2) , (1, 2) , (2, 1)}

∗ Solution:
∗ No, R is not re�exive.

� Part (b): When R = {(1, 1) , (2, 2) , (3, 3) , (2, 3)}
∗ Solution:
∗ No, R is not symmetric.

� Part (c): When R = {(1, 1) , (2, 2) , (3, 3) , (1, 2) , (2, 1) , (2, 3) , (3, 2)}
∗ Solution:
∗ No, R is not transitive.

� Part (d): When R = {(1, 1) , (2, 2) , (3, 3) , (1, 2) , (2, 1)}
∗ Solution:
∗ Yes!

• Example: Let A = {a, b,♥, 9}, �nd the missing 3 relations in order to make the following an
equivalence relation:

R = {(a, a) , (b, b) , (♥,♥) , (a,♥) , (♥, a) , (♥, b) , (a, b) , (?, ?) , (?, ?) , (?, ?)}

� Solution: The missing relations are

(b, a) , (b,♥) , (9, 9) .

Equivalence Classes.

• We start with a de�nition

Definition 58. Let R be an equivalence relation on A and let a ∈ A. Then the equivalence class of
a is denoted by [a] and is de�ned by

[a] := {x ∈ A | xRa}

• Paraphrasing: The equivalence class of a includes all the other elements related to it. (or equal to
it)

• Why are equivalence classes nice. Many reasons. Here's a nice property
� Theorem: We have that xRy if and only if [x] = [y] .

• Example: Find [a] , for each a ∈ A.
� Part (a): Let A = {1, 2, 3} and R = {(1, 1) , (2, 2) , (3, 3) , (1, 3) , (3, 1)}
� Solution:
� It helps to draw directed graph:

�
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� Hence

[1] = {1, 3}
[3] = {1, 3}
[2] = {2}

� Part (b): LetA = {a, b, c, d} andR = {(a, a) , (b, b) , (c, c) , (d, d) , (a, b) , (b, a) , (a, d) , (d, a) , (b, d) , (d, b)}
� Solution:
� It helps to draw directed graph:

�
� Hence

[a] = {a, b, d}
[b] = {a, b, d}
[d] = {a, b, d}
[c] = {c}

� Part (c): Let A = R and R = {(x, y) ∈ R | x = y}
� Solution:
� Each element is only related to itself hence

[a] = {a} for all a ∈ R
� Part (d): Let A = Z and R be the equivalence relation de�ned by

mRn if and only if 3 | (m− n) .

� Solution:
� Then recall Q-R Theorem with d = 3 then

[0] = [3] = [6] = · · · = {3k | k ∈ Z}
[1] = [4] = [7] = · · · = {3k + 1 | k ∈ Z}
[3] = [5] = [8] = · · · = {3k + 2 | k ∈ Z}

Equivalence Relations and Partitions.

• Recall that an Equivalence relation R is a relation on A that is re�exive, symmetric and transi-
tive. And equivalence classes are the sets

[a] = {x ∈ A | xRa} .
From Section 6.1: Partitions of a set. From Section 6.1 (pages 384− 386).

• We �rst consider the following de�nitions. Some of which we have seen before.

Definition 59. Two sets A and B are called disjoint if A ∩B = ∅.

Definition 60. A �nite or in�nite collection P of nonempty subsets Ai of a set A is a partition of A
provided that

(1) ∀x ∈ A, there is some Ai in P such that x ∈ Ai, and
(2) For all Ai and Aj in P, if Ai 6= Aj , then Ai and Aj are disjoint.

• Paraphrase: A partition is simply a collection of sets P = {A1, A2, A3, . . . } where all the Ai are
mutually disjoint and that A = ∪i=1Ai.
� In other words, a partition is simply a way to cut a set A into di�erent disjoint pieces.

• Examples:
� Part (a): Let A = {1, 2, 3} and example of a partition of A is

P = {{1, 2} , {3}} .
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� Part (b): Let A = {1, 2, 3, . . . , 10} and example of a partition of A is

P = {{1, 3, 5} , {2, 7} , {4, 9, 10} , {6} , {8}} .

� Part (c): Let A = Z and example of a partition of A is

P = {{. . . ,−6,−3, 0, 3, 6, . . . } , {. . . ,−5,−2, 1, 4, 7, . . . } , {. . . ,−4,−1, 2, 5, 8, . . . }} .

These sets are the 3q, 3q + 1, 3q + 2 integer, the r = 0, 1, 2 when dividing by 3 from the Q-R
Theorem.

� Part (d): Let A = Z and example of a partition of A is

P = {{0} , {±1} , {±2} , . . . } .

Note the cells in this partition capture a sameness within the integers, that of �same size�.

Back to Section 8.3:

• We have the following theorem that connects partitions with equivalence relations.

Theorem. (Theorem 1) If A is a set and R is an equivalence relation on A, then the set of equivalence
classes of R forms a partition P of A.

Proof. Omited. �

• Example: Let A = {1, 2, 3} and R = {(1, 1) , (2, 2) , (3, 3) , (1, 2) , (2, 1)}
� The equivalence classes are

[1] = [2] = {1, 2} ,
[3] = {3} .

and observe that

P = {{1, 2} , {3}}
is a partition, just like the theorem said it would.

Definition 61. Let P be a partition of A. The relation RP on A induced by P is de�ned by

(x, y) ∈ RP i� ∃Ai ∈ P such that x and y are both in Ai.

• Paraphrase: The Relation RP is simply relation that says if P = {A1, A2, . . . } is a partition then
we de�ne all the elements in the same group Ai to be related to each other.

• Example: Find RP for the following partitions.
� Part (a): Let A = {1, 2, 3} and P = {{1, 2} , {3}}

∗ Solution:
∗ It might help to draw a directed graph by drawing dots for each point and connecting
all the points that are in the same set/group.
· In this example 1, 2 will be related to each since it's in the same group
· And 3 will only be realted to itself since it's in a group by itself.

∗ We get

RP = {(1, 1) , (2, 2) , (3, 3) , (1, 2) , (2, 1)} .
� Part (b): Let A = {a, b, c, d, e, f} and P = {{a, b, f} , {c} , {d, e}}

∗ Solution:
∗ It might help to draw a directed graph by drawing dots for each point and connecting
all the points that are in the same set/group.
· There three groups, and within each group, everything will be related to each other.

∗ We get

RP =

 (a, a) (a, b) (a, f) (d, d) (d, e)
(b, a) (b, b) (b, f) (c, c) (e, d) (e, e)
(f, a) (f, b) (f, f)

 .

• We have the following theorem that says that RP is not only a relation, but it's an equivalence
relation!
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Theorem. (Theorem 2) Let P be a partition of a set A. Then RP is an equivalence relation on A, i.e.
re�exive, symmetric, and transitive.

Proof. Omited �

Theorem. (Theorem 3) Every equivalence relation on A is of the form RP for some partition P of A,
namely, the se of equivalence classes.

Proof. Omited �

• What these theorems are saying are: To �nd all possible equivalence relations on A, just �nd all
partitions.

• Example: Let's �nd all equivalence relations of A = {1, 2, 3}.
� Solution:
� We have the following complete list of partitions of A:

∗ (1) P1 = {{1} , {2} , {3}}
∗ (2) P2 = {{1} , {2, 3}}
∗ (3) P3 = {{2} , {1, 3}}
∗ (4) P4 = {{3} , {1, 2}}
∗ (5) P5 = {{1, 2, 3}}

� Consequently, the equivalence relations R = RP are
∗ (1) RP1

= {(1, 1) , (2, 2) , (3, 3)}
∗ (2) RP2

= {(1, 1) , (2, 2) , (3, 3) , (2, 3) , (3, 2)}
∗ (3) RP3

= {(1, 1) , (2, 2) , (3, 3) , (1, 3) , (3, 1)}
∗ (4) RP4

= {(1, 1) , (2, 2) , (3, 3) , (1, 2) , (2, 1)}
∗ (5) RP5 = {(1, 1) , (2, 2) , (3, 3) , (1, 2) , (2, 1) , (1, 3) , (3, 1) , (2, 3) , (3, 2)}
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Section 8.5 - Partial Order Relations

Anti-symmetry.

• We start with a de�nition.

Definition 62. Let R be a relation on a set X. Then R is anti-symmetric provided that
∀x, y ∈ X if xRy and yRx, then x = y.

• Remark: In terms of the directed graph of the relation, this says there aren't arrows ging both
ways between elements.

• Example 1: Is R anti-symmetric on X = {0, 1, 2, 3}?
� Part (a): When R = {(0, 1) , (1, 0) , (1, 2) , (1, 3) , (3, 3)}

∗ Solution: Drawing the directed graph we have

∗
∗ No! Note that we have (0, 1) and (1, 0) ∈ R but 0 6= 1.

� Part (b): When R = {(0, 1) , (1, 2) , (1, 3) , (3, 3)}
∗ Solution: Drawing the directed graph we have

∗
∗ Yes! Note that there are no arrows going back and forth.

• Example 2: Is the �divides� relation (aRb ⇐⇒ a | b) antisymmetric on
� Part(a): On the set X = Z?

∗ Solution: No, because 2 | (−2) and (−2) | 2 but 2 6= −2.
� Part(b): On the set X = N?

∗ Solution: Yes,
∗ Proof: Suppose a | b and b | a. Then this means

b = ak, for some k ∈ N
a = bl, for some l ∈ N.

By substitution, this means

b = ak = blk,

since b 6= 0, then
lk = 1.

Since l, k ∈ N then the only solution to this is that l = 1 and k = 1. Hence

b = a,

as desired.

Partial Order Relation.

• Somewhat analogous to how equivalence relations are generalizations of equality �=�
� Partial order relations are generalizations of the relation �≤� on numbers.

Definition 63. Let R be a relation on X. Then R is a partial order relation provided that R is
re�exive, antisymmetric, and transitive.

• One can think of this a the one-way relation!
� One can think of partial relations as a set of roads/connections/relations where you can only
move up in one direction but not the other way around.

• Examples:
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� Part (a): The Relation �≤� is a partial order relation on any set of real numbers.
∗ Solution:
∗ Note obviously that if A ⊂ R .
∗ (r) Then any real number is related to itself since x ≤ x
∗ (anti-s) It's antisymetric since if x ≤ y then y 6≤ x if x 6= y.
∗ (t) Obviously if x ≤ y and y ≤ z then x ≤ z.

� Part (b): The �Divides� relation �|� is a partial order relation on N.
∗ Solution:
∗ (r) Note that for all n ∈ N, n | n.
∗ (anti-s) This was done in Example 2 of the previous subsection
∗ (t) We've proved this before: if x | y and y | z then x | z.

� Part (c): The relation �⊆� is a partial order relation on P(A) for any set A.
∗ Solution:
∗ (r) Any set is a subset of itself: A ⊆ A
∗ (anti-s) If A ⊆ B and B ⊆ A then by de�nition we know this means A = B.
∗ (t) If A ⊆ B and B ⊆ C then A ⊆ C.

• Notation: Rather than writing R for a general partial order relation. We will use �≤� or more
generally

�

The Lexicographic Order.

• In English, there is a well known de�ned order on the set of letters of the alphabet

A = {a, b, c, . . . , w, x, y, z} .

� From this, we have learned to how to order any names, or words alphabetically on the set of
all words.

� This is the so called dictionary ordering.

a � b � · · ·

• Example: If � is the dictionary ordering then

ship � shop

ship � ships

Carlos � Kara

• There is a (natural) way to generalize this to order the set of strings of characters that have an
ordering.

• This is the lexicographic order. See Theorem 8.5.1 in �Discrete Mathematics with Applications� S.
Epp, Fifth Edition, for a formal de�nition:
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• Lexicographic order summary:
� Let A be a starting set that is called an alphabet. And let R be a partial order on A.
� The string in S are called words.
� The partial lexicographic order � on strings is de�ned in the usual way oe would do with
English words.

Hasse Diagram of a Partial Order Relation.

• Hasse Diagrams:
� Start with the directed graph of the relation with �smaller" elements drawn lower and all
arrows pointing up.

� Then declutter the graph by removing things we know given the relation is a partial order
relation.
∗ Delete all loops. (Implied from refexivity)
∗ Delete all arrows whose existence is implied by transitivity.
∗ Delete the arrowheads. (Becomes unnecessary by our positioning smaller below larger.)

• Example: Draw the Hasse diagram for the given partial order relation.
� Part (a): The �divides" relation �|� on A = {1, 2, 3, 9, 12, 24}.
� Solution:

∗ We have

∗
� Part (b): The relation �⊆� on A = P ({a, b, c}).
� Solution:

∗ We have that
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∗
• Now Let's reverse engineer the partial order relation from the Hasse Diagram:
• Example: Let A = {0, 1, 2, 3}. Given the Hasse diagam, �nd the (partial) order relation.

� Part (a): Suppose the Hasse diagram is given by
� Solution:

∗ In the bottom layer we have 0 ≤ 1, 2, 3
∗ From the middle layer we also know that 1 ≤ 3 and 2 ≤ 3
∗ We also need to add all the re�exive orderings: 0 ≤ 0, 1 ≤ 1 2 ≤ 2 and 3 ≤ 3
∗ Hence

R = {(0, 0) , (1, 1) , (2, 2) , (3, 3) , (0, 1) , (0, 2) , (0, 3) , (1, 3) , (2, 3)}
∗ Note that, we don't have a comparison between 1 and 2 at all!

� Part (b): Suppose the Hasse diagram is given by
� Solution:

∗ From bottom layer we have 0 ≤ 1, 2, 3
∗ We also need to add all the re�exive orderings: 0 ≤ 0, 1 ≤ 1 2 ≤ 2 and 3 ≤ 3
∗ Hence

R = {(0, 0) , (1, 1) , (2, 2) , (3, 3) , (0, 1) , (0, 2) , (0, 3)}
∗ Note that, we don't have a comparison between 1, 2 and 3 at all!

Partially and Totally Ordered Sets.

• We start with a de�nition

Definition 64. A set X together with the partial order R on X is called a partially ordered set or
poset.

• Posets are pronounced POsets. (like poahsets)
• Notation: We like to use the notation (X,R) for a poset.

� For example, the poset given by the power set of a set A, ordered by subset inclusion, might
be denoted (P (A) ,⊆)

Definition 65. A total order relation on X is a partial order R such that ∀x, y ∈ X, either xRy or
yRx.
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• Remarks:
� Recall that in some previous examples, not all elements were related (or ordered in some way).
Thus a total order relation, means all elements of X has some kind of ordering between each
other!

� A set X with a total order relation is called a totally ordered set. (Should we called it
toset?)

� If x ≤ y or y ≤ x in some poset (X,≤), then we say that x and y are comparable.
• Examples: Here are some posets and tosets

� Part (a): The set A = {1, 2, 3, 9, 12, 24} with the relation �x | y� is a partially ordered set, a
poset. That is, (A, |) is a poset.

∗ Recall that we got the Hasse diagram:
∗ This is NOT a totally ordered set, since 2 and 9 are NOT comparable!

� Part (b): Consider the poset (P (A) ,⊆) is a poset. In general, this poset is not a totally
ordered set. Consider the previous example where we had

(P ({a, b, c}) ,⊆)

∗ Recall that we got the Hasse diagram:
∗ This is NOT a totally ordered set, since for example, {a} , {b} and {c} are all NOT
comparable!
· Why? Well neither {a} ⊆ {b} or {b} ⊆ {a}!!

� Part (c): The example given before by the Hasse diagram is not totally
ordered.

� Part (d): Let A ⊆ R then (A,≤)is a poset. In fact, it is a totally ordered set.
∗ You can always compare any real number.

Chains.

Definition 66. Let (X,≤) be a poset.
A subset C ⊆ X is called a chain provided that ∀x, y ∈ C, x ≤ y or y ≤ x.
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The length of C is one less than the number of elements in C.

• Example: A chain C of length 3 in (P ({a, b, c}) ,⊆) is

C = {∅, {a} , {a, b} , {a, b, c}} .
� Here it is embedded within the Hasse Diagram:

�

Maximal/minimals Elements.

• We consider the following de�nitions

Definition 67. Let (X,≤) be a poset. Then a ∈ X is called a:
(1) maximal element i� ∀x ∈ X, x ≤ a, or x, a are not comparable
(2) greatest element i� ∀x ∈ X, x ≤ a
(2) minimal element i� ∀x ∈ X, a ≤ x or, x, a are not comparable
(3) greatest element i� ∀x ∈ X, a ≤ x
• Example: Let X = {1, 2, 4, 5, 20, 60, 80} with partially ordered relation �n | m�. Draw the Hasse
diagram and �nd all maximal, greatest, minimal and least elements
� Solution:
� We have

�
� Maximal: 60, 80

∗ Clearly 60, 80 is greater than or equal to all the elements.
� Greatest: None

∗ But since we can't compare 60, and 80 than there is no greatest element!
� Minimal: 1
� Least: 1

Topological Sorting:

• We want to �nd a total order �compatible� with a partial one.

Definition 68. Suppose ≤ and ≤′ are partial orders one a set X. Then ≤′ is a re�nement of ≤
provided that for all x, y ∈ X, if x ≤ y, then x ≤′ y.

The book says ≤′ is compatible with ≤.
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• Example: Let's look again at X = {1, 2, 4, 5, 20, 60, 80} ordered by �divides�. This is not a total
ordering as some elements in X are not comparable, for example, 4 and 5.
� Question: Can we �nd a total ordering that is compatible with the divides ordered? I.e., can
we �nd a total odering that still has the divides ordering in which the following ordering we
obtain is still true:

�
� There are many possible answers:
� Solution 1: The usual ordering of ≤ on X is a totally ordered re�nement of �divides�: Since

1 ≤ 2 ≤ 4 ≤ 5 ≤ 20 ≤ 60 ≤ 80.

as it still maintains the same ordering that divides provide.
� Solution 2: The usual ordering of ≤ on X is a totally ordered re�nement of �divides�: Since

1 � 5 � 2 � 4 � 20 � 80 � 60

as it still maintains the same ordering that divides provide.

Topological Sorting Algorithm:

• Here is an algorithm that can always build a total ordering from a partial ordering:
� The algorithm does not produce a unique total ordering!

• Algorithm: Let � be a partial order relation on a �nite set X. To construct a totally ordered
re�nement:
(1) Pick any minimal element x ∈ X. (which exists since X is �nite)
(2) Let X ′ = X − {x}
(3) Repeast the following steps while X ′ 6= ∅.

(a) Pick any minimal element y in X ′

(b) De�ne x �′ y
(c) Set X ′ := X ′ − {y}

• Remarks:
� Note that the the loop in Step 3 will halt since X is �nite.
� This will give a total ordering x1 �′ x2 �′ · · · �′ xn where n is the number of elements in X.
� The ordering is NOT unique.

• Example: Use the Topological Sorting Algorithm to �nd a total ordering compatible with � given
by the following Hasse Diagram:
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•
� Solution 1: One answer using the algorithm can be

g �′ f �′ e �′ c �′ a �′ b �′ d
� Solution 2: Another answer using the algorithm can be

f �′ d �′ g �′ e �′ c �′ b �′ a



CHAPTER 9

Probability

Section 9.1 - Counting

Section 9.1.1 - The Counting Principle.

• Remark:
� These notes do not directly correspond with the same order and sections covered in the
textbook.

� The Homework will be assigned separately from the textbook problems.
• We need a way to help us count faster rather than counting by hand one by one.

Definition 69. (Basic Counting Principle) Suppose 2 experiments are to be performed.
If one experiement can result in m possibilities
Second experiment can result in n possibilities
Then together there are mn possibilities

• I like to use the box method. For example. Each box represents the number of possibilities in that
experiement.

• Example1: There are 20 teachers and 100 students in a school. How many ways can we pick a
teacher and student of the year?
� Solution: Use the box Method: 20× 100 = 2000.

• The counting principle can be generalized to any amount of experiments: n1 · · ·nr possibilities
• Example2:

� A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and 2 seniors.
� A subcomittee of 4 consists 1 person from each class. How many?
� Solution: Box method 3× 4× 5× 2 = 120.

• Example3: How many di�erent 6−place license plates are possible if the �rst 3 places are to be
occupied by letters and the �nals 3 by numbers?
� Solution: 26 · 26 · 26 · 10 · 10 · 10 =?
� Question: What if no repetition is allowed?
� Solution:26 · 25 · 24 · 10 · 9 · 8

• Example4: Consider the following 1v1 basketball tournament Bracket:
� How many possible outcomes can occur for this tournament?
� Solution:

∗ Note that there are only two outcomes for the the result of each individual game.

86
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∗ Since there are 7 games, then there are total of

2 · 2 · 2 · 2︸ ︷︷ ︸
quarter�nals

· 2 · 2︸︷︷︸
semi�nals

· 2︸︷︷︸
�nals

= 27 = 128.

• Example 5: How many n− place Boolean functions exist?
� Solution: A n−place Boolean function is a function f : {0, 1}n → {0, 1}.

∗ First let us �nd how many inputs there exists in {0, 1}n. We note that

number of elements in {0, 1}n = 2 · 2 · · · · 2︸ ︷︷ ︸
n times

= 2n.

∗ Now each input has 2 possible outputs, so

2︸︷︷︸
possible outputs for 1st input

· 2︸︷︷︸
possible outputs for 2nd input

· · · · 2︸︷︷︸
possible outputs for the 2n input

= 22
n

.
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Section 9.1.2 - Permutations.

• How many di�erent ordered arrangements of the letters a, b, c are possible?
� abc, acb, bac, bca, cab Each arrangement is a permutation
� Can also use the box method to �gure this out: 3 · 2 · 1 = 6.

Definition 70. With n objects, a permutation is an arrangement/ordering of n objects. There are

n (n− 1) · · · 3 · 2 · 1 = n!

di�erent permutations of the n objects.

• Remark: Note that ORDER matters when it comes to Permutations!
• Example1: What is the numnber of possible batting order with 9 players?

� Answer: 9!(Box Method or permutations)
• Example2: How many ways can one arrange 4 math books, 3 chemistry books, 2 physics books,
and 1 biology book on a bookshelf so that all the math books are together, all the chemistry books
are together, and all the physics books are together.
� Answer: We can arrange the math books in 4! ways, the chemistry in 3! ways, the physics
in 2! ways, and B in 1! = 1 way.

� But we also have to decide which set of books go on the left, which next, and so on. That is
the same as the number of ways of arranging the letters M,C, P,B, and there are 4! ways of
doing that. MCPB, PBPB ect..

� So 4! (4!3!2!1!) ways.
• Example3: Repetitions: How many ways can one arrange the letters a, a, b, c?

� Let us label them A, a, b, c. There are 4!, or 24, ways to arrange these letters. But we have
repeats: we could have Aa or aA. So we have a repeat for each possibility (so divide!!!), and
so the answer should be 4!/2! = 12.

� If there were 3 a's, 4 b's, and 2c's, we would have

9!

3!4!2!
• Example4: How many di�erent letter arrangements can be formed from the word PEPPER?

� Answer: There 3 P 's 2 E's and one R. So 6!
3!2!1! = 30.

Fact. There are
n!

n1! · · ·nr!
di�erent permutations of n objects of which n1 are alike, n2 are alike, nr are alike.

• Example4: Suppose there are 4 Czech tennis players, 4 U.S. players, and 3 Russian players, in
how many ways could they be arranged?
� Answer: 11!

4!4!3! .
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Section 9.1.2 - Combinations.

• We are often interested in selecting r objects from a total of n objects.
• How many ways can we choose 3 letters out of 5? (Does order matter here? NO)If the letters are
a, b, c, d, e then there would be 5 for the �rst position, 4 for the second, and 3 for the third, for a
total of 5× 4× 3. But order doesn't matter here. So we're over counting here....
� But suppose the letters selected were a, b, c. If order doesn't matter, we will have the letters
a, b, c 3! = 6 times, because there are 3! ways of arranging a group of 3. The same is true for
any choice of three letters. So we should have

5 · 4 · 3
3!

=
5!

3!2!
= 10.

Or what we did was 5 · 4, or n(n− 1) · · · (n− r + 1) then divided by the repeats 3!.

� This is often written

(
5
3

)
, read �5 choose 3�. More generally..

Definition 71. If r ≤ n, then (
n
r

)
=

n!

(n− r)!r!
and we say �n choose r�, represents the number of possible combinations of objects taken r at a time.

• Remark: Order DOES NOT Matter here
• Recall in Permutations order did matter.
• Example1: How many ways can one choose a committee of 3 out of 10 people?

� Answer:

(
10
3

)
= 10!

3!7! = 10·9·8
3·2 = 10 · 3 · 4 = 120.

• Example2: Suppose there are 9 men and 8 women. How many ways can we choose a committee
that has 2 men and 3 women?

� Answer: We can choose 2 men in

(
9
2

)
ways and 3 women in

(
8
3

)
ways. The number of

committees is then the product

(
9
2

)
·
(

8
3

)
.

• Example3:A person has 8 friends, of whom 5 will be invited to a party. (We've all been through
this)
� (a) How many choices are there if 2 of the friends are feuding and will not attend together?

∗ Box it: [none] + [ one of them] [others]

∗
(

6
5

)
+

(
2
1

)
·
(

6
4

)
(recall that when we have OR, use +)

� (b) How many choices if 2 of the friends will only attend together?
∗ Box it: [none] + [with both]

∗
(

6
5

)
+ 1 · 1 ·

(
6
3

)
• The value of

(
n
r

)
are called binomials coe�cients because of their prominence in the binomial

theorem.

Theorem. (The Binomial Theorem)

(x+ y)
n

=

n∑
k=0

(
n
k

)
xkyn−k.

Proof. To see this, the left hand side is (x + y)(x + y) · · · (x + y). This will be the sum of 2n terms,
and each term will have n factors. How many terms have k x's and n − k y's? This is the same as asking
in a sequence of n positions, how many ways can one choose k of them in which to put x's? (Box it) The

answer is

(
n
k

)
, so the coe�cient of xkyn−k should be

(
n
k

)
. �

• Example: Expand (x+ y)
3
.
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� Solution: (x+ y)
3

= y3 + 3xy2 + 3x2y + x3.



SECTION 9.1 - COUNTING 91

Section 9.1.3 - Multinomial Coe�cients.

• Example: Suppose one has 9 people and one wants to divide them into one committee of 3, one
of 4, and a last of 2. How many di�erent ways are there?

� Solution: (Box it) There are

(
9
3

)
ways of choosing the �rst committee. Once that is done,

there are 6 people left and there are

(
6
4

)
ways of choosing the second committee. Once

that is done, the remainder must go in the third committee. So there is 1 one to choose that.
So the answer is

9!

3!6!

6!

4!2!
=

9!

3!4!2!
.

• In general: Divide n objects into one group of n1, one group of n2, . . . and a kth group of nk,
where n = n1 + · · ·+ nk, the answer is there are

n!

n1!n2! · · ·nk!
ways.

• These are known as multinomial coe�cients. We write them as(
n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · ·nk!
.

• Example: Suppose we are to assign Police o�cers their duties . Out of 10 o�cers: 6 patrols, 2 in
station, 2 in schools.
� Answer: 10!

6!2!2! .
• Example: There are 10 �ags:5 indistinguishable Blue �ags, 3 indistinguishable Red �ags, and 2
indistinguishable Yellow �ags. How may di�erent ways can we order them on a �ag pole?
� Answer: 10!

5!3!2! .
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Section 9.2 - Introduction to Probability

Section 9.2.1 - Events.

• We will de�ne a sample space, denoted S (sometimes Ω, or U ) that consists of all possible
outcomes from an experiment.

Definition 72. A sample space S is the set of all possible outcomes of a random experiment. An
element x ∈ S is called an outcome. An event E is a subset of S.

• Example1:
� Experiment: Roll two dice,

∗ Sample Space: S = would be all possible pairs made up of the numbers one through
six. List it here like this:

S = {(i, j) : i, j = 1, . . . 6}
. Using the Box Method, this Experiment as 36 outcomes.

� Example 2:
∗ Experiment: Toss a coin twice
∗ We can list the sample space as

S = {HH,HT, TH, TT}} .
� Example3:

∗ Experiment: Measuring the number of accidents of a random person before they had
turn 18.
· S = {0, 1, 2, . . . }

� Others:
∗ Let S be the possible orders in which 5 horses �nish in a horse race;
∗ Let S be the possible price of some stock at closing time today; or S = [0,∞) ;
∗ The age at which someone dies, S = [0,∞) .

• Events: An event A is a subset of S. In this case we use the notation A ⊂ S , to mean A is a
subset of S.
� A ∪B: points in S such that is in A OR B OR BOTH.
� A ∩B, points in A AND B. (you may also see AB)
� Ac is the compliment of A, the points NOT in A. (you may also see A′)
� Can extend to A1, . . . , An events.

⋃n
i=1Ai and

⋂n
i=1Ai.

�
• Example1: Roll two dice.

� Example of an Events
� E = {the two dies come up even and equal} = {(2, 2) , (4, 4) , (6, 6)}
� S8 = {the sum of the two dice is 8} = {(2, 6) , (3, 5) , (4, 4) , (5, 3) , (6, 2)} .
� E ∪ S8 = {(2, 2) , (2, 6) , (3, 5) , (4, 4) , (5, 3) , (6, 2) , (6, 6)}
� E ∩ S8 = {(4, 4)}.
� Sc

8 = all the 31 other ways that does not include {(2, 6) , (3, 5) , (4, 4) , (5, 3) , (6, 2)}.
• Example2: S = [0,∞) age someone dies.
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� Event A = person dies before they reached 30.
∗ A = [0, 30).

� Interpret Ac = [30,∞)
∗ The person dies after they turned 30.

� B = (15, 45). Do A ∪B,A ∩B and so on.
• Properties: Events also have commutative and associate and Distributive laws.
• What is A ∪Ac? = S.
• DeMorgan's Law:

� (A ∪B)
c

= Ac ∩Bc .Try to draw a picture
� (A ∩B)

c
= Ac ∪Bc.

� This works for general A1, . . . , An: (∪ni=1Ai)
c

= ∩ni=1A
c
i and (∩ni=1Ai)

c
= ∪ni=1A

c
i .

• The empty set ∅ = {} is the set that has nothing in it.
• A and B are disjoint if A ∩B = ∅.

� In Probability we may say that events A and B are �mututally exclusive� if they are disjoint.
� mutually exclusive means the same thing as disjoint
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Section 9.2.2 - Axioms of Probability.

• Let E be an event. How do we de�ned the probability of an event?
� We can attempt to de�ne a probability by the relative frequency,
� Perform an experiment (e.g. Flipping a coin)
� Perform that experiment n times and let n(E) = the number of times the event occured in n
repetitions
∗ (e.g. Flip a coin n = 1000 times, and let's say that n ({Tails}) = 551 ) Then it's
reasonanble to think P ({Tails}) ≈ 551

1000

� So maybe we can de�ne the probability of an event as P (E) = limn→∞
n(E)
n . But we don't

know if this limit exists, or if n(E) is even well de�ned!!!
� So we need a new approach.

• Probability will be a rule given by the following Axioms (Laws that we all agree on)

Definition 73. A probability P is a function P : S → R where the input is a set/event such that
Axiom 1: 0 ≤ P (E) ≤ 1 for all events E.
Axiom 2: P (S) = 1.
Axiom 3: (disjoint property) If the events E1, E2, . . . are pairwise disjoint/mutually exclusive then

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei) .

Mutually exclusive means that Ei ∩ Ej = ∅ when i 6= j.

• Remark: Note that you take a probability of a subset of S, not of points of S. However it is
common to write P (x) for P ({x}).
� Say if the experiment is tossing a xoin. Then S = {H,T}. The probability of heads should be
written as P ({H}), but it is common to see P (H).

• Example1:
� (a) Suppose we toss a coin and they are equally likely then S = {H,T} and

∗ P ({H}) = P ({T}) = 1
2 . We may write P (H) = P (T ) = 1

2 .
� (b) If biased coin is tosse then one could have a di�erent assignment of probability P (H) =

2
3 ,P (T ) = 1

3 .
• Example2:

� Rolling a fair die, the probability space consists of S = 1, 2, 3, 4, 5, 6, each point having prob-
ability 1

6 .
� We can compute the probability of rolling an even number by

P ({even}) = P ({2, 4, 6})

= P(2) + P (4) + P (6) =
1

2

where we used the rules of probability by breaking it down into a sum.

Proposition. (Properties of Probability)
(a) P (∅) = 0
(b) If A1, . . . , An are pairwise disjoint, P (∪ni=1Ai) =

∑n
i=1 P (Ai).

(c) P(Ec) = 1− P(E).
(d) If E ⊂ F, then P (E) ≤ P (F ).
(e) P (E ∪ F ) = P(E) + P (F )− P(E ∩ F ).

• Example: Union Basketball is playing Skidmore this year.
� Home game has .5 chance of winning
� Away game has .4 chance of winning.
� .3 that Union wins both games.
� What's the probability that Union loses both games?
� Answer.

∗ Let P (A1) = .5 , P (A2) = .4 and P (A1 ∩A2) = .3.
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∗ We want to �nd P (Ac
1 ∩Ac

2). Simplify as much as we can:

P (Ac
1 ∩Ac

2) = P ((A1 ∪A2)
c
) by DeMorgan's Law

= 1− P (A1 ∪A2) , by Proposition 1c

∗ Using Proposition 1e, we have

P (A1 ∪A2) = .5 + .4− .3 = .6,

Hence P (Ac
1 ∩Ac

2) = 1− .6 = .4 as needed.
∗ Another way is to draw Venn Diagram and �ll it in.
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Section 9.3 - Computing Probabilities

• In many experiments, a probability space consists of �nitely many points, all with equally likely
probabilities.
� Basic example was a tossing a coin P (H) = P (T ) = 1

2

� Fair die: P (i) = 1
6 for i = 1, . . . , 6.

• In this case from Axiom 3 we have that if each utcome in S is equally likely, then

P (E) =
number of outcomes in E

number of outcomes in S
.

Definition 74. If S is a �nite sample space of equally likely outcomes and E ⊆ S, then the probability
of E is given by

P (E) =
N(E)

N(S)
.

• Example1: What is the probability that if we roll 2 dice, the sum is 7?
� Answer: There are 36 total outcomes , of which 6 have a sum of 7:

∗ E = ”sum is 7” = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. Since they are all equally
likely, the probability is P (E) = 6

6·6 = 1
6 .

• Example 2: If 3 balls are �randomly drawn� from a bowl containing 6 white and 5 black balls,
what is the probability that one ball is white and the other two are black?
� Method 1: (regard as a ordered selection)

P (E) =
WBB +BWB +BBW

11 · 10 · 9

=
6 · 5 · 4 + 5 · 6 · 4 + 5 · 4 · 6

990
=

120 + 120 + 120

990
=

4

11
.

� Method2: (Regard as unordered set of drawn balls)

P (E) =
(1 white) (2 black)(

11
3

) =

(
6
1

)(
5
2

)
(

11
3

) =
4

11
.

• We can always choose which way to regard our experiements.
• Example 3 A committee of 5 is to selected from a group of 6 men and 9 women. What is probability
consistsd of 3 men and 2 women

� Answer: Easy men·women
all =

 6
3

 9
2


 15

5

 = 240
1001 .

• Example 4: Seven balls are randomly withdrawn from an urn that contains 12 red, 16 blue, and
18 green.
� (b) Find probability that �at least 2 red balls are withdrawn;�
� Ans: Let E be this event then P (E) = 1−P (Ec), P (at least 2 red) = 1−P (drawing 0 or 1 balls).
Now

P (drawing 0 or 1 red balls) =

(
16 + 18 = 34

7

)
(

46
7

) +

(
12
1

)(
34
6

)
(

46
7

) .

• Example 5: (Birthday Problem) In a class of 32 people, what is the probability that at least two
people have the same birthdays? (We assume each day is equally likely.)
� Solution: Let the �rst person have a birthday on some day. The probability that the second
person has a di�erent birthday will be 364

365 . The probability that the third person has a
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di�erent birthday from the �rst two people is 363
365 . So the answer is

P (at least 2 people) = 1− P (Everyone di�erent birthday)

= 1− 365

365
· 364

365
· 363

365
· · · (365− 31)

365

= 1− 1 · 364

365
· 363

365
· · · 334

365
≈ 0.752374.

� Really High!!!
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Section 9.4 - Independent Events and Conditional Probability

Definition 75. We say E and F are independent events if

P (E ∩ F ) = P (E)P (F ) .

• Example1: Suppose you �ip two coins.
� The event that you get heads on the second coin is independent of the event that you get tails
on the �rst.

� This is why: Let At be the event of getting is tails for the �rst coin and Bh is the event
of getting heads for the second coin, and we assume we have fair coins (although this is not
necessary), then

P (At ∩Bh) =
1

4
, list out all outcomes

P (At)P (Bh) =
1

2

1

2
=

1

4
.

• Example2: Experiment: Draw a card from an ordinary deck of cards
� Let A = draw ace, S= draw a spade.

∗ These are independent events since you're taking one at a time, so one doesn't e�ect the
other. To see this using the de�nition we have compute

∗ P (A)P (S) = 1
13

1
4 .

∗ White P (A ∩ S) = 1
52 since there is only 1 Ace of spades.

• Remark: Independence and mutually exclusive, are two di�erent things!

• Remark: This generalizes to events A1, . . . , An. We say events A1, . . . , An are independent if for

all subcollections i1, . . . , ir ∈ {1, . . . , n} we have that P
(⋂r

j=1Aij

)
=
∏r

j=1 P
(
Aij

)
.

Conditional Probability.

• Suppose there are
� 200 men, of which 100 are smokers,
� 100 women, of which 20 are smokers.
� Question1: What is the probability that a person chosen at random will be a smoker? 120

300
� Question2: Now, let us ask, what is the probability that a person chosen at random is a smoker
given that the person is a women? 20

100 right?
∗ Note this is

# (women smokers)

# (women)
=
P (women and a smoker)

P (woman)
.

• Thus we make the following de�nition:

Definition 76. If P (F ) > 0, we de�ne the conditional probability of E given F , by

P (E | F ) =
P (E ∩ F )

P (F )
.

Now, P (E | F ) is read �the probability of E given F .�

Proposition. Note that P (E ∩ F ) = P (E | F )P (F ).

• This is the conditional probability that E occurs given that F has already occured!
• Remark: Suppose P (E | F ) = P(E) , i.e. knowing F doesn't help predict E. Then this implies

that E and F are independent of each other. Rearranging P (E | F ) = P(E∩F )
P(F ) = P (E) we see

that P (E ∩ F ) = P(E)P(F ).
• Example1: Experiment: Roll two dice.

� (a) What is the probability the sum is 8?
∗ Solution: Note that S8 = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} so we know P (S8) = 5

36 .
� (b) What is the probability that the sum is 8 given that the �rst die shows a 3? (In other
words, �nd P (�rst dies shows a 3 | sum is 8))
∗ Solution: Let A3 = {�rst die shows three}.
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∗ Then

P (S8 | A3) = P (sum is 8 | 1st is a 3)

=
P (sum is 8 ∩ 1st is a 3)

P (1st is a 3)

=
1/36

1/6
=

1

6
.

· Here we used P (sum is 8 ∩ 1st is a 3) = P ({(3, 5)}) = 1
36 is probability that the

�rst die shows a 3 and the sum is 8
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Section 9.5- Bayes's Formula

• Sometimes it's easier to compute a probability once we know something has or has not happened.
� The formula in this sections has many applications, including applications to Machine learning
and AI.

� Machine Learning/AI: As you (or a computer) learns more information, the probability changes.
� Question: How does an arti�cial intelligence makes decisions?

∗ Answer: By computing probabilities and making decisions based o� of those probabil-
ities.

• Note that we can compute,

P (E) = P (E ∩ F ) + P (E ∩ F c)

= P (E | F )P (F ) + P (E | F c)P (F c)

= P (E | F )P (F ) + P (E | F c) (1− P (F )) .

• This formula is called: The Law of Total Probability:

P (E) = P (E | F )P (F ) + P (E | F c) (1− P (F ))

• The following problem will describe the types of problems of this section.
• Example1: Insurance company believes

� The probability that �an accident prone person� has an accident within a year is .4.
� The probability that �Non-accident prone person� has an accident with year is .2.
� 30% of the population is �accident prone�.
� Part (a): Find P (A1) where A1 =new policy holder will have an accident within a year?

∗ Let A = {Policy holder IS accident prone.}

P (A1) = P (A1 | A)P (A) + P (A1 | Ac) (1− P (A))

= .4 (.3) + .2 (1− .3)

= .26

� Part (b): Suppose new policyholder has accident with one year. What's probability that he
or she is accident prone?

P (A | A1) =
P (A ∩A1)

P (A1)

=
P (A)P (A1 | A)

.26

=
(.3) (.4)

.26
=

6

13
.

• In general:
� So in Part (a) we had to break a probability into two cases: If F1, . . . , Fn are mutually exclusive
events such that they make up everything S =

⋃n
i=1 Fi then

P (E) =

n∑
i=1

P (E | Fi)P (Fi) .

∗ This is called Law of Total Probability.
� In Part (b), we wanted to �nd a probability of a separate conditional event: then

P (Fj | E) =
P (E | Fj)P (Fj)∑n
i=1 P (E | Fi)P (Fi)

.

∗ This is known as Baye's Formula
∗ Note that the denominator of the Bayes's formula is the Law of total probability.

• We summarize these terminologies in a de�nition here:
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Definition 77. If F1, . . . , Fn are mutually exclusive (disjoint) events such that they make up everything,
S =

⋃n
i=1 Fi, then the Law of Total Probability says

P (E) =

n∑
i=1

P (E | Fi)P (Fi) .

Bayes's Formula says that, for any j,

P (Fj | E) =
P (E | Fj)P (Fj)∑n
i=1 P (E | Fi)P (Fi)

.

• When n = 2, then S = F1 ∪ F2, hence

P (F1 | E) =
P (E | F1)P (F1)

P (E | F1)P (F1) + P (E | F2)P (F2)
,

P (F2 | E) =
P (E | F2)P (F2)

P (E | F1)P (F1) + P (E | F2)P (F2)
,

• Example2: Suppose the test for HIV is
� 98% accurate in both directions
� 0.5% of the population is HIV positive.
� Question: If someone tests positive, what is the probability they actually are HIV positive?
� Solution: Let T+ = {tests positive} , T− = {tests negative}, while + = {actually HIV positive,}
− = {actually negative}.
∗ Want

P (+ | T+) =
P (+ ∩ T+)

P (T+)

=
P (T+ | +)P (+)

P (T+ | +)P (+) + P (T+ | −)P (−)

=
(.98) (.005)

(.98) (.005) + .02 (.995)

= 19.8%.

• Example3: Suppose
� 30% of the women in a class received an A on the test
� 25% of the men/or else received an A.
� 60% of the class are women.
� Question: Given that a person chosen at random received an A, what is the probability this
person is a women?
∗ Solution: Let A the event that a students receives an A. Let W =being a women,
M =not a women. Want

P (W | A) =
P (A |W )P (W )

P (A |W )P (W ) + P (A |M)P (M)
, by Bayes's

=
.3 (.6)

.3 (.6) + .25 (.4)
=
.18

.28
≈ .64.

• (General Baye's Theorem) Here's one with more than 3 possibilities:
• Example4: Suppose in Factory with Machines I,II,III producing Iphones

� Machines I,II,III produce 2%,1%, and 3% defective iphones, respectively.
� Out of total production, Machines I makes 35% of all Iphones, II-25%, III- 40%.
� If one Iphone is selected at random from the factory,
� Part (a): what is probability that one Iphone selected is defective?

P (D) = P (I)P (D | I) + P (II)P (D | II) + P (III)P (D | III)

= (.35) (.02) + (.25) (.01) + (.4) (.03)

=
215

10, 000
.
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� Part (b): What is the conditional prob that if an Iphone is defective, that it was produced by
machine III?

P (III | D) =
P (III)P (D | III)

P (D)

=
(.4) (.03)

215/10, 000
=

120

215
.

• Example5: In a Multiple Choice Test, students either knows the answer or randomly guesses the
answer to a question.
� Let m =number of choices in a question.
� Let p = the probability that the students knows the answer to a question.
� Question: What is the probability that the student actually knew the answer, given that the
student answers correctly.

� Solution:
� Let K = {Knows the answer} and C = {Answer's correctly}. Then

P (K | C) =
P (C | K)P (K)

P (C | K)P (K) + P (C | Kc)P (Kc)

=
1 · p

1 · p+ 1
m (1− p)

=
mp

1 + (m− 1)p
.
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