MTH 197 DEFINITIONS

Definition 1. A <u>universal statement</u> says that a certain property is true for all elements of a set.

Definition 2. An existential statement says some property is true for at least one object.

Definition 3. A <u>conditional statement</u> says that if something is true, then something else has to be true.

Definition 4. A universal conditional statement is both universal and conditional.

Definition 5. A <u>universal existential statement</u> is a two-part statement whose first part is universal and second part is existential.

Definition 6. An <u>existential universal statement</u> is a two-part statement whose first part is existential and second part is universal.

Definition 7. The set of integers is the set $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$.

Definition 8. The set of <u>rational numbers</u> is

$$\mathbb{Q} = \left\{ x = \frac{m}{n} \mid m, n \in \mathbb{Z} \text{ and } n \neq 0 \right\}.$$

Definition 9. An ordered pair is an object of the form (a, b), where a and b are any objects.

Definition 10. Two ordered pairs are equal, (a, b) = (c, d), provided that a = c and b = d.

Definition 11. If A and B are sets, then the <u>Cartesian product</u> of A and B, denoted by $A \times B$ is the set of ordered pairs (a,b), where $a \in A$ and $b \in B$.

Definition 12. Let A and B be sets. Then A is called a <u>subset</u> of B, written $A \subseteq B$, provided that every element of A is an element of B.

Definition 13. Let A and B be sets. A <u>relation R from A to B</u> is a subset of $A \times B$. Given an ordered pair (x, y) in R, we say "x is related to y" and write xRy.

The set A is called the <u>domain</u> of R and set B is called the <u>co-domain</u>.

Definition 14. A function F from A to B is a relation from A to B satisfying:

- (1) For all $x \in A$, there exists $y \in B$ such that $(x, y) \in F$.
- (2) For all $x \in A$ and $y, z \in B$, if $(x, y) \in F$ and $(x, z) \in F$, then y = z.

Definition 15. A <u>statement</u> (or proposition) is a sentence that is true or false but not both.

Definition 16. Let p and q be statements.

(1) $\sim p$ is read "not p" and is called the negation of p. It is the statement defined by

$$\sim p: \begin{cases} TRUE & \textit{when p is FALSE} \\ FALSE & \textit{when p is TRUE} \end{cases}$$

(2) $p \wedge q$ is read "p and q" and is called the <u>conjunction of p and q</u>. It is the statement defined by

$$p \wedge q$$
 is
$$\begin{cases} TRUE & when \ \textit{both} \ p \ \textit{and} \ q \ \textit{are} \ TRUE \\ FALSE & otherwise \ (i.e., \ \textit{at least one is} \ FALSE) \end{cases}$$

(3) $p \lor q$ is read "p or q" and is called the disjunction of p and q. It is the statement defined by

$$p \lor q$$
 is
$$\begin{cases} TRUE & when \ \textit{at least one of}\ p \ \textit{and}\ q \ \textit{is TRUE} \\ FALSE & otherwise \ \textit{(i.e., both}\ p \ \textit{and}\ q \ \textit{are FALSE}) \end{cases}$$

Definition 17. A statement form (or propositional form) is is a well-formed expression made up of statement variables (p, q, r, ...) and logical connectives $(\sim, \land, \lor, ...)$.

Definition 18. Two statement forms P and Q are <u>logically equivalent</u>, denoted $P \equiv Q$, if they have identical truth values for every possible assignment of truth values to their statement variables.

Definition 19.

- A <u>tautology</u> is a statement form that is always true, regardless of the truth values assigned to the its variables.
- A <u>contradiction</u> is one that is always false, regardless of the truth values assigned to its variables.

Definition 20. The <u>conditional</u> of p by q is "p implies q" and denoted by $p \to q$. It is the statement defined by

$$p \rightarrow q$$
 is
$$\begin{cases} FALSE & when p \text{ is } TRUE \text{ and } q \text{ is } FALSE \\ TRUE & otherwise \end{cases}$$

Definition 21. The contrapositive of $p \to q$ is $\sim q \to \sim p$.

Definition 22. The <u>converse</u> of $p \rightarrow q$ is $q \rightarrow p$.

Definition 23. The <u>biconditional</u> of p and q is written $p \leftrightarrow q$ (or p iff q, or $p \Leftrightarrow q$), read "p if and only if q," and it means $p \rightarrow q$ and $q \rightarrow p$.

Definition 24. An argument form is <u>valid</u> if when the premises are all true, then the conclusion is true, no matter what statements are substituted for the statement variables in the premises. A valid argument form is called a rule of inference.

Definition 25. The following rule of inference is called modus ponens

$$\begin{array}{c} \textit{If } p, \textit{ then } q. \\ p \\ \therefore q \end{array}$$

Definition 26. The following rule of inference is called modus tollens

$$\begin{array}{c} If \ p, \ then \ q. \\ \sim q \\ \therefore \ \sim p \end{array}$$

Definition 27. A <u>predicate</u> is a sentence that contains a finite number of variables and becomes a statement (T or F) when specific values are substituted for the variables. The <u>domain</u> of a predicate (variable) is the set of all values that may be substituted in place of the variable.

Definition 28. If P(x) is a predicate with domain D, then the <u>truth set of P(x)</u> is the set of all elements of D that make P(x) true. It is denoted by

$$\{x \in D | P(x)\}.$$

Definition 29. (takes over Definition 1) A <u>universal statement</u> is one of the form

$$\forall x \in D, Q(x)$$

where Q(x) is a predicate with domain D. It is defined to be true if Q(x) is true for every x in D, and false if Q(x) is false for at least one x in D.

Definition 30. (takes over Definition 2) An <u>existential statement</u> is one of the form

$$\exists x \in D \text{ such that } Q(x)$$

where Q(x) is a predicate with domain D. It is defined to be true if Q(x) is true for at least one x in D, and false if Q(x) is false for every x in D.

Definition 31. The <u>contrapositive</u> of the statement $\forall x \in D, P(x) \to Q(x)$ is $\forall x \in D, \sim Q(x) \to \sim P(x)$ and the <u>converse</u> is $\forall x \in D, Q(x) \to P(x)$

Definition 32. An integer n is <u>even</u> provided that n = 2k, for some $k \in \mathbb{Z}$.

Definition 33. An integer n is <u>odd</u> provided that n = 2k + 1, for some $k \in \mathbb{Z}$.

Definition 34. An integer n is <u>prime</u> provided that n > 1 and for all positive integers r and s, if n = rs, then r = n or s = n.

An integer n is <u>composite</u> provided that n > 1 and n = rs, for some integers r, s with 1 < r < n and 1 < s < n.

Definition 35. A real number r is <u>rational</u> provided that $r = \frac{a}{b}$, for some $a, b \in \mathbb{Z}$ s.t. $b \neq 0$. The set of rational numbers is defined by

$$\mathbb{Q} = \left\{ x \in \mathbb{R} \mid x = \frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0 \right\}.$$

Definition 36. Let $n, d \in \mathbb{Z}$. Then n is <u>divisible by</u> d provided that n = dk for some $k \in \mathbb{Z}$ and $d \neq 0$.

Definition 37. Given a non-negative integer n and a positive integer d,

- $n \ div \ d = the \ integer \ quotient \ of \ n \ divided \ by \ d$,
- $n \mod d = the integer remainder of n divided by d.$

Definition 38. Given a real number x, the <u>floor</u> of x, denoted $\lfloor x \rfloor$, is the unique integer n such that $n \leq x < n+1$.

Definition 39. Given a real number x, the <u>ceiling</u> of x, denoted $\lceil x \rceil$, is the unique integer n such that $n-1 < x \le n$.

Definition 40. Given $n \in \mathbb{Z}^+$, let $n! = n(n-1) \cdots 3 \cdot 2 \cdot 1$. This is read "n factorial." Also, 0! = 1.

This is a Theorem, not a definition. You are asked to learn the statement of this Theorem.

The Principle of Mathematical Induction

Let P(n) be a property that is defined for integers n and let a be a fixed integer. Suppose the following two properties hold:

- (1) P(a) is true
- (2) $\forall k \geq a$, if P(k) is true, then P(k+1) is true.

Then P(n) is true for all $n \geq a$.

Definition 41. (takes over Definition 12) Let A and B be sets. Then A is a <u>subset</u> of B, denoted $A \subseteq B$, provided that

$$\forall x (x \in A \to x \in B)$$

Definition 42. If A and B are sets, then $\underline{A} = \underline{B}$ provided that $A \subseteq B$ and $B \subseteq A$.

Definition 43. A is a proper subset of B provided that $A \subseteq B$ and $A \neq B$.

Definition 44. Let A and B are sets. Then:

- (1) A <u>intersect</u> B is the set $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- (2) A <u>union</u> B is the set $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- (3) A <u>minus</u> B is the set $A B = \{x \mid x \in A \text{ and } x \notin B\}$

Definition 45. The empty set, denoted \emptyset , is the set with no elements.

Definition 46. Let A be a set. The <u>power set</u> of A, denoted by $\mathcal{P}(A)$, is the set of all subsets of A, i.e.,

$$\mathcal{P}(A) = \{ X \mid X \subseteq A \} .$$

Note: this means, $X \in \mathcal{P}(A) \leftrightarrow X \subseteq A$

Definition 47. Given sets A_1, A_2, \ldots and a nonnegative integer n, define:

(1)
$$\bigcap_{i=1}^{n} A_i = A_1 \cap \ldots \cap A_n = \{x \mid x \in A_i, \text{ for all } i = 1, 2, \ldots, n\}$$

(2)
$$\bigcap_{i=1}^{\infty} A_i = \{ x \mid x \in A_i, \text{ for all } i \ge 1 \}$$

(3)
$$\bigcup_{i=1}^{n} A_i = A_1 \cup \ldots \cup A_n = \{x \mid x \in A_i, \text{ for at least one } i = 1, 2, \ldots, n\}$$

(4)
$$\bigcup_{i=1}^{\infty} A_i = \{x \mid x \in A_i, \text{ for at least one } i \ge 1\}$$

Definition 48. Suppose f and g are functions from X to Y. Then f equals g, written f = g, provided that f(x) = g(x), for all $x \in X$.

Definition 49. Given a set X, the <u>identity function</u> on X is the function $I_X \colon X \to X$ defined by $I_X(x) = x$.

Definition 50. An (n-place) Boolean function is a function $f: \{0,1\}^n \to \{0,1\}$.

Definition 51. Let $f: X \to Y$. Then f is <u>one-to-one</u> provided that

$$\forall x_1, x_2 \in X, f(x_1) = f(x_2) \to x_1 = x_2$$

or equivalently,

$$\forall x_1, x_2 \in X, x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$

Definition 52. Let $f: X \to Y$. Then f is <u>onto</u> provided that

$$\forall y \in Y, \ \exists x \in X \text{ s.t. } y = f(x)$$

Definition 53. Let $f: X \to Y$. Then f is a <u>bijection</u> or <u>one-to-one correspondence</u> provided that f is one-to-one and onto.

Definition 54. Let R be a relation from A to B. T he <u>inverse relation</u> R^{-1} from B to A is defined by $R^{-1} = \{(y, x) \in B \times A \mid (x, y) \in R\}$.

Definition 55. A <u>relation on a set A</u> is a relation from A to A.

Definition 56. Suppose R is a relation on a set A. Then

- (r) R is reflexive iff $\forall x \in A, x R x$.
- (s) R is symmetric iff $\forall x, y \in A$, $x R y \rightarrow y R x$.
- (t) R is <u>transitive</u> iff $\forall x, y, z \in A, x R y$ and $y R z \rightarrow x R z$.

Definition 57. A binary relation R on a set A is an <u>equivalence relation</u> provided that it is reflexive, symmetric, and transitive.

Definition 58. Let R be an equivalence relation on A and $a \in A$. Then the <u>equivalence class</u> of a is denoted by [a] and defined by $[a] = \{x \in A \mid x R a\}$.

Definition 59. Two sets A and B are called disjoint if $A \cap B = \emptyset$.

Definition 60. A finite or infinite collection \mathcal{P} of nonempty subsets A_i of a set A is a <u>partition</u> of A provided that

- (1) $\forall x \in A$, there is some A_i in \mathcal{P} such that $x \in A_i$.
- (2) For all A_i and A_j in \mathbb{P} , if $A_i \neq A_j$, then A_i and A_j are disjoint.

Definition 61. Let \mathcal{P} be a partition of A. The <u>relation $R_{\mathcal{P}}$ on A induced by \mathcal{P} </u> is defined by $(x,y) \in R_{\mathcal{P}}$ iff $\exists A_i \in \mathcal{P}$ s.t. x and y are both in A_i .

Definition 62. Let R be a relation on a set X. Then R is <u>antisymmetric</u> provided that $\forall x, y \in X$, if x R y and y R x, then x = y.

Definition 63. Let R be a relation on X. Then R is a <u>partial order relation</u> provided that R is reflexive, antisymmetric, and transitive.

Definition 64. A set X together with the partial order R on X is called a <u>partially ordered set</u> or poset.

Definition 65. A <u>total order relation</u> on X is a partial order R such that $\forall x, y \in X$, either xRy or yRx.

Definition 66. Let (X, \leq) be a poset. A subset $C \subseteq X$ is called a <u>chain</u> provided that $\forall x, y \in C$, $x \leq y$ or $y \leq x$. The length of C is one less than the number of elements in C.

Definition 67. Let (X, \leq) be a poset. Then $a \in X$ is called a:

- (1) <u>maximal element</u> iff $x \leq a$ or x and a are not comparable, for all $x \in X$
- (2) greatest element iff $x \leq a$, for all $x \in X$
- (3) minimal element iff $a \le x$ or x and a are not comparable, for all $x \in X$
- (4) least element iff a < x, for all $x \in X$

Definition 68. Suppose \leq and \leq' are partial orders on a set X. Then \leq' is a <u>refinement</u> of \leq provided that $x \leq y \rightarrow x \leq' y$, for all $x, y \in X$.

Definition 69. (Basic Counting Principle) Suppose 2 experiments are to be performed.

If one experiement can result in m possibilities

Second experiment can result in n possibilities

Then together there are mn possibilities

Definition 70. With n objects, a **permutation** is an arrangement/ordering of n objects. There are

$$n(n-1)\cdots 3\cdot 2\cdot 1=n!$$

different permutations of the n objects.

Definition 71. *If* $r \leq n$, then

$$\left(\begin{array}{c} n \\ r \end{array}\right) = \frac{n!}{(n-r)!r!}$$

and we say "n choose r", represents the number of possible **combinations** of objects taken r at a time.

Definition 72. A sample space S is the set of all possible outcomes of a random experiment. An element $x \in S$ is called an **outcome**. An **event** E is a subset of S.

Definition 73. A probability \mathbb{P} is a function $\mathbb{P}: S \to \mathbb{R}$ where the input is a set/event such that **Axiom 1:** $0 \leq \mathbb{P}(E) \leq 1$ for all events E.

Axiom 2: $\mathbb{P}(S) = 1$.

Axiom 3: (disjoint property) If the events E_1, E_2, \ldots are pairwise disjoint/mutually exclusive then

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mathbb{P}\left(E_i\right).$$

Mutually exclusive means that $E_i \cap E_j = \emptyset$ when $i \neq j$.

Definition 74. If S is a finite sample space of equally likely outcomes and $E \subseteq S$, then the **probability** of E is given by

$$\mathbb{P}(E) = \frac{N(E)}{N(S)}.$$

Definition 75. We say E and F are independent events if

$$\mathbb{P}\left(E\cap F\right) = \mathbb{P}\left(E\right)\mathbb{P}\left(F\right).$$

Definition 76. If $\mathbb{P}(F) > 0$, we define the **conditional probability of** E **given** F, by

$$\mathbb{P}\left(E\mid F\right) = \frac{\mathbb{P}\left(E\cap F\right)}{\mathbb{P}\left(F\right)}.$$

Now, $\mathbb{P}(E \mid F)$ is read "the probability of E given F."

Definition 77. If F_1, \ldots, F_n are mutually exclusive (disjoint) events such that they make up everything, $S = \bigcup_{i=1}^n F_i$, then the **Law of Total Probability** says

$$\mathbb{P}(E) = \sum_{i=1}^{n} \mathbb{P}(E \mid F_i) \mathbb{P}(F_i).$$

Bayes's Formula says that, for any j,

$$\mathbb{P}(F_j \mid E) = \frac{\mathbb{P}(E \mid F_j) \, \mathbb{P}(F_j)}{\sum_{i=1}^n \mathbb{P}(E \mid F_i) \, \mathbb{P}(F_i)}.$$