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Chapter 1

Introduction

1.1 Modeling via differential equations, some so-
lutions and definitions

We start by asking what a differential equation is. In your calculus career, you
have seen quite a number of them already, just in disguise. For example, you
might have been asked “what function is the antiderivative of x2?” In other
words, find a function f(x) so that

d

dx
f(x) = x2.

In your past life, this sort of equation was solved by using integration, which
will also be true in this class. Indeed, the reason that you spent so much time
on techniques of integration was to give you the basic toolset needed to solve
differential equations.

1.1.1 What are differential equations?
So let us consider the question “What is a differential equation and what are
its solutions?” We can compare and contrast what we already know in algebra
with what we know in differential equations.

• Algebraic equations: are equations formed from numerical variables.

◦ Examples: x2 − 1 = 0 or x2 + 1 = 0
◦ What are solutions? Are there even solutions? If so, how many?

� Solutions to algebraic equations are numbers.
� We can always check if a number is a solution: note that x = 1

is a solution of x2 − 1 = 0 since 12 − 1 = 0
� But notice that there is another solution, x = −1 as well. So

solutions are not unique in this case.

• Differential equations: are equations involving variables representing
functions and their derivatives.

◦ Examples: dy
dt = 2y or y′ = 4y + et.

◦ What are solutions to differential equations?

1



CHAPTER 1. INTRODUCTION 2

� They are functions! This is tricky because functions are more
complicated than numbers. Functions have domains, ranges,
etc.

� Solutions to differential equations are not! equations.
◦ Is there even a solution? (Existence) If so, how many? (Uniqueness).
These are the two main questions that one asks in differential equa-
tions.

◦ Check: We can always check that a function is a solution to a
differential equation.

◦ Example: Show that y(t) = 9e2t is a solution to the differential
equation y′ = 2y.
Solution: Plug y(t) into the left hand side (LHS) of the equation,
then plug into the right hand side (RHS) and check that they are
equal.

LHS
?= RHS

d

dt
(9e2t) ?= 2 · (9e2t)

18e2t X= 18e2t

What about y = 9e2t + 1? Is this a solution? Take a pen and paper
and try this yourself by hand. You will see that y is NOT actually a
solution to the example equation.

◦ Check that y(t) = 1 + t is a solution to the differential equation

dy

dt
= y2 − 1
t2 + 2t .

You should find that the answer is yes.

1.1.2 Studying first order equations
What are differential equations used for? The answer is pretty much everything
in modern science. Derivatives measure rate of change. Since modern science,
engineering, and applied mathematics study changing quantities in the physical
world, differential equations are the language of science. Differential equations
are models of the physical world that are used to make predictions.

• Meteorologists try to model the weather constantly (using very compli-
cated differential equations), and they get it wrong all the time. Modeling
is hard.

• Models frequently follow from qualitative observations about the world. A
classical example is known as Newton’s Law of Cooling, which states
that “at a given time, the rate at which an object in an environment of
constant ambient temperature is cooling is proportional to the difference
between the object’s temperature and the ambient temperature.”
Mathematically, we can translate this into a differential equation. Let
T be the temperature of the object at time t, and A be the ambient
temperature. Then

dT

dt
= C(T −A),

where C is the constant of proportionality.
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• The solution to the equation

dP

dt
= k · P

models the population of a species at time t, assuming unrestricted growth.
In words, the equation says “the rate at which a population grows at a
given time is proportional to the current population at that time”.

• A related equation called the logistic growth model describes popu-
lation growth in an environment with restricted resources, and is given
by

dP

dt
= C · P (M − P ),

where the constant C is the constant of proportionality, and the constant
M is called the carrying capacity of the model. How does this equation
behave for as time progresses?

Definition 1.1.1 The standard form of a first order differential equation
(that is, an equation with only first derivatives) is

dy

dt
= f(t, y),

where y = f(t) is a function and t is the independent variable.
An initial value problem (IVP) is a differential equation with an intial

condition:
dy

dt
= f(t, y), and y(t0) = y0.

♦

• Consider the IVP
dy

dt
= 2y, y(0) = 9.

Is y(t) = 9e2t a solution to the IVP?
Yes. We’ve already checked that y(t) = 9e2t is a solution to the ODE,
and furthermore we have that y(0) = 9e0 = 9.

Definition 1.1.2 A particular solution to an ODE is simply one of the
functions y = y(t) that satisfy a differential equation y′ = f(t, y) for all t.

A general solution to an ODE is a parametrized collection of solutions
that contains the solutions to every possible IVP built from that ODE. ♦

Example 1.1.3 Finding a general solution. To find the general solution
to dy

dt = 2y, we can separate the y’s and the t’s to opposite sides and then
integrate.

dy

dt
= 2y ⇐⇒ dy

y
= 2dt

⇐⇒
∫
dy

y
=
∫

2dt

⇐⇒ ln |y| = 2t+ C

⇐⇒ |y| = e2t+C = Ke2t, where K = eC

⇐⇒ y = ce2t, where c = ±K.

Thus, the general solution must be of the form

y = ce2t.
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There will be a whole section on this technique (unsurprisingly named “separation
of variables”). �

Definition 1.1.4 An equilibrium solution to an ODE is a constant solu-
tiony(t) = y0. That is,

dy

dt
= 0 for all t.

♦

Example 1.1.5 Finding an equilibrium solution. Find the equilibrium
solution of the following equation. Suppose that

y′ = y3 + y2 − 6y.

For what values of y(0) = y0 is y(t) equilibrium, increasing, or decreasing?
Factor to get

y′ = y(y − 2)(y + 3),

and create a sign chart (like in calculus!). The equilibrium solutions are
y = −3, y = 0, and y = 2. We can observe that solutions decrease for
y0 ∈ (−∞,−3) ∪ (0, 2) and that they increase for (−3, 0) ∪ (2,∞). �

1.1.3 Solutions to some differential Equations
• A Linear Differential Equation: Pick your favorite real numbers
a, b, y0 and consider the IVP

dy

dt
= ay − b, y(0) = y0.

The general solution to this differential equation is

y(t) = b

a
+
(
y0 −

b

a

)
eat

We will see how one can get this very soon!

• Example: Find the solution to

dy

dt
= −2y + 8, y(0) = 5.

Solution: The mysterious formula above says that

a = −2, b = −8

and
y0 = 9

so the solution is

y(t) = 4 +
(

5− 8
2

)
e−2t = 4 + e−2t.

1.1.4 Studying general differential equations
• In this class, we will only study ordinary differential equations (ODE):

contains only ordinary derivatives:
Example: d2y

dt2 + dy
dt = −1
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• There is a whole separate course where one can study partial differential
equations(PDE):

Ex: ∂2u(x,y)
∂x2 + ∂2u(x,y)

∂y2 = −1

• System of equations:

dx

dt
= x− xy

dv

dt
= y − 3x

• The order of the equation speaks to the highest order derivative in the
equation

y′ + 3y = 0 1st order
y′′ + 3y′ = 2t 2nd order
d5y

dt
+ dy

dt
= y 5th order

uxx + uyy = 0 2nd order

Definition 1.1.6 An ODE is called linear if it is linear in y, i.e. it is of the
form

an(t)y(n) + an−1(t)y(n−1) + · · ·+ a0(t)y = g(t)

♦

• Linear :

◦ y′ + 4y = 0,
◦ t2y′′ + cos ty = 1,
◦ and y′

t − y = t2.

• Nonlinear :

◦
(
du
dt

)2 + y = 1,
◦ yy′ + y = 1,
◦ y′′ + 3eyy,
◦ and 1

y − y
′ = 1.

Nonlinear ODEs are some of the hardest equations to solve! In fact, most
of the time, one won’t be able to find an exact formula for the solution of a
differential equation. Much of the study of differential equations comes down
to qualitative analysis and approximate solutions. But one nice thing about
studying ODEs is that we can always check if a function is really a solution
to a differential equation or not. Futhermore, the equations can frequently be
understood without an explicit solution at all.

1.2 Slope fields (direction fields)
In this section, we will learn about a qualitative technique - that is, we will
learn to interpret the behavior of the solutions of differential equations using
the equations themselves.
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1.2.1 Slope fields
Generally, there are three broad approaches to differential equations:

1. Analytically: This means that one actually finds a formula for the
solutions of a differential equations, typically using integral techniques.

2. Numerically: But often, it is very difficult to find an actual formula
for the solution, even though there may be a solution. Thus one can use
computers and algorithms to numerically approximate the solution. Even
in the numerical case it is important to understand limitations of the
calculated solutions.

3. Qualitatively: Maybe we don’t need the full solution of a differential
equation. We can use our knowledge of ODEs to have an idea of how the
solution behaves. For example, maybe the only thing you want to answer
about the solution is what the following asymptotic limit is:

lim
t→∞

y(t).

When we have an equation of the form dy
dt = f(t, y). We can always make a

slope field for the ODE. A slope field contains minitangets at several points
of a graph that describe the behavior of solutions through those points.

Example 1.2.1 Slope field for y′ = t− y.
t y f(t, y) = t− y
-1 1 2
-1 0 1
-1 -1 0
0 1 1
0 0 0
0 -1 -1
1 1 0
1 0 -1
1 -1 -2

�
We can use mathematical software (the open source SageMath platform

here) to generate slopefields that are accurate and easy to read.

¡1¢1£1¤1¥1¦1§1¨1©1ª1«1¬1-
1®1¯1°1±1²1³1´1µ1¶1·1̧1¹1º1»1¼1½11¿1À1Á1Â1Ã1Ä1Å1Æ1Ç1È1É1Ê1Ë1Ì1Í1Î1Ï1Ð1Ñ1Ò1Ó1Ô1Õ1Ö1×1Ø1Ù1Ú1Û1Ü1Ý1Þ1ß1à1á1â1ã1ä1å1æ1ç1è1é1ê1ë1ì1í1î1ï1ð1ñ1ò1ó1ô1õ1ö1÷1ø1ù1ú1û1ü1ý1þ1ÿ1
t, y = var('t,y')
plot_slope_field(y - t, (t, -3, 3), (y, -3, 3))

• Qualitatively, given a starting point, we can predict the long-term behavior
of a particular solution. One feature to notice in the picture above is that
solutions seem to have very different asymptotic behavior depending on
whether the initial point is above or below the line y = t+ 1.

• Slope fields like the one above allow us to sketch what solution curves
might look like, as curves through a given point must have matching
slope there. (Indeed, before computers, working by hand and sketching
solutions was a time-consuming and detail-oriented art.)
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• You can find a link to Dfield, an applet that generates slope/direction
fields, at this link.

• Slope fields can also be visualized in Desmos in various ways. A simple
example can be found here.

1.2.2 Two important cases
There are two forms of first order equations that are relatively open to qualitative
analysis, the cases where the function f(t, y) on the RHS is a function of just
one variable.

Type 1: dy
dt = f(t).

• The slopes are always the same in each vertical line. Draw a picture.

• These are the simple ODEs corresponding to finding antiderivatives in
Calculus II.

• For example, the slope field of dydt = 2t (with 2 possible solutions drawn
on it) is computed

¡1¢1£1¤1¥1¦1§1¨1©1ª1«1¬1-
1®1¯1°1±1²1³1´1µ1¶1·1̧1¹1º1»1¼1½11¿1À1Á1Â1Ã1Ä1Å1Æ1Ç1È1É1Ê1Ë1Ì1Í1Î1Ï1Ð1Ñ1Ò1Ó1Ô1Õ1Ö1×1Ø1Ù1Ú1Û1Ü1Ý1Þ1ß1à1á1â1ã1ä1å1æ1ç1è1é1ê1ë1ì1í1î1ï1ð1ñ1ò1ó1ô1õ1ö1÷1ø1ù1ú1û1ü1ý1þ1ÿ1
g = Graphics ()
t, y = var('t,␣y')
g += plot_slope_field (2*t, (t,-5,5) ,(y,-5,5))
g += plot(t^2 - 4, (t, -5,5), ymin = -5, ymax = 5)
g += plot(t^2 - 5, (t, -5,5), ymin = -5, ymax = 5)
g.show()

• Integrating both sides gives the general solution as the family of parabolas
y = t2 + C, which you should be able to see in the slope field.

Type 2: dy
dt = f(y)

• These are called autonomous equations.

• The slopes are always the same in each horizontal line.

• Autonomous equations have equilibrium solutions whenever f(y) = 0.

• For example, to do a qualitative analysis of the autonomous equation

dy

dt
= 4y(1− y)

first identify the equilibria (in this case y = 0 and y = 1).
Now check slopes between the equilibrium solutions -

y′(2) = (−)
y′(.5) = (+)
y′(−1) = (−)

Before we visualize, we can already see what the long term behavior
should be. The equilibrium solution y = 1 attracts solutions (this is
called a stable equilibrium) while the solution y = 0 pushes solutions
away (which is called an unstable equilibrium).

https://www.cs.unm.edu/~joel/dfield/
https://www.desmos.com/calculator/v6ft5ichl3
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¡1¢1£1¤1¥1¦1§1¨1©1ª1«1¬1-
1®1¯1°1±1²1³1´1µ1¶1·1̧1¹1º1»1¼1½11¿1À1Á1Â1Ã1Ä1Å1Æ1Ç1È1É1Ê1Ë1Ì1Í1Î1Ï1Ð1Ñ1Ò1Ó1Ô1Õ1Ö1×1Ø1Ù1Ú1Û1Ü1Ý1Þ1ß1à1á1â1ã1ä1å1æ1ç1è1é1ê1ë1ì1í1î1ï1ð1ñ1ò1ó1ô1õ1ö1÷1ø1ù1ú1û1ü1ý1þ1ÿ1
t, y = var('t,y')
plot_slope_field (4*y*(1-y), (t,-2,2) ,(y,-2,2))

When trying to match slope fields you should always follow these steps:

1. Factor!

2. Find the equilibrium solutions.

3. Test points between equilibrium solutions.



Chapter 2

First Order Differential Equa-
tions

2.1 Linear equations and integrating factors
Recall that a first order differential equation is an equation involving functions
and their first derivatives. The general form of a first order equation is

dy

dt
= f(t, y)

where t is the independent variable. This chapter will concern many standard
and useful forms of first order equations along with methods of solution. A
linear first order differential equation has the form

dy

dt
= a(t)y + b(t).

This equation can be rewritten into standard form as

dy

dt
+ p(t)y = g(t)

where p(t) = −a(t) and g(t) = b(t).

Example 2.1.1 The first order linear differential equation

y′ = t2y + cos t

can be rewritten in standard form as

y′ − t2y = cos t.

�

2.1.1 Integrating factors method
Consider a first order linear differential equation in standard form

y′ + p(t)y = g(t). (2.1.1)

Then notice that dy
dt + p(t)y looks awfully like a product rule of some sort.

(Remember that the product rule gives a method for computing a derivative of

9
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a product of functions by (fg)′ = f ′g+ fg′.) In the product rule, there are two
functions. In our case, clearly one function will be y(t); what will the second
function be? We need to adjust the equation so that we can undo a product
rule amd simplify the equation. We denote by µ(t) the integrating factor
that makes the LHS into a product rule. We can figure out what µ needs to be
by computation. Let’s multiply both sides by µ(t) and get

µ(t)dy
dt

+ µ(t)p(t)y = µ(t)g(t),

and if we want the LHS to be a product rule then

LHS = d [µ(t)y(t)]
dt

= µ(t)dy
dt

+ µ(t)p(t)y.

Let’s just assume this works for now. (We will find out precisely what µ(t)
needs to be in the following section). Setting the LHS to RHS we get

d [µ(t)y(t)]
dt

= µ(t)g(t).

Then integrating we get∫
d [µ(t)y(t)]

dt
dt =

∫
µ(t)g(t)dt.

But we know integrating cancels differentiation, and thus the LHS equals
µ(t)y(t) so that

µ(t)y(t) =
∫
µ(t)g(t)dt+ C.

Since y is the desired solution, we divide by µ(t) we get that

y(t) = 1
µ(t)

[∫
µ(t)g(t)dt+ C

]
,

which is the general solution to the ODE in (2.1.1).

2.1.2 Finding the integrating factor
So recall that for the product rule to work we have

d [µ(t)y(t)]
dt

= µ(t)dy
dt

+ µ(t)p(t)y

but then this only happens if the derivative of µ(t) is µ(t)g(t) (by product
rule!!!!). Thus,

d [µ(t)]
dt

= µ(t)p(t).

Rewrite this as
dµ

dt
= µp

which is a separable equation (discussed at length in the next section). Thus,
we can integrate both sides and get∫

dµ

µ
=
∫
p(t)dt ⇐⇒ ln |µ| =

∫
p(t)dt

⇐⇒ µ = e
∫
p(t)dt.

We then have a formula for the integrating factor µ:
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An integrating factor µ for a first order linear ODE (as in (2.1.1)) is
given by

µ(t) = e
∫
p(t) dt.

2.1.3 Examples
Example 2.1.2 (without formula). Find general solution of

dy

dt
= 3
t
y + t5.

• Step 1: Rewrite as
dy

dt
− 3
t
y = t5

so that p(t) = − 3
t and g(t) = t5.

• Step 2: Find an integrating factor:

µ(t) = e
∫
− 3

t dt = e−3 ln t = t−3 = 1
t3
.

Note we only need an integrating factor, not a general integrating factor.
So we never need to have a +C in this step! In the next step we will note
that we also don’t need the absolute value inside the natural log (why
not?).

• Step 3: Multiply BOTH SIDES of the equation by µ(t) and get

1
t3
dy

dt
− 3
t4
y = t2

and notice that

1
t3
dy

dt
− 3
t4
y = t2

⇓
d

dt

[
1
t3
y

]
= t2

• Step 4: Integrate and solve for y(t) (don’t forget the constant C in this
step, which is very important!)∫

d
[ 1
t3 y
]

dt
=
∫
t2dt+ C ⇐⇒ 1

t3
y = t3

3 + C

⇐⇒ y(t) = t6

3 + Ct3.

�

Example 2.1.3 (using formula). Solve the IVP:

dy

dt
= 3
t
y + t5

with y(1) = 4
3 . In this example we’ll skip the previous steps and go straight to
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using the formula.
• Step 1: Rewrite as

dy

dt
− 3
t
y = t5

so that p(t) = − 3
t and g(t) = t5.

• Step 2: Find an integrating factor:

µ(t) = e
∫
− 3

t dt = e−3 ln t = t−3 = 1
t3
.

• Step 3: I can just plug in the formula and get

y(t) = 1
µ(t)

[∫
µ(t)g(t)dt.+ C

]
= t3

[∫ 1
t3
t5dt+ C

]
= t3

[
t3

3 + C

]
= 1

3 t
6 + Ct3.

• Step 4: Since y(1) = 4
3 then

4
3 = 1

3 + C

so C = 1 so that
y(t) = 1

3 t
6 + t3.

�

Example 2.1.4 (using formula). Find the general solution for
dy

dt
= y + 9 cos t2.

• Step 1: Rewrite as
dy

dt
− y = 9 cos t2

so that p(t) = −1 and g(t) = 9 cos t2.

• Step 2: Find an integrating factor:

µ(t) = e
∫
−1dt = e−t.

Note we only need an integrating factor, not a general integrating factor.
So we never need to have a +C in this step!

• Step 3: I can go through the process again, or I can just plug in the
formula and get

y(t) = 1
µ(t)

[∫
µ(t)g(t)dt.+ C

]
= 1

e−t

[∫
e−t9 cos t2dt+ C

]
= et

[∫
e−t9 cos t2dt+ C

]
Can’t integrate, so we leave the answer in this form.
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�

Example 2.1.5 (using formula). Find general solution of

t3y′ + 4t2y = e−t.

• Step 1: Rewrite as
y′ + 4

t
y = e−t

t3

so that p(t) = 4
t and g(t) = e−t

t3 .

• Step 2: Find an integrating factor:

µ(t) = e
∫

4
t dt = e4 ln|t| = t4.

Note we only need an integrating factor, not a general integrating factor.
So we never need to have a +C in this step!

• Step 3: I can go through the process again, or I can just plug in the
formula and get

y(t) = 1
µ(t)

[∫
µ(t)g(t)dt.+ C

]
= 1

t4

[∫
t4
e−t

t3
dt+ C

]
= 1

t4

[∫
te−tdt+ C

]
= 1

t4
[
−te−t − e−t + C

]
= − 1

t3
e−t − 1

t4
e−t + C

t4
.

where we used integration by parts. �

2.2 Separable equations
One of the easiest methods to solve a first order ODE is called separation
of variables (presuming that one can integrate the result!). In the previous
section, we focused on linear equations, which cover a good deal of first order
ODEs. But we want to be able to solve at least some nonlinear equations if
they fall into easily computable forms.

The technique we’ll use in this section will only work if the first order ODE
is separable. We say a first order ODE is separable if we can write it in the
following form:

dy

dt
= g(t)h(y). (2.2.1)

If we can write it this way, then separate the variables to get (put all the y’s
on one side and all t’s on the other side)

1
h(y)dy = g(t)dt,

and then integrate both side with respect to their respective variable. This is
legal by a u-substitution argument. (This is informal algebra!)
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Note: Sometimes you’ll see a separable equation written in the following
differential form:

M(x)dy +N(y)dy = 0.
Example 2.2.1 (Not separable). Notice that dy

dt = y + t is not separable.
But we can solve this using the methods of the previous section. �

Example 2.2.2 Find the general solution of

dy

dt
= t

y2 .

Separate variables in the equation, integrate and then solve for y:

dy

dt
= t

y2 ⇐⇒ y2dy = t dt

⇐⇒
∫
y2dy =

∫
t dt

⇐⇒ y3

3 = t2

2 + c1

⇐⇒ y = 3

√
3t2
2 + 3c1.

We can then rename C = 3c1 and get the general solution

y(t) = 3

√
3t2
2 + C.

If you are able to solve for y exactly, then this is called an explicit solution,
because we can solve exactly with a formula. �

Example 2.2.3 (missing solution). Find the general solution for

dy

dt
= y2.

• First let’s find the equilibrium solutions: y(t) = 0 is the only one.

• Then use the general separation of variables procedure

dy

dt
= y2 ⇐⇒ 1

y2 dy = dt

⇐⇒
∫ 1
y2 dy =

∫
dt

⇐⇒ −1
y

= t+ C.

• But notice that
y = − 1

t+ C

does NOT solve the IVP with y(0) = 0. Thus we have to include the
equilibrium solution y(t) = 0 to get the complete general solution. In this
case we say the general solution is:

yg(t) =
{

0
− 1
t+C
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Moral of the story: Always find the equilibrium solutions first in case there
are any missing solutions from separating variables!
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t, y = var('t,y')
g = Graphics ()
g += plot_slope_field(y^2, (t, -5,5) ,(y,-5,5))
g += plot (-1/(t + 4), (t, -5,5), ymin = -5, ymax = 5)
g += plot(0, (t, -5,5), ymin=-5, ymax =5)
g.show()
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Example 2.2.4 (Clever quadratic formula trick). Solve the IVP:

dy

dx
= 2x+ 1

y + 1 y(0) = 1

• Note there are no equilibrium solutions

• Use the general separation of variables procedure

dy

dt
= 2x+ 1

y + 1 ⇐⇒
∫

(y + 1) dy =
∫

(2x+ 1) dx

⇐⇒ y2

2 + y = x2 + x+ C

⇐⇒ y2

2 + y − x2 − x+ c = 0

⇐⇒ y2 + 2y − 2x2 − 2x+ C = 0

• Then we can use the quadratic formula on

ay2 + by + c = 0

where

a = 1
b = 2
c = −2x2 − 2x+ C

hence an explicit solution is given by

y = −b±
√
b2 − 4ac

2a

= −2±
√

4− 4 (−2x2 − 2x+ C)
2

= −1±
√

1 + 2x2 + 2x+ C

= −1±
√

2x2 + 2x+ C.

Thus the general solution is

yg(x) = −1±
√

2x2 + 2x+ C.

• Now to solve the IVP use the initial condition: y(0) = 1

1 = y(0) = −1±
√
C
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so that
2 = ±

√
c

since the LHS is positive we choose the positive sign in the ± so that

2 =
√
c

hence
c = 4

so that we get the particular solution

yp(x) = −1 +
√

2x2 + 2x+ 4.
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x, y = var('x,y')
g = Graphics ()
g += plot_slope_field ((2*x+1)/(y+1), (x, -5,5) ,(y,-5,5))
g += plot(-1 + sqrt (2*x^2 + 2*x + 4), (x, -5,5), ymin = -5,

ymax = 5)
g += points ([(0 ,1)], size = 50)
g.show()
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Example 2.2.5 Implicit solutions. Find the general solution for

dy

dt
= y

1 + y2 .

In this example, we would get

ln |y|+ y2

2 = t+ C

and leave it that way as there is no nice way to solve this. But any function
y(t) that satisfies the equation above is a solution to our ODE. When we write
solutions this way, we call this an implicit solution, as the equation implicitly
defines y as a function of t. �

Example 2.2.6 Solve the IVP

dy

dt
= t4y y(0) = 1.

• Solution:

• Start with equilibrium solutions y = 0.

• Get |y| = Cet
5/5 but notice that by choise of C this shortens to y = Cet

5/5.

• Note that this includes the equilibrum solution y = 0 by setting C = 0.

• Thus then general solution is given by

yg(t) = Cet
5/5.

• To solve the IVP we use the initial condition

1 = y(0) = Ce0 = C
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thus C = 1, hence the particular solution to the IVP is

yp(t) = et
5/5.
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t, y = var('t,y')
g = Graphics ()
g += plot_slope_field(y*t^4, (t, -5,5) ,(y,-5,5))
g += plot(exp((t^5)/5), (t, -5,5), ymin = -5, ymax = 5)
g += points ([(0 ,1)], size = 50)
g.show()
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Example 2.2.7 Find the general solution:

dy

dt
= (y + 1) (y + 5) .

• Solution:

• Start with equilibrium solutions y = −1,−5 .

• Use partial fractions to get 1
(y+1)(y+5) = 1/4

y+1 −
1/4
y+5 .

• The solution is

1
4 ln |y + 1| − 1

4 ln |y + 5| = t+ C ⇐⇒ ln
∣∣∣∣y + 1
y + 5

∣∣∣∣ = 4t+ C1

⇐⇒
∣∣∣∣y + 1
y + 5

∣∣∣∣ = C2e
4t

⇐⇒ y + 1
y + 5 = C3e

4t

⇐⇒ y = 5ke4t − 1
1− ke4t .

• This yields all solutions but the equilibrium solution y = −5. Note that
y = −1 can be found by taking k = −1. Thus

yg(t) =
{
y(t) = 5ke4t−1

1−ke4t

y(t) = −5.

�

2.3 Separable homogeneous equations and the
substitution method

Consider an ODE
dy

dx
= f (x, y)

and suppose we can rewrite it in the form

dy

dx
= F

(y
x

)
. (2.3.1)
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An equation of the form (2.3.1) is called homogeneous.

• To solve this equation. We will define a new variable

v = y

x
(Important)

and write everything in terms of only v and x!

• Solve for y: and get
y = xv.

• Implicitly differentiate both sides:

dy

dx
= x

dv

dx
+ 1 · v. (Important)

The two important equations we come up with are:

General homogeneous substitution:
{
v = y

x
dy
dx = x dvdx + v

Example 2.3.1 Consider

dy

dx
= x2 + xy + y2

x2 .

Part (a): Show that this ODE is homogeneous and rewrite the entire
equation by only v and x.

To see this we divide the numerator and denominator by x2 and get

dy

dx
=

1 + y
x +

(
y
x

)2
1 .

Then replacing dy
dx = x dvdx + v and v = y

x , we get a new equation

x
dv

dx
+ v = 1 + v + v2.

Part (b): Solve the ODE in terms of v and then return everything into
terms of y, x.

We rewrite

x
dv

dx
= 1 + v2 ⇐⇒

∫
dv

1 + v2 =
∫ 1
x
dx

⇐⇒ tan−1 (v) = ln |x|+ c

⇐⇒ tan−1
(y
x

)
= ln |x|+ c.

Then
y

x
= tan (ln |x|+ C)

and the general solution is

yg(x) = x tan (ln |x|+ C)

�
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Example 2.3.2 Find the solution to

y′ = y

x
+ x

y
, x > 0.

Step 1: First check if you can apply any of the method of the previous
sections (linear? separable?). The equation is neither linear, or separable. But
notice that this is homogeneous for if we let v = y

x then

dy

dx
= y

x
+ 1
y/x

= v + 1
v
.

Step 2: Recall that dy
dx = x dvdx + v , so plug this into the LHS, and get

x
dv

dx
+ v = v + 1

v
⇐⇒

∫
vdv =

∫ 1
x
dx

⇐⇒ v2

2 = ln |x|+ C

⇐⇒ y2 = 2x2 ln |x|+ kx2.

and we get the general solution

yg(x) = ±
√

2x2 ln |x|+ Cx2
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g = Graphics ()
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Example 2.3.3 (not always the same substitution). Rewrite the equa-
tion

dy

dx
= e9y−x

in terms of only v, x by letting v = 9y − x.
Solution: Use the substitution v = 9y − x, then solve for y and get

y = 1
9v + 1

9x.

Then using implicit differentiation,

dy

dx
= 1

9
dv

dx
+ 1

9
and hence

dy

dx
= e9y−x ⇐⇒ 1

9
dv

dx
+ 1

9 = ev

⇐⇒ dv

dx
= 9ev − 1.

and this can be easily solved by separating variables. �
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2.4 Modeling with Differential Equations
What are Differential Equations used for? Predicting the future! That is,
differential equations typically appear in the context of mathematical models
for physical situations that can be dsecribed using the language of change.
Models are used in many areas, including science, engineering, and finance.
Once a model has been written down in terms of a differential equation, there
are three broad approaches to understanding the system being studied.

• Analytic: explicit solutions

• Qualitative: Use geometry to see long term behaviour. For example, to
check if the population is increasing or decreasing.

• Numerical: Approximations to actual solutions.

2.4.1 Model building
1. State Assumptions (science step, Newton’s law of motions, etc, ...)

2. Describe variables, parameters: Independent variables (t, x), dependent
variables (y, u), parameters (k, α) (do not change with time)

3. Create Equations:

• Rate of change = slope = derivative.
• the word “is” means equal.
• A is proportional to B means A = kB.

Example 2.4.1 Population growth.
• Goal: Want to write a differential equation that models population

growth of zebras.

• Assumption: The rate of growth of the population is proportional to
the size of the population.

• Problem: Write a differential equation that governs this. Let P (t) be
the population of zebras at time t. So for now we have

dP

dt
= k · P.

Note here that k is a parameter that can be changed or selected for
a specific situation once we know more information. For example if we
know the proportion is k = 2, then

dP

dt
= 2 · P

and we already saw earlier that P (t) = Ce2t is a solution to this.

�

Example 2.4.2 Mixing problem 1. Problem: A vat contains 60L of water
with 5kg of salt water dissolved in it. A salt water solution that contains 2kg
of salt per liter enters the vat at a rate of 3 L/min. Pure water is also flowing
into the vat at a rate of 2 L/min. The solution in the vat is kept well mixed
and is drained at a rate of 5 L/min, so that the rate in is the same as the rate



CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS 21

out. Thus there is always 60L of salt water at any given time. How much salt
is in the tank after 30 minutes? What is the long term behavior?

Solution:
• Step 1: Define variables.

Let y(t) =amount of salt at time t. Let y(0) = 5 kg.

• Step 2: Find rate in/rate out
Two equations from basic physics will help here. First,

mass(kg) = density(kg/L) × volume(L).

Second,

rate of mass (kg/min) = concentration (kg/L) ×rate of volume (L/min).

Finally, when the volume of the mixture doesn’t change, it must by that

volume rate in = volume rate out

Using the information from the problem we have

Rate in =
(

2kgL

)(
3 L
min

)
-salt water solution

+
(

0kg
L

)(
2 L
min

)
−pure water

= 6 kg
min .

and

Rate out =
(

concentration
of stuff going out

)
× Rate

=
(
y(t)
60

kg
L

)
× 5 L

min .

= y(t)
12

kg
min .

• Step 3: Write the IVP
Always recall that for mixing problems we have

dy

dt
= Rate in− Rate out

= 6− y

12 .

and the initial condition is
y(0) = 5.

• Step 4: Find the common denominator and solve using separation of
variables.
Write

dy

dt
= 6− y

12 = 72− y
12

and using separation of variables we get

dy

dt
= 72− y

12 ⇐⇒ dy

72− y = dt

12
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⇐⇒ − ln |72− y| = t

12 + C1

⇐⇒ ln |72− y| = −t12 + C2

⇐⇒ |72− y| = C3e
− t

12

⇐⇒ 72− y = ke−
t

12

⇐⇒ y = 72− ke− t
12 .

Solving the IVP by using y(0) = 5, we get

y(0) = 5 ⇐⇒ 72− ke0 = 5
⇐⇒ k = 72− 5 = 67

so the final solution is

y(t) = 72− 67e− t
12 .

• Step 5:
After 30 minutes there is

y(30) = 72− 67e− 30
12 = 66.5 kg.

The long term behavior is simply the limit:

lim
t→∞

y(t) = lim
t→∞

72− 67e− 30
12 = 72− 0 = 72.

�

Example 2.4.3 Mixing problem II. The difference here is that now we
allow the total volume of fluid to vary, when before it was kept fixed.

Problem: A 400-gallon tank initially contains 200 gallons of water contain-
ing 3 pounds of sugar per gallon. Suppose water containing 5 pounds per gallon
flows into the the top of the tank at a rate of 6 gallons per minute. The water
in the tank is kept well mixed, and 4 gallons per minute are removed from the
bottom of the tank. How much sugar is in the tank when the tank is full?

Solution:
• Step 1: Define variables

Let y(t) = amount of sugar at time t, which is in minutes. Let y(0) =
3× 200 = 600 pounds.

• Step 2: Find Rate in/ Rate out
Note that for anything that comes in you can always find the rate in as

Rate in =
(

concentration
of sugar coming in

)
× Rate.

Similarly you can always find the Rate out as

Rate out =
(

concentration
of sugar coming out

)
× Rate.

We have

Rate in =
(

5poundsgallon

)(
6gallonsmin

)
-sugar water solution
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= 30poundsgallon .

To find the concentration of sugar coming out we have know the amount
of water at time t.

Water at time t = 200 gallons +
(

6gallonsmin − 4gallonsmin

)
t

= 200 + 2t,

So

Rate out =
(

concentration
of stuff going out

)
× Rate

=
(

y(t)
200 + 2t

pounds
gallon

)
× 4gallonsmin .

= 4 y(t)
200 + 2t

pound
min .

• Step 3: Write the IVP
Always recall that for mixing problems we have

dy

dt
= Rate in− Rate out

= 30− 4
200 + 2ty.

and the initial condition
y(0) = 600.

• Step 4: Solve using the Method of integrating factors:
Write

dy

dt
+ 4

200 + 2ty = 30

so that g(t) = 4
200+2t and b(t) = 30. Thus the integrating factor is

µ(t) = e4
∫

dt
200+2t = e2

∫
dt

100+t = e2 ln(100+t) = (100 + t)2
.

Thus using the formula, we have that

y(t) = 1
µ(t)

[∫
µ(t)b(t)dt.+ C

]
= 1

(100 + t)2

[
30
∫

(100 + t)2
dt.+ C

]
= 1

(100 + t)2

[
30(100 + t)3

3 .+ C

]

= 1
(100 + t)2

[
10 (100 + t)3 + C

]
and using y(0) = 600 we get that

600 = 1
1002

[
10 · 1003 + C

]
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so that
C = −4, 000, 000

and thus
y(t) = 10 (100 + t)3 − 4, 000, 000

(100 + t)2 .

• Step5: Answer the question
Since the amount of water in the tank is 200 + 2t then it fills up when

200 + 2t = 400

so that t = 100. Thus the amount of sugar is

y(100) = 10 (200)3 − 4, 000, 000
(200)2

= 1, 900 pounds.

�

2.5 Modeling with differential equations - more
problems

2.5.1 Newton’s Law of Cooling
Newton’s Law of Cooling states that the temperature of an object changes
at a rate proportional to the difference between its temperature and its sur-
roundings.

That is, let T (t) be the temperature of the object, while Ts is the surrounding
temperature. Then by Newton’s Law of cooling there is some constant of
proportionality k, such that

dT

dt
= k (T − Ts) .

Example 2.5.1 Newton’s Law of Cooling. Suppose there was a murder
in a room that is 70° F. Assume the victim had a temperature of 98.6° when
murdered. Let tc be the time it took for someone to finally discover the corpse
since its death. As a detective, your goal is to find out how long ago the body
died. Here is the given information

• Fact 1: At the time time someone discovered the body, the temperature
of the corpse was 72.5.

• Fact 2: One hour after the body was discovered, the temperature of the
corpse was 72.

• Question: Find the critical value of tc

Solution: One needs to solve the following IVP: Let T (t) be the temperature
of the victim, then

dT

dt
= k (T − 70) , T (0) = 98.6

and need to use the information

T (tc) = 72.5,
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T (tc + 1) = 72.

to solve for k.
First solving for T (t) we get

T (t) = 70 + (98.6− 70) ekt

= 70 + 28.6ekt.

Then using

72.5 = 70 + 28.6ektc ,
72 = 70 + 28.6ek(tc+1)

Solving the first equation for k we get

k = 1
tc

ln 2.5
28.6

and plugging this into second equation we get

72 = 70 + 28.6e
1

tc
ln 2.5

28.6 (tc+1)

and hence
tc ≈ 10.92 hours.

and k = −0.223. �

2.5.2 Free fall with friction
We will consider problems involving free-fall with and without initial velocities.
We will also consider when there is some air resistance of magnitude R(v)
directed opposite to the velocity v.

Setting up an equation:
Assume that the positive direction is up (that is, gravity is negatively

oriented).
Since we know that F = mass× acceleration = mdv

dt . This will always be
the LHS of our equation.

The RHS depends on the problem given (e.g. free fall, throwing object up?
is there resistance?)

Thus our equations in free fall will be in the form

m
dv

dt
= ±R(v)−mg.

The plus/minus symbol is present as friction/resistance is always in the opposite
direction of motion.

• We’ll have −R(v): If object is going up, i.e. v > 0. (Since air resistance
R(v) is directed opposite to the velocity v)

• We’ll have +R(v) if the object is going down, i.e. v < 0 (Since air
resistance R(v) is directed opposite to the velocity v)

Example 2.5.2 Suppose an object with mass 10 kg is launched upward with
initial velocity 20 m/s from a platform that is 3 meters high. Suppose there is
a force due to air resistance of magnitude |v| directed opposite to the velocity,
where the velocity v is measured in m/s. We neglect the variation of the earth’s
gravitational fields with distance. (Since it’s not going very high anyways)
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• Part (a): Find the maximum height above the ground that the object
reaches.
Solution: Suppose we consider when the object is going up in the
air before it has reached the maximum height. Let R(v) = |v| be the
resistance, then using what’ve discussed above we have

m
dv

dt
= −R(v)−mg,

and we have −R(v) since the object is still going up. Since the object is
going up then v > 0. Recall that

|v| =
{
v v > 0
−v v < 0

then
m
dv

dt
= − |v| −mg = −v −mg.

Hence
m
dv

dt
= −v −mg.

Solving this we have that∫
dv

v +mg
=
∫
−dt
m

⇐⇒ ln |v +mg| = − t

m
+ C

⇐⇒ |v +mg| = Ce−t/m

⇐⇒ v +mg = Ce−t/m

⇐⇒ v = Ce−t/m −mg.

Since v(0) = 20 Then we can solve for C and obtain (using g = 9.8m/s2

v(t) = (20 +mg) e−t/m −mg,
= 118e−t/10 − 98.

and this equation is valid only when the object is going up.
The maximum happens when velocity is equal to zero. Thus set v(t1) = 0
and we get that

0 = 118e−t/10 − 98 ⇐⇒ t1 = −10 ln
(

98
118

)
⇐⇒ t1 ≈ 1.86.

Solve for position: We get

x(t) =
∫
v(t)dt+ C

= −1180e−t/10 − 98t+ C.

Since x(0) = 3, then

3 = −1180e0 − 98 · 0 + C ⇐⇒ 3 = −1180 + C

⇐⇒ C = 1183.
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Thus
x(t) = −1180e−t/10 − 98t+ 1183.

Then

maximum height = x(1.86)
≈ 21.

• Part (b): Find the time that the object hits the ground, assuming it
missed the platform.
Solution: We need to find the equation of when the object is falling
down.When the object is falling down we thus have the following equation:

m
dv

dt
= R(v)−mg,

and we have R(v) since the object is going down. Thus since the object
is going down then v < 0. Recall that

|v| =
{
v v > 0
−v v < 0

then |v| = −v so that

m
dv

dt
= |v| −mg = −v −mg.

hence
m
dv

dt
= −v −mg.

Solving this we have that v2(t) = Ce−t/m − mg with initial condition
v2(0) = 0. Thus

Then

x2(t) =
∫
v2(t)dt+ C

= −980e−t/10 − 98t+ C

since
x2(0) = maximum height = 21

then solving for C we have

x2(t) = −980e−t/10 − 98t+ 1001.

To find out when x2(t) hits the ground we need to find t2 such that
x2(t2) = 0 thus (using a calculator)

0 = −980e−t2/10 − 98t2 + 1001 ⇐⇒ t2 ≈ 2.14.

Thus the ball hits the ground by adding the time it takes to reach its
maximum plus the time after that:

t0 = t1 + t2 = 1.86 + 2.14 = 4 seconds.

�
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Example 2.5.3 Consider the same scenario as before. A object with mass 10
kg is launched upward with initial velocity 20 m/s from a platform that is 3
meters high. Except, there is a force due to air resistance of magnitude v2/5
directed opposite to the velocity, where the velocity v is measured in m/s.

• Part (a): Write the differential equation for velocity, when the object is
still going up.
Solution: Let R(v) = v2/5 be the resistance, then

m
dv

dt
= −R(v)−mg,

and we have −R(v) since the object is still going up. Thus

m
dv

dt
= −v

2

5 −mg ⇐⇒ m
dv

dt
= −v

2

5 − 98

• Part (b): Write the differential equation for velocity, when the object
has already reched maximum and is already going down..
Solution: Let R(v) = v2/5 be the resistance, then using the above we
have

m
dv

dt
= R(v)−mg,

and we have R(v) since the object is going down. Thus

m
dv

dt
= v2

5 − 98.

�

Example 2.5.4 Suppose we fly a plane at an altitude of 5000 ft and drop a
watermelon that weighs 64 pounds vertically downward. Assume that the force
of air resistance, which is directed opposite to the velocity, is of magnitude
|v| /128. (Use g = 32 ft/sec2)

Question: Find how long it takes for the watermelon to hit the ground.
Solution: Since the watermelon is falling down, v < 0. Hence

m
dv

dt
= R(v)−mg,

where R(v) is positive. Now recall that

weight = mg

then m = 64
32 = 2.

Then R(v) = |v| /128 = v/128, and so

m
dv

dt
= v

128 −mg ⇐⇒ 2dv
dt

= v

128 − 64

⇐⇒ dv

dt
= v

256 − 32

⇐⇒
∫

dv

v − 256 · 32 =
∫ 1

256dt

⇐⇒ v(t) = Cet/256 + 256 · 32.

and since v(0) = 0 then

v(t) = −256 · 32et/256 + 256 · 32.
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Solving for the distance traveled x(t) from the ground we have

x(t) = − (256)2 · 32et/256 + 32 · (256) t+ C

and letting x(0) = 0, then

x(t) = − (256)2 · 32et/256 + 32 · (256) t+ (256)2 · 32

Then, noting that since we chose the plane to be altitude 0 and the melon falls
5000ft down,

x(t0) = −5000 ⇐⇒ t0 ≈ 17.88 seconds.

�

2.6 Existence and Uniqueness of Solutions

2.6.1 Existence theorems
We want to know if solutions even exist to a given ODE.

• If this models a physical phenomona and no solutions exists, then there
is something seriously wrong about your model.

• Why spend time trying to find a solution, and doing all the things in
previous sections if no solutions exist.

By way of analogy, consider the polynomial equation

2x5 − 10x+ 3 = 0.

Plugging x = ±1 into f(x) = 2x5 − 10x+ 5 we get f(1) = −5 and f(−1) = 11.
What can we conclude about the solution set?

• We draw a continuous sketch of this graph, and show it must cross the
x−axis.

• By the intermediate value theorem we know that at least one solution
exists, since somewhere in between x = −1 and x = 1 the function f(x)
must have crossed the x− axis.

• There could be more than one, we’d like to know if we should stop
searching for more solutions.

• This is a difficult questions. There is no “quadratic formula” for 5th
degree polynomials.

On the other hand, no real solutions exist for x2 + 1 = 0.
In the context of differential equations, there are theorems that tell us

conditions for when a solution must exist for a linear first order ODE and
when we know that solution is unique.
Theorem 2.6.1 Linear 1st order ODE Existence and Uniqueness
Theorem. If the function p and g are continuous on an open interval I = (a, b)
containing the point t = t0, then there exists a unique function y = φ(t) that
satisties the IVP

y′ + p(t)y = g(t), y(t0) = y0

for each t in I and where y0 is an arbitrary initial value.
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This theorem guarantees the existence and uniqueness of solutions under the
assumption of the theorem. This is only for IVP, nothing to do with separate
solutions to ODE’s (which we already know there are many).

This theorem allows you to know the domain before even solving for the
solution. That is, we know where the solution is valid, which is an important
consideration in modeling problems.

Example 2.6.2 Part (a): Without solving the problem, what is the largest
interval in which the solution of the given IVP is certain to exist by the Existence
and Uniqueness Theorem?

(t− 1)y′ + cos ty = et

t− 6 y(3) = −4

Solution: We rewrite as

y′ + cos t
(t− 1)y = et

(t− 6) (t− 1)

Since cos t
(t−1) and et

(t−6)(t−1) are only both continuous for every t 6= 1, 6. The
intervals are:

(−∞, 1) ∪ (1, 6) ∪ (6,∞) .

But since the interval I = (1, 6) is the only one that contains the initial
point t0 = 03 is in I. Then we know there exists a unique solution y = φ(t) on
the interval (1, 6).

Part (b): What if I change the initial condition to

y(8) = 7,

then what is the interval I?
Solution: Then I = (6,∞). �

Example 2.6.3 Part (a): Without solving the problem, what is the largest
interval in which the solution of the given IVP is certain to exist by the Existence
and Uniqueness Theorem?

t2y′ + ln (t− 1)
et−2 y = t− 5

sin(t− 4) y(3) = π

Solution: We rewrite as

y′ + ln (t− 1)
t2et−2 y = t− 5

t2 sin(t− 4)

\item The function ln|t−1|
t2et−2 is continuous when t 6= 0 and t−1 > 0. So continuous

on (1,∞).
The function t−5

t2 sin(t−4) is continuous when t 6= 0 and when t − 4 6= nπ

=⇒ t 6= 4+nπ. So the problem points are t = 0 and t = . . . , 4−2π, 4−π, 4, 4+
π, 4 + 2π. Note that 4 + π ≈ 7.14 hence both functions are simultaneously
continuous on

(1, 4) ∪ (4, 4 + π) ∪ (4 + π, 4 + 2π) ∪ · · ·
since t0 = 3 falls inside (1, 4) then the solution to this IVP must have domain

I = (1, 4).

Part (b): What if I change the initial condition to

y(8) = 10,
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then what is I?
Then I = (4 + π, 4 + 2π). �

For general first order equations, the situation is more complicated. The
content of the following theorem is that if the differential equation is nice
enough, we can find some small circle where the solutions exist and are unique.
Theorem 2.6.4 General 1st Order ODE existence and uniqueness
theorem. Suppose f(t, y) and ∂f

∂y are continuous functions in a rectangle of
the form

{(t, y) | a < t < b, c < y < d}

in the ty−plane. If (t0, y0) is a point inside the rectangle. then there exists
a unique ε > 0 and a unique function y(t) = φ(t) defined for (t0 − ε, t0 + ε)
that solves the initial value problem

dy

dt
= f(t, y), y(t0) = y0.

Warning: Unlike Theorem 2.6.1, the statement of Theorem 2.6.4 does not
tell you what domain the solution will be valid for. In this case, you really do
have to explicitly find the solution to figure out the domain of the function.
Corollary 2.6.5 Moreover assuming the same conditions as Theorem 2.6.4, if
(t0, y0) is a point in this rectangle and if y1(t) and y2(t) are two functions that
solve the IVP

dy

dt
= f(t, y), y(t0) = y0,

for all t ∈ (t0 − ε, t0 + ε), then

y1(t) = y2(t)

for t ∈ (t0 − ε, t0 + ε).
Restatement of Uniqueness Theorem: If two solutions y1, y2 to an

ODE that satisfies the condition of the uniqueness theorem, then if they are in
the same place at the same time, then they must be the same function! That
is, the uniqueness condition says that if y1, y2 are two solutions to some ODE
and y1 and y2 are equal at some point t0, then y1(t) = y2(t) for all t in some
interval. It’s either all or nothing.

Example 2.6.6 Consider

dy

dt
= (y − 1)1/2 y(0) = 1.

Part (a): Is this a linear or nonlinear equation? Can you use Theo-
rem 2.6.1?

Solution: This is a nonlinear equation, due to the expression (y − 1)1/2.
Since Theorem 2.6.1 only applies to linear equations, we can’t use it for this
IVP.

Part (b): Using Theorem 2.6.4 (the general theorem), can you guarantee
that there is a unique solution to this IVP? Why?

Solution: To apply Theorem 2.6.4, we need the right hand side equation

f(t, y) = (y − 1)1/2

to be continuous and we need

∂f

∂y
= 1

2
√
y − 1
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to be continous around the point (t0, y0) = (0, 1). But since 1
2
√
y−1 is not

continuous when y0 = 1, then we cannot guarantee uniqueness of the solution.
(That is, this is a poor model at this point.)

Moral: There could be multiple solutions to this IVP. If a solution exists,
it may not be unique! �

In summary:

• Theorem 2.6.1: Allows to check if there exists a unique solution for Linear
Equations. Also tells us what the possible domain is.

• Theorem 2.6.4: Allows to check if there exists a unique solution for general
first order equations. Does not tell us about possible domains.

2.6.2 More examples. Domains of solutions.
A partial derivative is a derivative of a function in more than one variable
with respect to just one of the variables, considering the other variables as
constants. For a function f = f(t, y), we denote the partial derivative with
respect to t by ∂

∂tf or by the compact notation ft. For example, take the
partials of y2 + t2, yt and y2t.

∂

∂y
[y2 + t2] = 2y + 0 = 2y

and
∂

∂t
[y2 + t2] = 0 + 2t = 2t.

For the second function,
∂

∂y
y2t = 2yt

and
∂

∂t
y2t = y2.

Notice that Theorem 2.6.4 only gives you a function y(t) defined for some
interval (t0 − ε, t0 + ε). We need to keep in mind that the number ε > 0 may
be super small, so the solution may not be valid for big t. So this affects how
we can apply this theorem real world solutions.
Example 2.6.7 Finding the domain of a solution. Consider

dy

dt
= 1 + y2 y(0) = 0.

Part (a): Find where in the t− y plane the hypothesis of Theorem 2.6.4
is satisfied:

Solution: Note that f(t, y) = 1 + y2 and ∂f
∂y = 2y are always continuous,

thus satisfied in all of R2.
Part (b): Find the actual interval in which the IVP exists uniquely. We

must keep in mind that the solution could blow up at an asymptote.
Solve using separable equations and get y(t) = tan(t+ c) and with initial

condition you get y(t) = tan(t). But this solution is only valid for t ∈
(
−π2 ,

π
2
)
.
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t,y = var('t,y')
g = Graphics ()
g += plot_slope_field (1 + y^2, (t,-5,5), (y,-5,5))
g += plot(tan(t), (t,-5,5), ymax=5, ymin=-5)
g.show()

Moral: Unlike Theorem 2.6.1, the conclusion of Theorem 2.6.4 does not
say that the solution needs to exist in the entire rectangle, it just says that
there exists some (possibly mysterious) interval in which it exists. �

Example 2.6.8 Lack of uniqueness. Consider the problem dy
dt = 3y2/3 and

y(0) = 0.
Question 1: Show that y1(t) = 0 and y2(t) = t3 are two solutions to this

IVP. Why does this not contradict the uniqueness assertion of Theorem 2.6.4?
Solution: We know the equilibrium y1(t) = 0 which solves the IVP is one

solution. Use separation of variables to get y(t) = (t+ c)3 so that y2(t) = t3.
That is, the solution through (0, 0) is NOT UNIQUE!
This doesn’t contradict Theorem 2.6.4 because we can compute ∂f

∂y =
2y− 1

3 = 2
y1/3 . This is not continuous at (t0, y0) = (0, 0), and so the theorem

does not apply.
Question 2: Consider the problem dy

dt = 3y2/3 and y(1) = 1. Find where
in the t− y plane solutions exist uniquely.

Solution: Solutions exist uniquely in any rectangle not containing (0, 0).
�

Example 2.6.9 Applications of uniqueness: comparing solutions. Con-
sider the equation dy

dt = (1+t)2

(1+y)2 .
We can easily check that y1(t) = t is a solution. Now say that y2(t) is the

unique solution to the IVP

dy

dt
= (1 + t)2

(1 + y)2 y(0) = −.1.

It is very hard to solve this equation. But we can still say something about
the behavior of y2. In particular, y2(t) can’t cross the other solution y1(t) = t.
Then we can say that

y2(t) < t

for all t, which is a useful and striking bound on the behavior of y2.
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t,y = var('t,y')
g = Graphics ()
g += plot_slope_field ((1+t)^2/(1+y)^2, (t,-5,5), (y,-5,5))
g += plot(t, (t,-5,5), ymin=-5, ymax = 5)
Y =function('Y')(t)
ode = diff(Y,t) == (1+t)^2/(1+Y)^2
g += desolve_rk4(ode , Y, ivar=t, ics=[0,-.1], step=.1,

end_points =[-5,5], output = 'plot', xmin=-5, xmax = 5,
color='red')

g.show()

�
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2.6.3 Summary
• We must check continuity conditions to have uniqueness and existence.

• Uniqueness implies that solutions can’t cross each other.

• Specifically, uniqueness implies that solutions can’t cross equilibrium
solutions.

• We can use uniqueness to say that solutions are between other solutions,
which can give strong qualitative understanding.

2.7 Autonomous Equations and Population dy-
namics

Definition 2.7.1 An autonomous differential equation is of the form

dy

dt
= f(y).

♦
We will only deal with autonomous equations in this section. Autonomous

equations are preferable for some physical models are autonomous (self-govering).
For example a compressed spring has the same force at 4:00am and at 10:00pm.

2.7.1 Examples of autonomous systems
2.7.1.1 Population growth/decay

Assumption: The rate of growth of the population is proportional to the size of
the population. Thus if k is the proportionality constant (growth rate) we have

dP

dt
= kP.

But here P is the dependent variable, t is time, which is the independent
variable. Thus P = P (t) is actually a function! This is a ODE. We can also
write it P ′ = kP , or the physics way, Ṗ = kP .

2.7.1.2 Logistic Growth:

Assumption: If population is small, then rate of growth is proportional to its
size. If population is too large to be supported by its resources and environment,
then the population will decrease, that dP

dt < 0. We can restate the assumptions
as

1. dP
dt ≈ kP if P is small.

2. If P > N then dP
dt < 0.

In this case, we have the logistic growth model

dP

dt
= k

(
1− P

N

)
P

2.7.2 Phase lines

Suppose dy
dt = y(1− y), which has the slope field
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t, y = var('t,y')
plot_slope_field(y*(1-y), (t,-3,3), (y, -3, 3))

Since the slopes are the same at each horizontal direction we can com-
press this information to something easier to draw, the phase line for the
autonomous equation.

Rope Metaphor: We can reduce the entire 2d picture into a “rope” that the
function climbs up and down.

1. Start with IVP dy
dt = f(y) and y(0) = y0.

2. Draw a rope at start at y0.

3. At each y write f(y) on this rope to indicate the slope at that y.

4. If f(y) = 0 stay put. If f(y) > 0 then climb up the rope, if f(y) < 0 then
climb down the rope.

5. Bigger values for f(y) means climb faster as t moves through time.

6. If you let y(t) your location on the rope, then y(t) is a solution to the
IVP.

The rope in Figure 2.7.2 is the Phase line, but instead of numbers we use
arrows to represent the slope.

The phase line for this equation has two points representing the equilibrium
solutions, and arrows indicating the sign of the slopes given by f(y) between
the equilibira.

Figure 2.7.2 Phase line for dy
dt = y(1− y)

For example, the phase line shows that as y is close to y = 1 from below,
then the function keeps increasing, and thus must approach asymptotically to
the equilibrium solution.

A sketch of some possible solutions looks like:
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Figure 2.7.3 Solution sketch for dy
dt = y(1− y)

From our first sketch we can always notice the following things about
sketching curves:

1. If f(y(0)) = 0 then y(0) is an equilibirum solution and y(t) = y(0) for all
t.

2. If f(y(0)) > 0 then y(t) is increasing for all t and either y(y) → ∞ as
t→∞ or y(t) tends to first equilibirum point larger than y(0).

3. If f(y(0)) < 0 then then y(t) is decreasing for all t and either y(y)→ −∞
as t→∞ or y(t) tends to first equilibirum point smaller than y(0).

Example 2.7.4 Curve Sketching. We let

dy

dt
= (2− y) sin y.

1. Find equilibrium points y = 2 and y = nπ (so infinite amount)

2. Plug points and get that the phase line is :

3. Talk about what happens when things are getting close to the equilibrium
solutions.

4. Sketch curves:
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�

Example 2.7.5 We don’t know how quickly solutions increase/decrease
with respect to time. Show that the graph dP

dt = (1 − P
20 )3(P5 − 1)P 7 has

Phase line

∨
20
∧
5
∨
0
∧

By plotting a graph of actual solutions, you’ll see that solutions between
y = 5 and y = 20, increase very rapidly. See the following slope field.
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t,y=var('t,y')
plot_slope_field ((1 - y/20)^3 * (y/5 - 1) *y^7, (t,-5,5),

(y,0, 20))

�

Example 2.7.6 Not all solutions exist for all t. Consider the equation
dy
dt = (1 + y)2.

The phase line is
∧
−1
∧

Sketch a curve.

The Phase Line doesn’t tell us if there could be any vertical assymptotes.
(Phase LINE DOES NOT TELL US THIS INFO)

ACTUAL SOLUTION: y(t) = −1− 1
t+c . Note that there is an assymptote

at t = c.
If y(0) > −1 then draw possible curve.
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t,y=var('t,y')
g = Graphics ()
g+= plot_slope_field ((1+y)^2, (t,-5,5) ,(y,-5,5))
g+= plot(-1-1/(t + 2), (t,-5,5), ymax = 5, ymin = -5)
g.show()

�

Example 2.7.7 Cusps. Consider the equation dy
dt = 1

1−y .
The phase line would be:

We drew a hole/circle for y = 1 since the derivative can’t exit there. It
turns out that for Phase Lines with holes, its solutions tend to have cusps. See
the graph below.
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t,y=var('t,y')
g = Graphics ()
g+= plot_slope_field (1/(1-y), (t, -5, 5), (y, -5, 5))
g+= plot(1 + sqrt(-2*t + 4), (t, -5, 2))
g+= plot(1 - sqrt(-2*t -2), (t, -5, -1), color="red")
g.show()

�
Role of Equilibrium points:

The solutions to autonomous equations either

1. Tend to ±∞

2. Tend to the equilibrium solutions.
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3. Stay consistently increasing/decreasing within equilibrium solutions.

2.7.3 Classification of Equilibrium Solutions
Recall what asymptotic means: say that f is asymptotic to the line y = c if

lim
t→∞

f(t) = c.

We can classify the equilibrium solutions to an autonomous equation by
looking at the behavior of “nearby” solutions. Solutions fall into one of three
categories.

1. Asymptotically stable (sink)

(a) y0 is an asymptotically stable equilibrium if any solution with
initial condition sufficiently close to y0 is asymptotic to y0 as t
increases.

(b) Phase Line looks like this:
∨
y0
∧

(c) Graph looks like: (reminds you that it is falling into something)
(d) In a graph of f(y) vs. y, we have f ′(y0) < 0.

2. Asymptotically unstable (source):

(a) y0 is an asymptotically unstable equilibrium if any solution with
initial condition sufficiently close to y0 tends torward y0 as t de-
creases.

(b) The phase line looks like this:
∧
y0
∨

(c) Graph looks like: ( reminds you that it is coming from one place)
(d) In f(y) vs. y graph, we have f ′(y0) > 0.

3. Semistable(node):

(a) y0 is an asymptotically semistable equilibrium if it doesn’t fit
the category of a sink or source \item Phase Line looks like this:
∧
y0
∧

or
∨
y0
∨

(b) Graph looks like:

Example 2.7.8 Drawing solution from the f(y) vs. y graph). Consider
the equation dy

dt = y2 + y − 6 = (y + 3)(y − 2).

The phase line is

∧
2
∨
−3
∧

How can these be classified?
y0 = 2 is assymptotically unstable while y0 = −3 is assymptotically stable.

�
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Example 2.7.9 (Using f(y)). We can figure out classification directly from
the graph of f(y).

Here, node means semistable, sink means stable, and source means unstable.
�

Example 2.7.10 Suppose we only know the graph of f(y) not the actual
formula.

Then draw phase line :

∨
c

∧
b

∨
a

∧

Now sketch some solution curves. �
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2.8 Exact equations
This section introduces a family of equations that arise naturally in physical
contexts. For example, suppose that we had a detailed temperature map of a
hot metal sheet. Can we predict how the heat will flow? The answer to this
question is provided by the gradient, studied in multi-variable calculus. But
what about the opposite scenario? Given a heat flow map, can we reconstruct
the original temperature distribution? To answer this question, we’ll consider
what are known as exact equations. First, we recall some multivariable
calculus.

2.8.1 Partial derivatives and the gradient
Suppose that z = f(x, y) is a function of two independent variables. Just as in
one variable, we want to understand how the graph of f changes at a point,
but now we have lots of different directions to look at. To compute the rate of
change in the x and y directions, we can use the partial derivative in those
directions. When we take a partial derivative with respect to a variable, we
treat all other variables as constant so that we’re isolating our view to change
in that specific direction.

Definition 2.8.1 Let z = f(x, y). The partial derivative of f with respect to
x is

∂f

∂x
= lim
h→0

f(x+ h, y)− f(x, y)
h

.

The partial derivative of f with respect to y is

∂f

∂y
= lim
h→0

f(x, y + h)− f(x, y)
h

.

♦
In practice, we can use the single variable differentiation rules, treating the

other variable like it is a fixed number. For example,

∂

∂x
x2 + x cos y + y2 = 2x+ cos y + 0.

Frequently, when given a function z = f(x, y), we wish to know the direction
of greatest slope or rate of change. For example, if z = f(x, y) represents the
height of a mountain, the direction that water flows downhill will be in the
direction of sleepest descent. We can use the partial derivatives to define a
vector field that at each point (x, y) gives the direction of greatest slope of
the graph of f .

Definition 2.8.2 The gradient of z = f(x, y) is the vector-valued function

∇f = 〈∂f
∂x
,
∂f

∂y
〉.

This is written shorthand as ∇f = 〈fx, fy〉. ♦

You should think of the gradient in this context as a slope field - at every
point in the x − y plane, the gradient attaches a vector that indicates the
direction of greatest slope.

If we think of z = f(x, y) as a voltage map or a temperature map or a
height map, a standard visualization is to use curves to represent points that
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have equal heights. Such curves are called isotherms or equipotential lines
or altitude lines.
Example 2.8.3 Equipotentials and surfaces. Let f(x, y) = −x2 +3y−y2.
The following code will plot some equipotentials of f . In particular, we will
plot the curves corresponding to z = 0, 1, 2.
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x,y = var('x,y')
g = Graphics ()
g+= implicit_plot(-x^2 + 3*y - y^2, (x, -2,2), (y, 0,3),

color = "red" )
g+= implicit_plot(-x^2 + 3*y - y^2 - 1, (x, -2,2), (y, 0,3),

color="yellow" )
g+= implicit_plot(-x^2 + 3*y - y^2-2, (x, -2,2), (y, 0,3),

color="green" )
g.show()

Now compare to the surface itself:
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var('x␣y␣z')
f(x, y) = -x^2 + 3*y - y^2
P = implicit_plot3d(f-z, (x ,-1, 3), (y, 0, 3), (z, -2, 3))
Q = plot3d(0, (-1,3), (0,3), color="red", opacity=".4")
R = plot3d(1, (-1,3), (0,3), color="yellow", opacity = ".4")
S = plot3d(2, (-1,3), (0,3), color ="green", opacity = ".4")
P + Q +R +S

�

Example 2.8.4 Relationship between equipotentials and gradients.
One of the most important geometric facts about the relationship between
the potential function f and the gradient field ∇f is that equipotentials are
perpendicular to gradients. Using our previous example:
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x,y = var('x,y')
g = Graphics ()
g+= implicit_plot(-x^2 + 3*y - y^2, (x, -2,2), (y, 0,3),

color = "red" )
g+= implicit_plot(-x^2 + 3*y - y^2 - 1, (x, -2,2), (y, 0,3),

color="yellow" )
g+= implicit_plot(-x^2 + 3*y - y^2-2, (x, -2,2), (y, 0,3),

color="green" )
g+= plot_vector_field ((-2*x, 3 - 2*y), (-2,2), (0,3))
g.show()

�
In summary, given a potential function z = f(x, y),
1. We can find the equipotential lines (lines of constant height)

C = f(x, y);

2. we can find the gradient field

∇f = 〈fx, fy〉;
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3. and we know that at a given point, the equipotential and the gradient
line are perpendicular.

2.8.2 From gradient field to potential function
How do we know when we can go the other direction? That is, as we asked at
the top of the section, when given a vector field F (x, y) = (M(x, y), N(x, y)),
how can we recover a potential function f? Essentially, this is asking us to find
a function so that ∇f = F (the “antiderivative of F is f”). Like integration
problems, this may not always exist.
Definition 2.8.5 A vector field F is called conservative if there exists a
potential function f so that ∇f = F . ♦

One marker of nice functions in two variables is the conclusion of Clairaut’s
theorem, which states that the mixed partial derivatives of f are equal -
that is, for a nice f ,

∂2f

∂x∂y
= ∂2f

∂y∂x
.

Suppose for the moment that a vector field

F = 〈M,N〉 = ∇f = 〈fx, fy〉

and that the derivatives fxx, fyy, fxy, fyx all exist and are continuous. Clairaut’s
theorem will force

∂M

∂y
= fxy = fyx = ∂N

∂x
.

It turns out to be the case that this condition, My = Nx, is not only necessary
but sufficient on nice enough domains like rectangles.

Theorem 2.8.6 Let F = 〈M(x, y), N(x, y)〉 be a vector field so that the partial
derivatives of M and N exist and are continuous on a rectangle a ≤ x ≤ b, c ≤
y ≤ d. Then there exists a potential function f so that ∇f = F if

My = Nx.

2.8.3 Differential equations and equipotentials
The total derivative of a function z = f(x, y) is given by the expression

df = fx dx+ fy dy.

Notice that the functions that appear as components in df are the components
of the gradient ∇f . If we were given the equation of an equipotential for f , say

f(x, y) = C,

then the total derivative of the equation is

df = dC

⇒fx dx+ fy dy = 0
⇒M dx+N dy = 0.

If we have further that f has continuous second partial derivatives on a rectangle
a ≤ x ≤ b, c ≤ y ≤ d, then Clairaut’s theorem gives

My = fxy = fyx = Nx.
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The upshot of all of this is that we can view an equation of the form

M dx+N dy = 0

as a differential equation that seeks to find the equipotentials f(x, y) = C for
some unknown function f with ∇f = 〈M,N〉.

2.8.4 Exact equations
Consider an equation M(x, y)dx + N(x, y)dy = 0. We say this equation is
exact if ∂M∂y = ∂N

∂x ; that is, as discussed in the previous section, the equation
represents a differential equation that seeks to find equipotentials of a function
f so that ∇f = 〈M,N〉.

Example 2.8.7 Suppose dy
dx = −2x−y2

2xy . We can rewrite this as
(
2x+ y2) dx+

2xydy = 0 then M = 2x+ y2 and N = 2xy. Computing the partial derivatives,

My = 2y
Nx = 2y

are My = Nx. Thus this equation is exact. �

Theorem 2.8.8 If M,N,My, Nx are all continuous on a rectangle [a, b]× [c, d]
and

M dx+N dy = 0

is exact then there exists a function ψ such that

ψx(x, y) = M(x, y) and ψy(x, y) = N(x, y)

and such that ψ(x, y) = C gives an implicit solution to the ODE.
Proof. If ψ satisfies ψx = M and ψy = N such that ψ(x, y) = C then ψ defines
a function y = φ(x) implicitly. Then we show φ(x) solves the ODE. Note that
0 = M(x, y) +N(x, y)y′ = ∂ψ

∂x + ∂ψ
∂y

dy
dx = d

dx (ψ (x, φ(x))) by the multivariable
chain rule. Thus if we integrate both sides

0 = d

dx
(ψ (x, φ(x)))

⇐⇒
∫

0dx =
∫

d

dx
(ψ (x, φ(x))) dx

⇐⇒ c = ψ (x, φ(x)) ,

as needed. �
Solving exact equations: If Mdx+Ndy = 0 is exact then

ψx = M(x, y) =⇒ ψ =
∫
M(x, y)dx+ h(y)

⇓

ψy = N(x, y) ψy = ∂

∂y

(∫
M(x, y)dx

)
+ h′(y)

and then solve for h(y).
Another way: One may also solve it by starting with the second equation:

ψx = M(x, y) ψx = ∂

∂x

(∫
N(x, y)dx

)
+ g′(x)
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⇑

ψy = N(x, y) =⇒ ψ =
∫
N(x, y)dy + g(x).

Example 2.8.9 We know
(
2x+ y2) dx+ 2xydy = 0 is exact.

1. Show it’s exact(done earlier) and follow the arrows until you close the
diagram:

Start here:ψx = 2x+ y2 =⇒ ψ =
∫ (

2x+ y2) dx+ h(y)

ψ = x2 + y2x+ h(y)
⇓

ψy = 2xy ⇐=ψy = 2xy + h′(y)

2. Solve for h(y) by noting that since

2xy = 2xy + h′(y) =⇒ h′(y) = 0
=⇒ h(y) = C.

3. Put it all together and get ψ(x, y) = x2 + y2x+C and hence the implicit
solution is x2 + y2x = C.

�

Example 2.8.10 Solve (y cosx+ 2xey) +
(
sin x+ x2ey − y2) y′ = 0.

1. To show it’s exact note that (y cosx+ 2xey) dx+
(
sin x+ x2ey − y2) dy =

0, and not hard to see that

My = cosx+ 2xey

Nx = cosx+ 2xey

and they are equal, thus this ODE is exact. Follow the arrows until close
the diagram:

Start here:ψx = y cosx+ 2xey =⇒ ψ =
∫

(y cosx+ 2xey) dx+ h(y)

ψ = y sinx+ x2ey + h(y)
⇓

ψy = sin x+ x2ey − y2 ⇐=ψy = sin x+ x2ey + h′(y)

2. Solve for h(y) by noting that since

sin x+ x2ey − y2 = sin x+ x2ey + h′(y) =⇒ h′(y) = −y2

=⇒ h(y) = −y
3

3

3. Put it all together and get ψ(x, y) = y sin x + x2ey − y and hence the
implicit solution is y sin x+ x2ey − y3

3 = C.
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var('x,y')
P = plot_vector_field ((y*cos(x) + 2*x*e^y, sin(x) + x^2*e^y

- y^2), (-3,3) ,(-3,3))
Q = implicit_plot(y *sin(x) + x^2*e^y - y^3/3 -

5,(-3,3) ,(-3,3), color="red")
R = implicit_plot(y *sin(x) + x^2*e^y - y^3/3 -

3,(-3,3) ,(-3,3), color ="orange")
S = implicit_plot(y *sin(x) + x^2*e^y - y^3/3,(-3,3) ,(-3,3),

color ="blue")
P + Q +R +S

�

Example 2.8.11 Find the value of b for which the given equation is exact, and
then solve it using that b:

(
xy2 + bx2y

)
dx+ (x+ y)x2dy

1. If this equation is exact then My = Nx,

My = 2xy + bx2

Nx = 3x2 + 2yx

and are only equal when b = 3. Follow the arrows until close the diagram:

Start here:ψx = xy2 + 3x2y =⇒ ψ =
∫ (

xy2 + 3x2y
)
dx+ h(y)

ψ =
1
2
x2y2 + x3y + h(y)

⇓
ψy = x3 + x2y ⇐=ψy = x2y + x3 + h′(y)

2. Solve for h(y) by noting that since

x3 + x2y = x2y + x3 + h′(y) =⇒ h′(y) = 0
=⇒ h(y) = C

3. Put it all together and get ψ(x, y) = 1
2x

2y2 + x3y + C and hence the
implicit solution is 1

2x
2y2 + x3y = C.

�

Example 2.8.12 Solve (x cosx+ ey) dx+ xeydy

1. If this equation is exact then My = Nx, and

My = ey

Nx = ey

Now note that it is actually easier to integrate N with respect to y: Thus
we can start the diagram in the other direction

ψx = x cosx+ ey ⇐= = ψx = ey + g′(x)
ψ = xey + g(x)
⇑

Start here:ψy = xey =⇒ ψy =
∫

(xey) dy + g(x)
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2. Solve for g(x) by noting that since

x cosx+ ey = ey + g′(x) =⇒ g′(x) = x cosx

but at the end of the day we can’t avoid the harder integration, as we
still need to integration by parts to g(x) = x sin x+ cosx

3. Put it all together and get ψ(x, y) = xey + x sin x+ cosx and hence the
implicit solution is xey + x sin x+ cosx = C.
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var('x,y')
P = plot_vector_field ((x*cos(x) + e^y, x*e^y), (-3,3) ,(0,5))
Q = implicit_plot(x*e^y + x*sin(x) + cos(x) -

120,(-3,3) ,(0,5), color="red")
R = implicit_plot(x*e^y + x*sin(x) + cos(x) -

50,(-3,3) ,(0,5), color ="orange")
S = implicit_plot(x*e^y + x*sin(x) + cos(x) -

10,(-3,3) ,(0,5), color ="blue")
P + Q +R +S

�

2.9 Euler’s method
In practice, many if not most differential equations do not have explicit solutions.
If an equation does happen to fall into a form that we have a solution method
for, there is no guarantee that we can integrate the result. Thus, it is important
to have approaches that can sketch curves and approximate solutions in the
absence of explicit formulas.

One of the most straightforward approaches to first order equations of the
form

dy

dt
= f(t, y)

is Euler’s method, which approximates a solution to an initial value problem
with small pieces of tangent line.

Suppose we are given an initial value problem
dy

dt
= f(t, y) y(t0) = y0.

• Let h = step size. These are our t−axis increments.

• Let t0 = our starting point. Then our next point will be t1 = t0 + h, then
t2 = t1 + h. Notice that this means

tk+1 − tk = h.

For example suppose t0 = 1 and h = .5, then t0 = 1, t1 = 1.5, t2 = 2, . . .. So
how do we find the explicit values for yk other than just guessing?
Observation 2.9.1 For small step size h, the slope of the tangent line at
(t0, y0) is a reasonable approximation for the secant line connecting (t0, y(t0))
to the point (t1), y(t1). That is,

y(tk+1)− y(tk)
tk+1 − tk

= y(tk+1)− y(tk)
h

≈ f(tk, y(tk)).
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Let y0 = y(t0). Now, denote by y1 the approximation of y(t1) given by
y(t1) ≈ y1 := y0 + f(t0, y0)h.

Iteration of this idea to produce a larger approximate graph of a solution is the
key idea of Euler’s method.

2.9.1 Euler’s method
Definition 2.9.2 Given an initial condition y(t0) = y0 and step size h, compute
(tk+1, yk+1) from the preceding point (tk, yk) as follows:

tk+1 = tk + h

yk+1 = yk + f (tk, yk)h.

♦

Example 2.9.3 Suppose we have the autonomous equation

dy

dt
= 2y − 1 , y(0) = 1,

with h = 0.1 and 0 ≤ t ≤ 1.
1. Our first point is (t0, y0) = (0, 1).

2. We can compute the formula for this and get tk+1 = tk + .1 and notice
that f (t, y) = 2y − 1.

yk+1 = yk + f (tk, yk)h = yk + (2yk − 1) (.1).

3. Make a table:

k tk yk = yk−1 + f (tk−1, yk−1)h f (tk, yk) = 2yk − 1
0 0 1 1
1 0.1 y1 = 1 + 1 · (.1) = 1.1 f (t1, y1) = 2(1.1)− 1 = 1.20
2 0.2 y2 = 1.1 + (1.20) · (.1) = 1.22 f (t2, y2) = 2(1.22)− 1 = 1.44
3 0.3 y3 = 1.22 + (1.20) · (.1) = 1.364 f (t3, y3) = 2(1.22)− 1 = 1.73
4 0.4 1.537 2.07

.5 1.744 2.49

.6 1.993 2.98

.7 2.292 3.58

.8 2.65 4.3
0.9 3.080 5.16
1.0 3.596 3.596

Notice that actual value is y(1) = e2+1
2 = 4.195 and our approximation is

y(1) ≈ 3.596, which is a little short, but it makes sense all the slopes are always
below the graph. �

Example 2.9.4 Our previous example didn’t have any ts to plug in. So suppose
we have

dy

dt
= −2ty2, y(0) = 1, h = 1

2
1. Our first point is (t0, y0) = (0, 1).

2. We can compute the formula for this and get tk+1 = tk + .5 and notice
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that f (t, y) = −2ty2.

yk+1 = yk + f (tk, yk)h = yk +
(
−2tky2

k

)
(1
2).

3. Make a table:

k tk yk = yk−1 + f (tk−1, yk−1)h f (tk, yk) = −2tky2
k

0 0 1 0
1 1

2 y1 = 1 + 0 · ( 1
2 ) = 1 f (t1, y1) = −2 1

211 = −1
2 1 y2 = 1 + (−1) · ( 1

2 ) = 1
2 f (t2, y2) = −2(1)( 1

2 )2 = −1
2

3 1.5 = 3
2 y3 = 1

2 + (− 1
2 ) · ( 1

2 ) = 1
4 f (t3, y3) = −2( 3

2 )( 1
4 )2 = − 3

16
4 2 1

4 +
(
− 3

16
)
·
( 1

2
)

= .15625

A plot of our approximate solution is given below:

In code, this might look like

¡1¢1£1¤1¥1¦1§1¨1©1ª1«1¬1-
1®1¯1°1±1²1³1´1µ1¶1·1̧1¹1º1»1¼1½11¿1À1Á1Â1Ã1Ä1Å1Æ1Ç1È1É1Ê1Ë1Ì1Í1Î1Ï1Ð1Ñ1Ò1Ó1Ô1Õ1Ö1×1Ø1Ù1Ú1Û1Ü1Ý1Þ1ß1à1á1â1ã1ä1å1æ1ç1è1é1ê1ë1ì1í1î1ï1ð1ñ1ò1ó1ô1õ1ö1÷1ø1ù1ú1û1ü1ý1þ1ÿ1
var('t,y')
f(t, y) = -2*t*y^2
t0 = 0
y0 = 1
A = plot_slope_field(f, (0,3), (-1,3))

#approximate solution by Euler's method
h = .5
time = [t0 + n*h for n in range (5)]
yk = [y0]
def ynext(n):

return yk[n-1] + f(time[n-1], yk[n-1])*h
for i in range (1,5):

yk.append(ynext(i))
L = [[time[i], yk[i]] for i in range (5)]
B = line(L)

#actual solution
g(t) = 1/(t^2 + 1)
C = plot(g, (0,2), color = "red")
A + B + C

�



Chapter 3

Second Order Linear Equa-
tions

3.1 Motivation - mass-spring systems.
This chapter is concerned with second order differential equations, and
in particular those with constant coefficients. That is, we’re going to be
spending quite a bit of time thinking about equations of the form

ay′′ + by′ + cy = 0

and
ay′′ + by′ + cy = f(t).

At first glance, these equations seem artificially simple in structure. However,
some of the most useful differential equations in the physical sciences and
mathematics have this form, which motivates our close attention to second
order linear equations with constant coefficients.

50
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3.1.1 Undamped mass-spring systems
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The pictures above are a derivation of the differential equation for a simple
mass-spring system. Notice that the resulting equation has a second deriva-
tive x′′ in it - thus, this is a second order equation where the position of the
mass x(t) relative to the equilibrium position is a function of time t:

x′′ + k

m
x = 0.

Also, note the important fact that the equation is linear and has constant
coefficients. If we want to describe how the solutions to this equation behave,
we should study second order equations with constant coefficients.

3.1.2 Damped mass-spring systems
One way to model more complicated situations with a mass-spring system
is to include a damper that applies force against the direction of motion.
The spring/shock absorber system in a car wheel is an example of a damped
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mass-spring system. The pictures below derive the equation for this in the
case that we assume that the damper exerts a force proportional to and in the
opposite direction from the velocity of the mass.
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Thus, the equation for a damped mass-spring system is

x′′ + b

m
x′ + k

m
x = 0

which is also a second order linear equation with constant coefficients.
The mass-spring system is one of the most useful models in all of science.

For example, RLC circuits (resistor/inductor/capacitor) are typically modeled
as mass-spring systems.

This motivates the study of second order linear differential equations with
constant coefficients, even though that might seem like an extremely restricted
family of problems to think about. In later sections, we will extend our ideas
to consider what happens if an external driving or forcing function is applied
to the system.

We should already have an idea about the sorts of functions that solve these
systems.

1. Physical intuition tells us that when we release a mass attached to a
spring from a non-equilibrium starting position, the mass oscillates up
and down around the equilibrium position. This suggests that sine or
cosine waves might be involved in the solution.

2. Mathematical intuition tells us that functions that are related to their
second derivatives by constant factors are also sines and cosines. That is,
(sin x)′′ = − sin x.

We will see that, indeed, this intuition is correct for undamped systems with
no external forces.

3.2 Second order linear equations
A general second order ODE is of the form

d2y

dt2
= f

(
t, y,

dy

dt

)
.



CHAPTER 3. SECOND ORDER LINEAR EQUATIONS 56

As is the case with first order equations, we can describe a more structured
family of equations. A 2nd order linear ODE is of the form

a(t)y′′ + b(t)y′ + c(t)y = d(t)

which can be rewritten as

y′′ + p(t)y′ + q(t)y = g(t).

A 2nd order ODE is called homogeneous if

a(t)y′′ + b(t)y′ + c(t)y = 0

and nonhomogeneous if

a(t)y′′ + b(t)y′ + c(t)y = d(t)

for some d(t) that is NOT identically zero.
An intial value problem for a second order ODE needs to have two initial

conditions:

y(t0) = y0,

y′(t0) = y′0.

3.2.1 Second order linear homogeneous ODEs with con-
stant coefficients (characteristic equation)

We will begin with the 2nd order linear homogeneous ODEs with con-
stant coefficients that we introduced and motivated in the previous section:

ay′′ + by′ + cy = 0

where a, b, c are real constants.
Consider y′′ − y = 0 or

y′′ = y.

Can we think of a solution to this ODE from Calculus 1? A function where its
second derivative is equal to itself?

A moment of thought should lead us to conclude that there are two obvious
solutions: y1(t) = et and y2(t) = e−t. But it not hard to check that the larger
family of functions y = c1e

t and y = c2e
−t are also solutions for any constants

c1, c2.
Now consider the general ODE

ay′′ + by′ + cy = 0.

Guided by our observation about the solutions to the previous equation,
let us assume solutions are of the form y(t) = ert. (If this is an unsatisfying
assumption, another appoach will be explained shortly). Then

y(t) = ert

y′(t) = rert

y′′(t) = r2ert,

and plugging this into the ODE we have

LHS = ar2ert + brert + cert
?= 0
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ert
(
ar2 + br + c

) ?= 0.

and since ert 6= 0 then
ar2 + br + c = 0.

Using standard methods for quadratic equations, we can solve for the roots
r = r1, r2.

This is called the characteristic equation of this ODE. If the roots
r1, r2 are real and distinct, then the general solution to the homogeneous
equation is of the form

y(t) = c1e
r1t + c2e

r2t.

The justification for gluing together the solutions will be presented in the
next section as the “principle of superposition”.
Example 3.2.1 Let’s find the general solution of

y′′ + 5y′ + 6y = 0.

1. We’ll guess that the solution to a solution is y(t) = ert for some r. Then
get (

r2 + 5r + 6
)
ert = 0

so that we must have r2 + 5r+ 6 = (r + 2) (r + 3) = 0 so that r = −2,−3.

2. So y1(t) = e−2t and y2(t) = e−3t are solutions and

y(t) = c1e
−2t + c2e

−3t

is the general solution.

�

Example 3.2.2 Let’s find the solution to the following IVP

y′′ + 5y′ + 6y = 0 y(0) = 2, y′(0) = −1.

Solving for the particular solution. We have y(0) = 2 and y′(0) = −1.
Differentiating y(t) = c1e

−2t + c2e
−3t we get y′(t) = −2c1e−2t − 3c2e−3t and

set up the following system:

c1 + c2 = 2
−2c1 − 3c2 = −1

and get c1 = 5, c2 = −3. So the particular solution is

y(t) = 5e−2t − 3e−3t.

�

Example 3.2.3 Let’s find the general solution of

2d
2y

dt2
+ 7dy

dt
− 4y = 0.

1. We’ll guess that the solution to a solution is y(t) = ert for some r. Then
get (

2r2 + 7r − 4
)
ert = 0

so that we must have 2r2 +7r−4 = (2r − 1) (r + 4) = 0 so that r = 1
2 ,−4.
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2. So y1(t) = et/2 and y2(t) = e−4t are solutions and

y(t) = c1e
t/2 + c2e

−4t

is the general solution.

�

3.2.2 Derivatives as linear operators and the characteristic
equation

It might seem unsatisfying to assume the form of an answer and then show that
our guess worked. Is there a mathematical justification for making this guess?
The answer is yes, if we’re willing to push our understanding of differentiation
slightly.

Define the differential operator D to be the operation of applying d
dx to

a function y(x). The operator D can be thought of as a function on functions:

D(function) = derivative.

Any order of derivative can be thought of this way. For example,

y′′′ = d3y

dx3 = d3

dx3 y = D3y.

We need a notion of D0 - what should that mean? It makes sense to set
D0(y) = y - that is, take no derivatives of y. We will use the symbol 1 to
represent this function, the identity function that leaves y unchanged.

In Calculus, we learn that derivatives follow certain rules. Two of the most
important are

D(f + g) = Df +Dg

and
D(cf) = cD(f).

These two properties together show that D is a linear function.
Using differential operator notation allows us to transform an ODE and

use algebraic techniques to solve it using first order methods. Consider the
equation

y′′ + 3y′ + 2y = 0.
This can be written

D2y + 3Dy + 2y = 0
using operator notation. But since each operator is applied to the same input,
y, we can use function notation to write

(D2 + 3D + 2)(y) = 0.

The operator expression D2 + 3D + 2 can be factored as symbols into
(D + 2)(D + 1) (that this is equal to the original equation applied to y is a
consequence of linearity). Now, using the fact that the derivative of 0 is 0, we
assert that the solutions to the equation

(D + 1)(D + 2)y = (D + 2)(D + 1)y = 0

are the solutions to (D + 1)(y) = 0 and (D + 2)y = 0, which are just the first
order equations

y′ + y = 0
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y′ + 2y = 0

These are separable, with solutions y1 = c1e
−x and y2 = c2e

−2x. So the general
solution (justified by the principle of superposition, covered in the next section)
to the ODE is

y = c1e
−x + c2e

−2x.

Note that the operator polynomial D2 + 3D + 2 is precisely equivalent to
the characteristic polynomial r2 + 3r + 2.

3.3 Solutions to Linear Equations; theWronskian
In this section, we will consider equations of the form

y′′ + p(t)y′ + q(t)y = 0, y(t0) = y0, y′(t0) = y′0.

where a, b, c are constants. This is a second order, linear, homogeneous equation.
Our goal is to find the general solution of these equations.

Theorem 3.3.1 (Existence and Uniqueness for 2nd order linear ODES).
Consider the IVP

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′0

where p, q, g are continuous on an open interval I that contains t0. Then there
exists a unique solution y = φ(t), and the solution exists throughout all of I.

Recall that this theorem implies that a solution to this IVP

1. exists,

2. is unique

3. and the solution φ is defined throughout all of I.

In fact it says more, namely that φ is at least twice differentiable on I.
Example 3.3.2 Find the longest interval in which the solution to the IVP is
certain to exist by Theorem 3.3.1:(

t4 − 4t2
)
y′′ + cos ty′ − ety = 0, y(1) = 2, y′(1) = 1.

Solution: Rewrite the equation as

y′′ + cos t
t2 (t2 − 4)y

′ − et

t2 (t2 − 4)y = 0.

so that p(t) = cos t
t2(t2−4) and q(t) = − et

t2(t2−4) which are both continuous on
(−∞,−2) ∪ (−2, 0) ∪ (0, 2) ∪ (2,∞). Since t0 = 1 ∈ (0, 2) then I = (0, 2) is the
longest interval where p(t) and q(t) are both continuous that contains t0. �

3.3.1 Principle of Superposition
We now give a name to idea that linear combinations of solutions to a linear
homogeneous differential equation remain solutions. (Again, the underlying
principle is the linearity of the differential operator.)

Theorem 3.3.3 Superposition of solutions to linear homogeneous
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ODE. If y1 and y2 are two solutions to an ODE

y′′ + p(t)y′ + q(t)y = 0,

then the linear combination y(t) = c1y1(t) + c2y2(t) is also a solution for any
values c1, c2.

Warning: The principle of superposition holds only if the equation is linear
and homogeneous.

Example 3.3.4 Suppose y1(t) = e−t and y2(t) = et are two solutions to
y′′ − y = 0. Since this is a linear homogeneous ODE then the principle of
superposition says that the function

y(t) = 2e−t + 3et

is also a solution. �

Example 3.3.5 It is not hard to check that y1(t) = 1 and y2(t) = t
1
2 are

solutions to
yy′′ + (y′)2 = 0, t > 0.

Part (a): Show y(t) = 1 + 2t 1
2 is not a solution to this ODE:

Solution: First compute

y(t) = 1 + 2t 1
2

y′(t) = t−
1
2

y′′(t) = −1
2 t
− 3

2

To show this simply check if the LHS equal to 0:

LHS = yy′′ + (y′)2 =
(

1 + 2t 1
2

)(
− 1

2t3/2

)
+
(

1
t

1
2

)2

= − 1
2t3/2 −

1
t

+ 1
t

= − 1
2t3/2 6= 0,

Part (b): Why does this not contradict the Principle of Superposition?
Solution: To apply the principle, the equation needs to be linear. The term

(y′)2 in the ODE makes this nonlinear, hence we can’t even use the principle in
the first place. �

3.3.2 Fundamental sets of solutions
Suppose that y1(t) and y2(t) are two solutions to a second order linear homoge-
neous equation. When do we know that

y(t) = c1y1(t) + c2y2(t)
is the general solution to the ODE? That is, when do we know that we can
obtain every single solution to an IVP? To answer that we need to define some
machinery.

Definition 3.3.6 The determinant of a matrix
(
a b

c d

)
is

∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc.

♦
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Definition 3.3.7 The Wronskian of the solutions y1(t) and y2(t) to a second
order linear homogeneous ODE is the function

W = W (y1, y2)(t) =
∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ .
♦

The Wronskian computes a function that can be used to check of a solution
set is sufficient to construct every possible solution.
Theorem 3.3.8 General solution theorem. Suppose y1 and y2 are two
solutions to the ODE

y′′ + p(t)y′ + q(t)y = 0

in some interval I where p, q are continuous. Then the family of solutions

y(t) = c1y1(t) + c2y2(t)

for arbtitrary c1, c2 is the general solution if and only if the WronskianW (y1, y2)
is not zero for at least one point t0 in I.
Example 3.3.9 Find the general solution to

y′′ + 4y′ − 5y = 0.

Solution: In the last section we showed that to find solutions to this ODE
we simply need to solve the characteristic equation

r2 + 4r − 5 = (r − 1) (r + 5) = 0

and get r = 1,−5 so that

y(t) = c1e
t + c2e

−5t

gives other solutions to the ODE. To show this gives all of them, we simply
need to show the Wronksian is not always zero:

W
(
et, e−5t) =

∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ =
∣∣∣∣ et e−5t

et −5e−5t

∣∣∣∣
= −5e−4t − e−4t

= −6e−4t

6= 0.

�
To find the general solution of y′′ + p(t)y′ + q(t)y = g(t), we only need to

find two (y1, y2) solutions whose Wronskian is nonzero:

1. First find two solutions y1, y2.

2. Then check W (y1, y2) 6= 0 for at least one point in the interval.

Definition 3.3.10 The solutions y1 and y2 are said to form a fundamental
set of solutions to

y′′ + p(t)y′ + q(t)y = 0

if W (y1, y2) 6= 0. ♦

Example 3.3.11 Verify that y1(t) = t
1
2 and y2(t) = t−1 form a fundamental
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set of solutions of
2t2y′′ + 3ty′ − y = 0, t > 0.

Solution:
Part (a): First we verify these are indeed solutions by plugging them into

the LHS and checking that they equal zero. First computer some derivatives

y1(t) = t
1
2 y2(t) = t−1

y′2(t) = 1
2 t
− 1

2 y′2(t) = −t−2

y′3(t) = − 1
4 t
− 3

2 y′′2 (t) = −t−2.

Plugging y1 into LHS we get

LHS = 2t2y′′1 + 3ty′1 − y1

= 2t2
(
−1

4 t
− 3

2

)
+ 3t

(
1
2 t
− 1

2

)
−
(
t

1
2

)
= −1

2 t
1
2 + 3

2 t
1
2 − t 1

2

= 0.

Thus y1 is a solution. It is very similar to show y2 is a solution.
Part (b): To show y1y2 form a fundamental set of solutions, we simply need

to show that W (y1, y2) is nonzero:

W (y1, y2) =
∣∣∣∣ t

1
2 t−1

1
2 t
− 1

2 −t−2

∣∣∣∣ = −3
2 t
−3/2 6= 0

which is nonzero for t > 0. �

3.4 Complex roots of the characteristic equation

3.4.1 Complex numbers:
Complex numbers are of the form z = a+ bi where a, b ∈ R and i =

√
−1. Thus

i2 = −1. Complex numbers have a polar representation z = reiθ, where
r =
√
a2 + b2 and θ = arctan y

x . In the polar representation, we should think
about r as a radius and eiθ as a point on the unit circle.

We should think about the exponential part as representing motion on a
circle. The unit circle from trigonometry gives (x, y) = (cos θ, sin θ) for an
angle θ on the unit circle. This connection is made explicit in what is known
as Euler’s formula:

eiθ = cos θ + i sin θ.
So

ea+ib = eaeib = ea (cos b+ i sin b) = ea cos b+ iea sin b.

3.4.2 Complex roots to the characteristic equation
Suppose we are solving the constant coefficient 2nd order linear differential
equation

ay′′ + by′ + cy = 0.
and that solving the characteristic equation

ar2 + br + c = 0
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gives that the roots are

r1 = α+ iβ and r2 = α− iβ.

(Remember that complex roots of real polynomials always come in conjugate
pairs.)

These roots are distinct, so we can apply the form of solutions we developed
in the previous section. So for the root r1 = α+ iβ, the solution is of the form

y(t) = er1t = e(α+iβ)t = eαteiβt

= eαt (cos (βt) + i sin (βt))
= eαt cos (βt) + ieαt sin (βt)
= u(t) + iv(t)

where u(t) = eαt cos (βt) is the real part and v(t) = eαt sin (βt) is the imaginary
part.

The complex form of the solution is frequently useful for computational
purposes, but in practice (and for non-mathematicians) we prefer real solutions.
Because the differential operator is linear, we have the following theorem:

Theorem 3.4.1 If y(t) = u(t) + iv(t) is a complex solution to an ODE of the
form ay′′ + by′ + cy = 0, then so are u(t) and v(t).

Therefore since u(t) = eαt cos (βt) and v(t) = eαt sin (βt) are solutions we
can compute (after some tedious work) that the Wronskian of u and v are:

W (u, v) (t) = βe2αt 6= 0 as long as β 6= 0.

Hence by the Theorem 3.3.8, because the Wronskian is not zero we have that
u(t) and v(t) form a fundamental set of solutions. In other words, the general
solution to ay′′ + by′ + cy = 0 is

yg = eαt(c1 cos(βt) + c2 sin(βt)).

3.4.3 Examples
So far, we can solve two cases of second order linear constant coefficient
homogeneous differential equations. For

a
d2y

dt2
+ b

dy

dt
+ cy = 0

and roots r1, r2 of
ar2 + br + c = 0,

the general solutions are the following:

Roots General solution Example
r1, r2 = real, distinct y(t) = c1e

r1t + c2e
r2t (r + 1) (r − 1) = r2 − 1 = 0

r = α± iβ, imaginary y(t) = c1e
αt cosβt+ c2e

αt sin βt r2 + 1 = 0

Example 3.4.2 Let’s find the general solution of

d2y

dt
+ 4dy

dt
+ 13y = 0
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Step 1: We can jump straight to the characteristic equation:

r2 + 4r + 13 = 0,

which we can solve this using the quadratic formula:

r = −4±
√

16− 4 · 13
2 = −2± 1

2
√

4(4− 13) = −2±
√
−9 = −2± 3i.

(Or you can use a completing the square trick
Step 2: The general solution is

y(t) = c1e
−2t cos 3t+ c2e

−2t sin 3t.

�

Example 3.4.3 Let’s find the particular solution to the IVP:

y′′ + 9y = 0, y(0) = −2, y′(0) = 1

Step 1: We can jump straight to the characteristic equation:

r2 + 9 = 0

and get r = ±3i.
Step 2: The general solution is

y(t) = c1e
0t cos 3t+ c2e

0t sin 3t.
= c1 cos 3t+ c2 sin 3t.

Step 3: Using the initial conditions y(0) = −2, y′(0) = 1 we need to first
take a derivative

y(t) = c1 cos 3t+ c2 sin 3t
y′(t) = −3c1 sin 3t+ 3c2 cos 3t

hence

−2 = y(0) = c1 + 0
1 = y′(0) = 0 + 3c2

so that
c1 = −2, c2 = 1

3 .

Thus the solution is
y(t) = −2 cos 3t+ 1

3 sin 3t.

�

Example 3.4.4 Suppose we get that the general solution comes out to

y(t) = c1e
3t cos t+ c2e

3t sin t.

Then just remember when finding constants corresponding to initial conditions
that we need to use product rule to find the derivative of y(t):

y′(t) = 3c1e3t cos t− c1e3t sin t+ 3c2e3t sin t+ c2e
3t cos t.

�
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3.5 Repeated roots; Reduction of order

3.5.1 Repeated roots
Suppose that we are given the differential equation

ay′′ + by′ + cy = 0

and that b2 − 4ac = 0. Then the characteristic equation must have the form

ar2 + br + c = ar2 + br + b2

4a
= a(r + b

2a )2

That is, the equation has just one root, r = − b
2a . The results of the previous

section say that the function y = e−
b

2a t is a solution to the equation. But this
is just one solution. We can’t use another copy of the function as a second
solution because it isn’t linearly independent from the first - we will not have a
fundamental set, nor will we know the general equation.

So the question is how to get a second solution from only our knowledge of
the first. Because the roots are repeated, we may well guess that some kind of
modification of the first solution y1 = e−

b
2a t will give us what we want, but we

need to use more than a constant or again we’ll fail to have a fundamental set.
It seems reasonable to guess that the second solution should have the form

y2 = u(t)y1(t)

for some unknown (but non-constant) function u.
So suppose that y2 = uy1 solves the equation. We’ll need to compute

expressions for y′′2 and y′2 so that we can plug our “solution” into the differential
equation.

y2 = ue−
b

2a t

y′2 = u′e−
b

2a t − b

2aue
− b

2a t

y′′2 = u′′e−
b

2a t − b

2au
′e−

b
2a t − b

2au
′e−

b
2a t + b2

4a2ue
− b

2a t

Then

0 = ay′′2 + by′2 + cy2

= ay′′2 + by′2 + b2

4ay

= a(u′′e− b
2a t − b

a
u′e−

b
2a t + b2

4a2ue
− b

2a t)

+ b(u′e− b
2a t − b

2aue
− b

2a t) + b2

4a (ue− b
2a t)

= au′′e−
b

2a t.

Since a 6= 0 and e− b
2a t 6= 0, then it must be that

au′′e−
b

2a t = 0⇒ u′′ = 0.

Integrating twice gets us that u = Ct+D for arbitrary constants C,D. Then
our second solution is y2 = uy1 = (Ct+D)y1. Since we’re working with linear
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differential equations, the principle of superposition allows us to set D = 0
(since we already know that scalar multiples of y1 are solutions) and C = 1
(since any scalar multiple of a solution is a solution). Thus, y2 = ty1 is our
proposed second solution.

To check that we have a fundamental set, we can compute the Wronskian
W (y1, ty1):

W (y1, ty1) =
∣∣∣∣ y1 ty1
y′1 y1 + ty′1

∣∣∣∣ = y2
1 = e−

b
a t 6= 0 for any t.

We conclude that the set y1 = e−
b

2a t, y2 = te−
b

2a t is a fundemental set of
solutions, and so the general solution for an equation with repeated roots is

y(t) = c1e
− b

2a t + c2te
− b

2a t.

Example 3.5.1 Consider the equation

y′′ + 6y′ + 9y = 0.

The characteristic equation is

r2 + 6r + 9 = (r + 3)2

and so we have the repeated root r = −3. Our first solution is y1 = e−3t. By
the argument above, our second linearly independent solution is y2 = te−3t and
the general solution is

y = c1e
−3t + c2te

−3.

�

Example 3.5.2 Find the general solution of

y′′ − 10y′ + 25y = 0

The characteristic equation is

r2 − 10r + 25 = (r − 5)2 = 0,

and so we have the repeated root r = 5. Then the general solution is

y = c1e
5t + c2te

5t.

�

The table below summarizes the solutions for homogeneous linear second
order differential equations with constant coefficients.

roots : general solution example
r1, r2 = real, distinct y(t) = c1e

r1t + c2e
r2t (r + 1) (r − 1) = 0

r = α± iβ, imaginary y(t) = c1e
αt cosβt+ c2e

at sin βt r2 + 1 = 0
r = r1, real, repeated y(t) = c1e

r1t + c2te
r1t. (r − 2)2 = 0

3.5.2 Reduction of order
In the previous examples, when we had only one solution y1, we found a second
solution y2 = ty1 by multiplying by t. We did this by making the guess that
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y2 = uy1. This idea works for general second order homogenous linear equations,
not just those with constant coefficients.

For example, suppose we know that y1(t) = t is a solution to

t2y′′ + 2ty′ − 2y = 0, t > 0.

To find the second solution y2(t) of this ODE, we guess

y2(t) = v(t)y1(t) = v(t)t.

First, take derivatives:

y2(t) = v(t)t
y′2(t) = v′(t)t+ v(t)
y′′2 (t) = v′′(t)t+ v′(t) + v′(t)

= v′′(t)t+ 2v′(t).

Then plug y2 and its derivatives into the LHS of the ODE:

LHS = t2y′′2 + 2ty′2 − 2y2

= t2 (v′′(t)t+ 2v′(t)) + 2t (v′(t)t+ v(t))− 2 (v(t)t)
= t3v′′(t) + 2t2v′(t) + 2t2v′(t) + 2tv(t)− 2tv(t)
= t3v′′ + 4t2v′.

Setting the LHS equal to zero means

v′′t+ 4v′ = 0.

Now we notice that
t3v′′ + 4t2v′ = 0

is really a first order equation is disguise, using the substitution w = v′.

The equation
a(t)v′′ + b(t)v′ = 0

using the substitution w = v′ becomes

a(t)w′ + b(t)w = 0,

which is separable and first order.

Then we need to solve
w′ + 4

t
w = 0.

This equation is separable, and gives

w = k1

t4

Now we need to reverse the substitution to find v.

v′ = w = k1t
−4

hence
v = k1t

−3 + k2.



CHAPTER 3. SECOND ORDER LINEAR EQUATIONS 68

To finish we have that y2 = v · t =
(
k1t
−3 + k2

)
t = k1t

−2 + k2t. Set k2 = 0
and k1 = 1. Thus

y2(t) = t−2

is a linearly independent solution. Hence the general solution is given by

y(t) = c1y1(t) + c2y2(t)
= c1t+ c2t

−2.

This example illustrates the central ideas of reduction of order.

Given a second order linear differential equation

a(t)y′′ + b(t)y′ + c(t)y = r(t)

with a known solution y1, a second solution is given by

y2 = v(t)y1.

This substitution will reduce the order of the equation from second to
first in terms of w = v′.

3.6 Non-homogeneous equations - Undetermined
coefficients

3.6.1 Nonhomogeneous equations
An equation is called nonhomogeneous if there is a forcing term - that is,
a function of just the independent variable on the RHS of the equation. For
example, consider the nonhomogeneous equation

y′′ + p(t)y′ + q(t)y = g(t)

where p, q, g are (continuous) functions on some open interval I. The function
g(t) is the forcing or driving function.

Consider the corresponding homogeneous equation

y′′ + p(t)y′ + q(t)y = 0, .

whose general solution we’ll call yh. Now suppose that the particular solution
yp(t) solves the nonhomogeneous equation. Then yp+yh also solves the equation,
since

(yp + yh)′′ + p(yp + yh)′ + q(yp + yh)
= y′′p + py′p + qyp + y′′h + py′h + qyh

= g(t) + 0
= g(t).

We record this result in the following theorem.
Theorem 3.6.1 The general solution of

y′′ + p(t)y′ + q(t)y = g(t)
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is given by
y(t) = c1y1(t) + c2y2(t) + yp(t)

where y1, y2 are a fundamental set of solutions of the corresponding homogeneous
equation, and yp(t) is a particular solution to the nonhomogeneous equation.

Steps to solving y′′ + p(t)y′ + q(t)y = g(t) :

1. We already know how to find the fundamental set of solutions y1, y2 for
the homogeneous equation. We have that yh = c1y1 + c2y2 is the general
solution to the corresponding homogeneous equation.

2. Find a particular solution yp using the method of undetermined
coefficients.

3. The pieces can be summed into the general solution: y(t) = yh + yp =
c1y1 + c2y2 + yp.

3.6.2 Method of undetermined coefficients
The idea of the method of undetermined coefficients is to guess what the
particular solution yp should be, based on what g(t) looks like. If we think
about the LHS of a differential equation as a machine that takes as input some
function y and produces as output a function y′′ + py′ + qy, we can guess the
sort of input that will be required to produce the output g(t) as a sum of
derivatives of y.

Our guess of yp will always be the general form of g(t), for nice function.
For example, we will guess that polynomial inputs produce polynomial outputs,
that exponential inputs produce exponential outputs, and that trigonometric
inputs produce trigonometric outputs.

If g(t) looks like Then yp(t) is
Pn(t) = ant

n + an−1t
n−1 + · · ·+ a0 ts

[
Amt

m +Am−1t
m−1 + · · ·+A0

]
eα0tPm(t) tseα0t

[
Amt

m +Am−1t
m−1 + · · ·+A0

]
Pm(t)eα0t cosβ0t or Pm(t)eα0t sin βt ts [(Amtm + · · ·+A0) eα0t cosβt

+ (Bmtm + · · ·+B0) eα0t sin β0t]

This looks more complicated that it actually is because there’s a possibility that
g(t) is actually a solution to the homogeneous equation. So s = the smallest
nonnegative integer (s = 0, 1,or 2) such that no term of yp is a solution to
the corresponding homogeneous equation. (For example, given the equation
x′′ + 4x′ + 4x = e−2t, we can’t guess yp = Ae−2t because this solves the
homogeneous equation.)

The next few examples will give a very detailed explanation on the mechanics
of the method of undetermined coefficients (MOUC):

Example 3.6.2 Find the solution to the following IVP:

y′′ + 5y′ + 6y = e−t. y(0) = 1, y′(0) = 1
2

Step 1: Find yh(t) , which is simply the general solution of

y′′ + 5y′ + 6y = 0.

Solving the charateristic polynomial r2 + 5r + 6 = (r + 2)(r + 3) = 0, we get
r = −2,−3 so that the solution is

yh(t) = c1e
−2t + c2e

−3t.
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Step 2: We find yp(t) by making our guess and to find the undertermined
coefficient. So we let yp(t) = Ae−t and plug yp into the LHS:

y′′p + 5y′p + 6yp = Ae−t − 5Ae−t + 6Ae−t

= 2Ae−t

Step 3: Set the LHS equal to the RHS and solve for A to get

2Ae−t = e−t

so that A = 1
2 .

Step 4: Plug A back in and get yh(t) = 1
2e
−t and a general solution of

y(t) = c1e
−2t + c2e

−3t + 1
2e
−t.

Final IVP step: Now we need to find c1 and c2 using y(0) = 1 and y′(0) = 1
2

and set up the following system of equations:

c1 + c2 + 1
2 = 1

−2c1 − 3c2 −
1
2 = 1

2

which comes from y(t) = c1e
−2t + c2e

−3t + 1
2e
−t and y′(t) = −2k1e

−2t −
3k2e

−3t − 1
2e
−t. Solving this we get c1 = 5

2 and c2 = −2 thus the solution to
the IVP is

y(t) = 5
2e
−2t − 2e−3t + 1

2e
−t.

�

Example 3.6.3 Find the general solution of

d2y

dt
− 5dy

dt
+ 4y = e4t.

Step 1: Find yh(t). We solve r2 − 5r + 4 = (r − 1)(r − 4) = 0 and get r = 1, 4
so that the solution is

yh(t) = c1e
t + c2e

4t.

Step 2: yp(t) = Ae4t is the wrong guess because

d2yp
dt
− 5dyp

dt
+ 4yp = 16Ae4t − 20Ae4t + 4Ae4t = 0.

But we should have known that this wouldn’t work. The term e4t is part of the
homogeneous solution, so plugging it into the LHS will give 0. We can modify
our guess by multiplying by t. Our second guess should be yp(t) = Ate4t . Find
y′p and y′′p (t) on the side and plug into LHS and get

d2yp
dt
− 5dyp

dt
+ 4yp =

(
8Ae4t + 16Ate4t)− 5

(
Ae4t + 4Ate4t)+ 4Ate4t

= 3Ae4t

Now set LHS equal to RHS and get 3Ae4t = e4t so that A = 1
3 .

Step 3: Plug A back in and get yp(t) = 1
3e

4t and a general solution of

y(t) = c1e
t + c2e

4t + 1
3 te

4t.

�
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Example 3.6.4 Find the general solution of

d2y

dt2
+ 2dy

dt
+ 10y = 4 cos 2t

Step 1: Find yh which is the general solution to the unforced equation

d2y

dt2
+ 2dy

dt
+ 10y = 0

which since r2 + 2r + 10 = 0 gives r = −1± 3i must be

yh(t) = c1e
−t cos 3t+ c2e

−t sin 3t.

Step 2: Now as long as the RHS g(t) is not part of yh then we can use that
as our guess. So we let yp(t) = A cos 2t+B sin 2t.

Step 3: Plug into the LHS and set equal to RHS

d2yp
dt2

+ 2dyp
dt

+ 10y = [−4A cos 2t− 4B sin 2t]

+ 2 [−2A sin 2t+ 2B cos 2t] + 10 [A cos 2t+B sin 2t]

which gives us

[−4A+ 4B + 10A] cos 2t+ [−4B − 4A+ 10B] sin 2t = 4 cos 2t

so that

6A+ 4B = 4
−4A+ 6B = 0

gives us A = 6
13 , B = 4

13 .
Step 4: Plug into general solution of y(t) = yh(t) + yp(t) and get

y(t) = c1e
−t cos 3t+ c2e

−t sin 3t+ 6
13 cos 2t+ 4

13 sin 2t.

�

Example 3.6.5 Find the general form of a particular solution of

y′′ − 2y′ − 3y = 5te−t.

Step 1: Find yh which is yh = c1e
−t + c2e

3t.
Step 2: Using our table our first guess will be

yp = (At+B) e−t

since At+B is the general form of a one degree polynomial. But this doesn’t
work because Be−t is included in the yh as c1e−t

Step 2 (Second guess): Now guess

yp = t (At+B) e−t

so that both At2e−t and Bte−t are different than the terms in yh. �

Example 3.6.6 Find the general form of a particular solution of

y′′ + 6y′ + 9y = −7te−3t + t3
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Step 1: The characteristic equation is r2 + 6r + 9 = (r + 3)2 = 0, which gives
the repeated root of r1 = r2 = −3. Hence

yh(t) = c1e
−3t + c2te

−3t

Using our table we make our first guess as

yp = (At+B) e−3t + Ct3 +Dt2 + Et+ F

but this is wrong, since (At+B) e−3t is included in the yh. So our second guess
is to multiply only that part by t, and get

yp = t (At+B) e−3t + Ct3 +Dt2 + Et+ F.

But this still doesn’t work since Bte−3t is included in the yh as c2te−3t. Our
third guess is to multiply again only that part by t and get

yp = t2 (At+B) e−3t + Ct3 +Dt2 + Et+ F,

which works since none of the terms in the yp are included in the homogeneous
solution yh. �

Example 3.6.7 Find the general form of a particular solution of

y′′ + y = t+ t sin t

Step 1: As in Example 3 we know yh(t) = c1 cos t+ c2 sin t.
Our first guess would normally be yp = At+B+[(Dt+ E) cos t+ (Ft+G) sin t]

but notice that since E cos t and G sin t is included in the yh, we need to multiply
by t and get our final guess of

yp = At+B + t [(Dt+ E) cos t+ (Ft+G) sin t]

�

Example 3.6.8 Find the general form of a particular solution of

y′′ + 2y′ + 10y = 4e−t cos 3t+ 17

Step 1: As in Example 3 we know yh(t) = c1e
−t cos 3t+ c2e

−t sin 3t.
Since e−t cos 3t is already inside our yh we need to multiply by t .

yp = t
(
Ae−t cos 3t+Be−t sin 3t

)
+ C.

Note that 17 is a zero degree polynomial , which is why we have the C in the
yp. �

3.7 Harmonic oscillations
We’ll now take a closer look at the model that motivated our study of second
order equations with constant coefficients - harmonic oscillators. The simplest
example of a harmonic oscillator are the motions of a spring-mass system.

3.7.1 Mass-spring systems
Suppose a mass m hangs from a vertical spring of original length l.
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We will study the motion of a mass when it is acted on by an external force
(forcing function) and/or is initially displaced. Let u(t) =displacement of the
mass from its equilibrium position at time t. The motion of the mass u(t) is
modeled by the following:

mu′′(t) + γu′(t) + ku(t) = F (t) u(0) = u0, u
′(0) = v0.

where m, γ, k are positive.
The specific constants depend on the measurement system in use. m is

found from w = mg. γ is given in units of weight unit·s
distance unit . k is found using Hooke’s

Law, mg = kL.
Example 3.7.1 A 4 lb mass stretches a spring 2 inches. The mass is displaced
an additional 6 in. and then released; and is in a medium with a damping
coefficients γ = 2 lb sec

ft . Formulate the IVP that governs the motion of this
mass.

Solution:
Find m: w = mg which implies

m = w

g
= 4 lb

32 ft/s2
= 1

8
lbs2

ft

Find γ: Given
γ = 2lb sec

ft .

Find k: (Hooke’s Law)

k = mg

L
= 4 lb

2 in = 4 lb
(1/6) ft = 24 lb

ft
.

Thus
1
8u
′′ + 2u′ + 24u = 0

hence
u′′ + 16u′ + 192u = 0, u(0) = 1

2 , u
′(0) = 0

since u(0) = 6in 1ft
12in = 1

2 .
Solving this

u(t) = 1
4e
−8t
(

2 cos
(

8
√

2t
)

+
√

2 sin
(

8
√

2t
))

.
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�

Definition 3.7.2 When

u(t) = A cosω0t+B sinω0t = R cos (ω0t− δ)

then ω0 = is the natural frequency of the system. ♦

3.7.2 Undamped harmonic oscillator
When the damping coefficient γ = 0 (nothing stopping it from oscillating
forever), we have

mu′′ + ku = 0

so that mr2 + k = 0 gives r = ±i
√

k
m .This is a special number, so we’ll denote

it ω0 =
√

k
m . We get

u(t) = A cosω0t+B sinω0t

with period 2π
ω and the natural frequency of the system is ω0.

3.7.3 Damped harmonic oscillator:
A damper is an applied force that resists velocity (that is, the damping force is
always opposite the direction of motion). A common way to model a damping
force is as proportional to the velocity u′(t). When damped, the model equation
becomes

mu′′(t) + γu′(t) + ku(t) = 0.

In general we’ll have the following characteristic equation

mr2 + γr + k = 0,
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and solving for the roots we get

r = −γ ±
√
γ2 − 4km

2m .

3.7.4 Types of oscillating systems
Different types of behavior are possible depending on the value of b2 − 4mk.
We’ll classify the possible cases in the following way:

• If γ = 0,

◦ the oscillator is undamped.
◦ Mass oscillates forever
◦ The natural period is 2π

√
m
k .

• If γ > 0 and γ2−4km < 0 (which happens when the roots are r = α±βi)

◦ The oscillator is underdamped. The mass oscillates back and forth
as it tends to its rest position. The solutions are

u = Re−γt/(2m) cos (µt− δ)

and u is bounded between ±Re−γt/(2m).

◦

• If γ > 0 and γ2 − 4km > 0 (which happens when there are two distinct
r1, r2):

◦ The oscillator is overdamped. The mass tends to its rest position
but does not oscillate.

◦ The solutions are

u = c1e
r1t + c2e

r2t, r1, r2 < 0

• If γ > 0 and γ2 − 4km = 0 (which happens when there is one negative r):

◦ The oscillator is critically damped. The mass tends to its rest
position but does not oscillate.

◦ Solutions tend to the origin tangent to the unique line of eigenvectors.
◦ The solutions are

u = c1e
−γt/(2m) + c2te

−γt/(2m)
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The image below illustrates the behavior possible in different cases. Under-
damped is in blue, overdamped in green, and critically damped in red and
black.

3.7.5 Electric Circuts
The flow of electric charge in certain basic electrical circuits (RLC for resistor
(R), inductor (L), capacitor (C)) is modeled by second order linear ODEs with
constant coefficients:

LQ′′(t) +RQ′(t) + 1
C
Q(t) = E(t), Q(0) = Q0, Q

′(0) = Q′0

where Q = charge (coulombs).

3.8 Forced oscillations
We consider equations of the form

mu′′ + γu′ + ku = F (t)
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where m > 0, γ > 0, k > 0 are mass, damping coefficients, and spring constant.
Here F (t) represents external force done to the mass-spring system. (e.g
wind or cars driving on a bridge) While these forcing functions come in many
forms, one of the most important cases is where the forcing function is itself
a harmonic oscillation (you can think of this as corresponding to an ambient
vibration).

3.8.1 Harmonic forcing functions
Suppose that the forcing function is F (t) = F0 cosωt, so that the governing
equation for the system is

mu′′ + γu′ + ku = F (t).

Since this is a linear equation in u, recall that we can write the solution as

u(t) = c1u1(t) + c2u2(t) +A cosωt+B sinωt
= uh + up,

and it turns out that limt→∞ uh(t) = 0. (See examples above)
We call uh(t) a transient solution, as its contribution to the system

disappears as time progresses. The particular solution up(t) = A cosωt+B sinωt
is called the steady-state solution, as it is the long-term, limiting behavior
of the system.
Example 3.8.1 Consider a undamped harmonic oscillator with model equation

u′′ + 2u = cos (ωt) , ω 6=
√

2.

Find the general solution u(t). What is the natural frequency of the system?
Solution:
Step 1: Recall that r2 + 2 = 0 so r = ±

√
2i, so that

uh(t) = c1 cos
(√

2t
)

+ c2 sin
(√

2t
)
.

Step 2: We make our first guess

up(t) = A cos (ωt) +B sin (ωt)

and there are no repeats with uh as long as ω 6= 0, hence we have the correct
guess. Thus

u′p(t) = −Aω sin (ωt) +Bω cos (ωt)
u′′p(t) = −Aω2 cos (ωt)−Bω2 sin (ωt) .

Plugging this into the LHS, we have

LHS = u′′p + 2up =
[
−Aω2 cos (ωt)−Bω2 sin (ωt)

]
+ 2A cos (ωt) + 2B sin (ωt)
= A

(
2− ω2) cos (ωt) +B

(
2− ω2) sin (ωt)

Then, setting LHS = RHS = 1 · cos (ωt) + 0 sin (ωt) we have

A
(
2− ω2) = 1, B

(
2− ω2) = 0

A = 1
2− ω2 , B = 0

so that
u(t) = c1 cos

(√
2t
)

+ c2 sin
(√

2t
)

+ 1
2− ω2 cos (ωt) .

�
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3.8.2 Resonance (undamped systems)
When the forcing function of an undamped system is far from the natural
frequency of a undamped system, forcing function and the natural behavior of
the system interact in a combination of constructive and destructive interference.
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var('x')
y = function('y')(x)
de = diff(y, x, 2) + 2*y == cos(5*x)
f = desolve(de, y, [0,0,0])
plot(f, [0,10*pi], title = f)

However, when the frequency of the forcing function approaches the natural
frequency of the system, constructive and destructive interference tend to cluster
into locally strong or weak oscillations called beats.

ω0 ≈ ω.

Solutions in this case typically look something like this:
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var('x')
y = function('y')(x)
de = diff(y, x, 2) + 2*y == cos (1.21*x)
f = desolve(de, y, [0,0,0])
plot(f, [0,20*pi], title = f)

When the natural and forcing frequencies are equal, the result is harmonic
resonance:

ω0 = ω.

We need a new up to solve for when resonance happens, since we can’t plug
ω =
√

2, into 1
2−ω2 cos (ωt). We will see that solution looks like this:
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var('x')
y = function('y')(x)
de = diff(y, x, 2) + 2*y == cos(sqrt (2)*x)
f = desolve(de, y, [0,0,0])
plot(f, [0,20*pi], title = f)

That is, the energy of the forcing function is stored in the system with no
destructive interference, which results in increasingly wide oscillations. Meaning,
if the external forcing and the system oscilations are matching, then the system
will become more and more stronger because of the matching external forcing.
Example 3.8.2 Resonance. Solve the following undamped harmonic oscil-
lator:

u′′ + 2u = cos
(√

2t
)
, u(0) = 0, u′(0) = 0.

What is the natural frequency? What is the frequency for the external force?
What kind of behavior of the solution will you get get?

Solution:
Step1: Recall that r2 + 2 = 0 so r = ±

√
2i, so that

uh(t) = c1 cos
(√

2t
)

+ c2 sin
(√

2t
)
.

The natural frequency of the system is ω0 =
√

2. The external frequency is
ω =
√

2. Since they match, then we will get resonance!
Step 2: We make our first guess

up(t) = A cos
(√

2t
)

+B sin
(√

2t
)

but we know that this overlaps with the homogeneous solution, so we choose
instead our second guess (by multiplying old guess by t)

up(t) = At cos
(√

2t
)

+Bt sin
(√

2t
)
.
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Then

u′p(t) = A cos
√

2t−A
√

2t sin
√

2t
+B sin

√
2t+B

√
2t cos

√
2t

u′′p(t) = −
√

2A sin
√

2t−A
√

2 sin
√

2t
−A2t cos

√
2t

B
√

2 cos
√

2t+B
√

2 cos
√

2t
−B2t sin

√
2t

Plugging this into the LHS we have

LHS = u′′p + 2up = simplify

= 2
√

2B cos
(√

2t
)
− 2
√

2A sin
(√

2t
)
.

Now, setting LHS = RHS = 1 · cos
(√

2t
)

+ 0 sin
(√

2t
)
, we have

2
√

2B = 1, −2
√

2A = 0

B = 1
2
√

2
, A = 0

so that
u(t) = c1 cos

(√
2t
)

+ c2 sin
(√

2t
)

+ 1
2
√

2
t sin

(√
2t
)
.

Using initial condition we have c1 = 0, c2 = 0.

u(t) = 1
2
√

2
t sin

(√
2t
)
.

Hence we get the picture similar to the one above since

1
2
√

2
t sin

(√
2t
)
≈ ± t

2
√

2
when t is large.
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var('x')
y = function('y')(x)
de = diff(y, x, 2) + 2*y == cos(sqrt (2)*x)
f = desolve(de, y, [0,0,0])
plot(f, [0,10*pi], title = f)

�

3.9 Variation of Parameters
Consider the equation

y′′ + 4y = 3
sin t

MOUC doesn’t work with quotients, only products. We will learn a (more com-
plicated) general formula to solving more general linear non-homoheneous 2nd
order ODEs. This formula will give a particular solution to a non-homogeneous
equation given that you already know what the fundamental set of solutions
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are for the corresponsing homogeneous equation.
Theorem 3.9.1 Variation of Parameters. If p, q, and g are continuous
on an open interval I, and if the functions {y1, y2} form a fundamental set of
solutions to the corresponding homogeneous equation

y′′ + p(t)y′ + q(t)y = 0,

then a particular solution to

y′′ + p(t)y′ + q(t)y = g(t)

is given by

yp(t) = −y1(t)
∫ t

t0

y2(s)g(s)
W (y1, y2) (s)ds+ y2(t)

∫ t

t0

y1(s)g(s)
W (y1, y2) (s)ds

= −y1(t)
[∫

y2(t)g(t)
W (y1, y2) (t)dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)dt
]

if the antiderivates exist, where t0 is any value in I. Then the general solution
to the non-homogeneous solution is

y(t) = c1y1(t) + c2y2(t) + yp(t).
Proof. The proof can be found in any differential equations text, or online. The
idea is this: Suppose

yh(t) = c1y1(t) + c2y1(t)
is the general solution to

y′′ + p(t)y′ + q(t)y = 0.

Then the idea is to use the following guess:

yp(t) = u1(t)y1(t) + u2(t)y2(t)

for the non-homogeneous equation, and also make the extra assumption that

u′1(t)y1(t) + u′2(t)y2(t) = 0. (?)

The validity of this assumption is difficult to justify without higher level
mathematics, but one can at least take comfort in that we have an extra
constraint to play with, so for computational convenience we select condition
(?).

Then take derivatives, simplify and put them back into the differential
equation. This will always reduce to

LHS = y′′p + p(t)y′p + q(t)yp
= work
= u′1y

′
1(t) + u′2(t)y′2(t)

and set LHS to RHS which is g(t) hence we get

u′1(t)y′1(t) + u′2(t)y′2(t) = g(t). (??)

Putting (?) and (??) together we have the two equations:{
u′1(t)y1(t) + u′2(t)y2(t) = 0
u′1y
′
1(t) + u′2(t)y′2(t) = g(t)
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which boils to solving for u′1(t) and u′2(t) and getting{
u′1(t) = − y2(t)g(t)

W (y1,y2)(t)

u′2(t) = y1(t)g(t)
W (y1,y2)(t)

which by integrating we have{
u1(t) = −

∫ y2(t)g(t)
W (y1,y2)(t)dt

u2(t) =
∫ y1(t)g(t)
W (y1,y2)(t)dt

�

Example 3.9.2 Find a particular solution to

y′′ + 4y = 1
cos (2t) .

Step1: First find yh if possible. In this case yhwill be given by solving
r2 + 4 = 0 so that r = ±2i hence

yh(t) = c1 cos(2t) + c2 sin (2t) .

Thus y1(t) = cos(2t) and y2(t) = sin (2t).
Step2: Find the Wronskian:

W (y1, y2)(t) =
∣∣∣∣ cos(2t) sin (2t)
−2 sin(2t) 2 cos(2t)

∣∣∣∣
= 2 cos2(2t) + 2 sin2(2t)
= 2

[
cos2(2t) + sin2(2t)

]
= 2 · 1 = 2.

Step3: Use our formula with g(t) = 1
cos(2t) and get

yp(t) = −y1(t)
[∫

y2(t)g(t)
W (y1, y2) (t)dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)dt
]

= − cos(2t)
[∫ 1

2
sin(2t)
cos (2t)dt

]
+ sin(2t)

[∫ cos(2t)
2

1
cos (2t)dt

]
= − cos(2t)

[
1
2

∫ sin(2t)
cos (2t)dt

]
+ t

2 sin(2t)

Now you can remember the antiderivative of
∫

tan(2t)dt or use u-substitution
with u = cos(2t) and get du = −2 sin(2t)dt so that∫ sin(2t)

cos (2t)dt = −1
2

∫
du

u
= −1

2 ln |u| = −1
2 ln |cos(2t)|

hence
yp(t) = 1

4 cos(2t) ln |cos(2t)|+ t

2 sin(2t).

�

Example 3.9.3 Find the general solution to

t2y′′ + 2ty′ − 2y = 6t



CHAPTER 3. SECOND ORDER LINEAR EQUATIONS 83

given that
y1(t) = t, y2(t) = t−2

forms a fundamental set of solution for the corresponding homogeneous differ-
ential equation.

Step 1: Since y1(t) = t, y2(t) = t−2 forms a fundamental set of solution,
this means that the general solution for the homogeneous equation is

yh = c1t+ c2t
−2.

Step 2: Find the Wronskian:

W (y1, y2)(t) =
∣∣∣∣ t t−2

1 −2t−3

∣∣∣∣
= −2t−2 − t−2 = −3t−2 6= 0,

Step 3: Rewrite the equation in the form y′′ + p(t)y′ + q(t)y = g(t) and
hence

y′′ + 2
t
y′ − 2

t2
y = 6

t
.

Use our formula with g(t) = 6
t and get

yp(t) = −y1(t)
[∫

y2(t)g(t)
W (y1, y2) (t)dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)dt
]

= −t
[∫

t−2

−3t−2
6
t
dt

]
+ t−2

[∫
t

−3t−2)
6
t
dt

]
= −t

[∫ 2
t
dt

]
+ t−2

[∫
−2t2dt

]
= −t [2 ln t] + t−2

[
−2

3 t
3
]

= −2t ln t− 2
3 t.

Hence, the general solution is

y(t) = yh + yp

= c1t+ c2t
−2 − 2t ln t− 2

3 t.

�

Example 3.9.4 Find the general solution to
t2y′′ − 3ty′ + 3y = 8t3, t > 0

given that
y1(t) = t, y2(t) = t3

forms a fundamental set of solution for the corresponding homogeneous differ-
ential equation.

Step 1: Since y1(t) = t, y2(t) = t3 forms a fundamental set of solution, this
means that the general solution for the homogeneous equation is

yh = c1t+ c2t
3.

Step 2: Find the Wronskian:

W (y1, y2)(t) =
∣∣∣∣ t t3

1 3t2
∣∣∣∣
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= 3t3 − t3 = 2t3 6= 0,

Step 3: Rewrite the equation in the form y′′ + p(t)y′ + q(t)y = g(t) and
hence

y′′ − 3
t
y′ + 3

t2
y = 8t, .

Use our formula with g(t) = 8t and get

yp(t) = −y1(t)
[∫

y2(t)g(t)
W (y1, y2) (t)dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)dt
]

= −t
[∫

t3

2t3 8tdt
]

+ t3
[∫

t

2t3 8tdt
]

= −t
[∫

4tdt
]

+ t3
[∫ 4

t
dt

]
= −t

[
2t2
]

+ t3 [4 ln t]
= −2t3 + 4t3 ln t

hence the general solution is

y(t) = yh + yp

= c1t+ c2t
3 − 2t3 + 4t3 ln t.

�



Chapter 4

Higher order differential equa-
tions

4.1 Linear equations

4.1.1 General linear equations
Everything we did in Chapter 3for second order linear equations can be extended
to higher order systems. Suppose we have the nth order linear equation

an(t)y(n) + an−1(t)y(n−1) + · · ·+ a1(t)y′ + a0(t)y = g(t).

We assume that an(t), . . . , a0(t) are continuous functions on an interval I, and
that an(t) 6= 0 inside the interval: so that we can write it in standand form as

y(n) + pn−1(t)y(n−1) + · · ·+ p1(t)y′ + p0(t)y = g(t). (?)

with initial conditions

y(t0) = y0, y
′(t0) = y′0, · · · , y(n−1)(t0) = y

(n−1)
0 . (?).

Theorem 4.1.1 Existence/uniqueness. Let a linear differential equation
be given in form (?). If pn−1(t), . . . , p0(t) are continuous functions on an open
interval I (containing t0), then there exists a unique solution y = φ(t) throughout
all of I to the IVP in (?).
Example 4.1.2 Consider the ODE

(t− 2)y(4) + sin ty′′′ + ln ty =
√
t+ 5.

Find the intervals where you are guaranteed a unique solution to this ODE by
the Uniqueness and Existence Theorem.

Rewriting, we have

y(4) + sin t
(t− 2)y

′′′ + ln t
(t− 2)y =

√
t+ 5

(t− 2)

and

• sin t
(t−2) is comtinuous when t 6= 2

• ln t
(t−2) is continuous when t > 0 and t 6= 2, and

•
√
t+5

(t−2) is continuous when t ≥ −5 and t 6= 2.

85
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Making a number line we see that all three functions are continuous when either
on the interval (0, 2) or (2,∞). �

4.1.2 Constant coefficients
Now consider the homogeneous nth order linear equation with constant coeffi-
cients.

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0.

As we did in the 2nd order case, the first thing we do is guess that the solution
will look like y = ert and

y = ert

y′ = rert,

...
y(n) = rnert.

Plugging into the LHS and setting equal to zero we have

LHS = an
(
rnert

)
+ · · ·+ a1

(
rert

)
+ a0

(
ert
)

= ert (anrn + · · ·+ a0)
= RHS = 0

hence
ert (anrn + · · ·+ a0) = 0.

But since ert 6= 0 then

anr
n + · · ·+ a1r + a0 = 0.

As before the characteristic equation is given by:

anr
n + · · ·+ a0︸ ︷︷ ︸
Z(r)

= 0,

where we call Z(r) the characteristic polynomial. How do we solve n−degree
polynomials? By factoring! The fundamental theorem of algebra guarantees
that an nth degree polynomial factors into n linear terms (assuming that we
allow complex roots).

Z(t) = an (r − r1) (r − r2) · · · (r − rn) .

HOWEVER, there is no general approach to factoring polynomials of degree
greater than 4. Numerical techniques are necessary in these cases.

Solutions to the ODE are built exactly like in the 2nd degree case. If there
are any repeat solutions, then keep multiplying by t until you don’t have any
more repeat solutions.
Example 4.1.3 Find general solution and the particular solution to the IVP

y′′′ − 2y′′ − y′ + 2y = 0. y(0) = 0, y′(0) = 1, y′(0) = 2.

(Hint: Suppose you know r3 − 2r2 − r + 2 = (r − 2) (r + 1) (r − 1))
The characteristic equation is 2r3 − 4r2 − 2r + 4 = 0 and by the hint we

have
(r − 2) (r + 1) (r − 1) = 0,
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hence the general solution is y(t) = c1e
2t + c2e

−t + c3e
t. To find the particular

solution to the IVP we start by:

y(t) = c1e
2t + c2e

−t + c3e
t

y′(t) = 2c1e2t − c2e−t + c3e
t

y′′(t) = 4c1e2t + c2e
−t + c2e

t.

Then we have to solve the following system of equations:

0 = c1 + c2 + c3

1 = 2c1 − c2 + c3

2 = 4c1 + c2 + c3

and get c1 = 2
3 , c2 = − 1

6 and c3 = − 1
2 , hence

y(t) = 2
3e

2t − 1
6e
−t − 1

2e
t.

�

Example 4.1.4 Find general solution of

y(4) + 8y′′′ + 16y′′ = 0.

(Hint: r4 + 8r3 + 16r2 = r2 (r + 4)2)
The characteristic polynomial is

r4 + 8r3 + 16r2 = 0

which by the hint we know factors as

r2 (r + 4)2 = 0.

Note that since this a 4th degree polynomial we need to have 4 roots: 0, 0,−4,−4.
So we use the same method we do when we have repeats and get

y(t) = c1e
0t + c2te

0t + c3e
−4t + c4te

−4t

= c1 + c2t+ c3e
−4t + c4te

−4t.

�

Example 4.1.5 Solve

y(4) + y′′′ − 5y′′ + y′ − 6y = 0.

(Hint: Suppose (r − 2) (r + 3)
(
r2 + 1

)
)

The characteristic equation is given by

r4 + r3 − 5r2 + r − 6 = 0

and by the hint
Z(r) = (r − 2) (r + 3)

(
r2 + 1

)
= 0

which gives
r = 2,−3,±i

hence
y(t) = c1e

2t + c2e
−3t + c3 cos t+ c3 sin t.

�
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Example 4.1.6 Solve
y′′′ − 3y′′ + 3y′ − y = 0.

(Hint: r3 − 3r2 + 3r − 1 = (r − 1) (r − 1)2)
The characteristic polynomial is r3 − 3r2 + 3r − 1 = 0 and by the hint,

(r − 1)3 = 0

\item So that r = 1, 1, 1

y(t) = c1e
t + c2te

t + c3t
2et.

�

Example 4.1.7 Solve
y(4) + 8y′′ − 9y = 0

(Hint: r4 + 8r2 − 9 =
(
r2 − 1

) (
r2 + 9

)
)

By the hint

r4 + 8r2 − 9 =
(
r2 − 1

) (
r2 + 9

)
= (r − 1) (r + 1) (r − 3i) (r + 3i) .

then
y(t) = c1e

t + c2e
−t + c3 cos(3t) + c4 sin(3t).

�

Example 4.1.8 Suppose the roots of the characteristic equation are

2, 3, 3, 3, 2± 3i, 2± 3i

then the general solution is

y(t) = c1e
2t + c2e

3t + c3te
3t + c4t

2e3t

+ c5e
2t cos(3t) + c6e

2t sin(3t)
+ c5te

2t cos(3t) + c6te
2t sin(3t).

�

4.2 The Method of Undetermined Coefficients
We consider

y(n) + pn−1(t)y(n−1) + · · ·+ p1(t)y′ + p0(t)y = g(t)
where g(t) can be a polynomial, sin, cos, exp or products of these. Recall the
general solution is of the form: y = yh + yp where yh is the general solution of
the corresponding homogeneous equation and yp is a particular solution to the
non-homogeneous equation.
Example 4.2.1 Find the general solution of

y′′′ − y′′ − y′ + y = 2e−t + 3.

(Hint: r3 − r2 − r + 1 = (r − 1) (r − 1) (r + 1))
Step 1: We find yh: Solve r3 − r2 − r + 1 = 0, but by the hint

(r − 1) (r − 1) (r + 1) = 0

so that yh = c1e
t + c2te

t + c3e
−t.
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Step 2: Find yp: We first guess yp = Ae−t +B, but there are repeats with
yh hence we get a second guess of

yp = Ate−t +B

y′p = Ae−t −Ate−t

y′′p = −Ae−t −Ae−t +Ate−t = −2Ae−t +Ate−t

y′′′p = 2Ae−t +Ae−t −Ate−t = 3Ae−t −Ate−t

Hence

LHS = 3Ae−t −Ate−t

+ 2Ae−t −Ate−t

−Ae−t +Ate−t

+Ate−t +B

= 4Ae−t +B

Step 3: Set LHS=RHS so that

LHS = 4Ae−t +B = 2e−t + 3 = RHS

hence

4A = 2, B = 3

A = 1
2

hence
yp = 1

2 te
−t + 3

so that the General Solution is

y = c1e
t + c2te

t + c3e
−t + 1

2 te
−t + 3.

�

Example 4.2.2 Consider

y′′′ + 4y′ = t+ sin(4t).

Find the general form of yp.
Step 1: We find yh: Solve

r3 + 4r = 0
r
(
r2 + 4

)
= 0

so that yh = c1 + c2 cos 2t+ c3 sin 2t.
Step 2: Find yp: We first guess yp = At+ B + C cos(4t) +D sin(4t). But

B is already in yc as c1. So instead make the second guess yp = t (At+B) +
C cos(4t) +D sin(4t) which is correct. �

Example 4.2.3 Consider

y(4) − 2y′′ + y = et + te−t.

Find the general form of yp. (Hint: r4 − 2r2 + 1 =
(
r2 − 1

)2)
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Step 1: We find yh: Solve

r4 − 2r2 + 1 = 0(
r2 − 1

)2 = 0

so that yh = c1e
t + c2te

t + c3e
−t + c4te

−t.
Step 2: Find yp:

1. First guess: yp = Aet + (Bt+ C) e−t.

2. Second Guess: yp = Atet +
(
Bt2 + Ct

)
e−t.

3. Third Guess: yp = At2et +
(
Bt3 + Ct2

)
e−t.

�

Example 4.2.4 Suppose
y(5) = t3,

find the general form for yp.
We find yh: The roots to r5 = 0 are

r = 0, 0, 0, 0, 0

so that
yc = c1 + c2t+ c3t

2 + c4t
3 + c4t

4

Step 2: Find yp:

1. First Guess: yp = At3 +Bt2 + Ct+D

2. Final Guess:}} yp = t5
(
At3 +Bt2 + Ct+D

)
�



Chapter 5

Systems of First Order Lin-
ear Equations

5.1 TBA

5.2 TBA

5.3 TBA

5.4 TBA

5.5 TBA

5.6 TBA

5.7 TBA

5.8 TBA
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Chapter 6

The Laplace Transform

6.1 The definition of the Laplace transform
In this section, we define L, the Laplace transform, which is one of the major
mathematical tools of engineering and the mathematics of physical systems.
Before defining the Laplace Transform we review improper integrals, since
its definition depends on it.

An improper integral with an infinite limit of integration is shorthand
for the limit ∫ ∞

a

f(t)dt = lim
B→∞

∫ B

a

f(t)dt.

If the limit converges then the improper integral converges. If the limit
diverges, then the improper integral diverges.

We also need to be able to integrate through simple discontinuities in
functions that change definition.
Definition 6.1.1 A function f is piecewise continuous on α ≤ t ≤ β
if it is continuous there except for a finite number of jump (or removable)
discontinuities. ♦

Example 6.1.2 Are the following functions piecewise continutions?

f(t) =


t2 0 ≤ t ≤ 1
1 1 < t ≤ 2
4− t 2 < t ≤ 3

and

g(t) =


t2 0 ≤ t ≤ 1
(t− 1)−1 1 < t ≤ 2
1 2 < t ≤ 3.

Solution: Sketch the graphs f(t) is piecewise continuous since it only has a
jump discontinuity. g(t) is not since it has a discontinuity that is not jump or
removable. �

Example 6.1.3 Integrating piecewise functions. Consider

92
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Then ∫ β

α

f(t)dt =
∫ t1

α

f(t)dt+
∫ t2

t1

f(t)dt+
∫ β

t2

f(t)dt.

�
The goal of using the Laplace transform is to change the differential equa-

tions, which have techniques of solution built on calculus, into the language
of algebraic equations, which have techniques of solution built on high school
algebra. The hope is that once we discover a solution to the algebraic equation,
we can transform it back into a solution for the original ODE.

ODE Equation L=⇒ Algebraic Equation
⇓

Turn it into an ODE Solution ⇐=
L−1

Solve the Algebrac EQ

Thus the Laplace transforms a function f(t) into a function F (s), which is
representied symbolically as

f(t) L−→ F (s).

Generally, a transform of a function f(t) turns f(t) into a different function
with potentially more tractible properties. We will transform functions f(t)
of t in the time domain into functions F (s) of s in the frequency domain.
The use of these terms is deliberate and will become clear on further study.

We are now ready to define the transform of greatest use in the solution of
linear differential equations.
Definition 6.1.4 The Laplace transform of f is given by

L{f(t)} = F (s) =
∫ ∞

0
f(t)e−stdt.

We assume s is real (though in general it can be complex). ♦

In general, we should be suspicious of integrals involving infinity as a limit of
integration. Why should we believe that such an integral is likely to converge?
The key observation is that the exponential function e−st tends to 0 very
quickly. In fact exponentials dominate all polynomials, which is going to mean
that the functions most commonly used in differential equations (polynomials,
trig functions, and exponentials with domain restrictions) are all reasonably
controlled by the exponential function e−st.

Existence of L{f(t)}.

If f is piecewise continuous for [0, a] for all a and |f(t)| ≤ Kect for large
t, then L [f(t)] = F (s) exists.
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The following examples may seem cumbersome, but rest easy! After using
the definition to get a feel for how the Laplace transform works, we’ll develop a
table of known and useful transforms and our study will be more algebraic.

Example 6.1.5 Find the Laplace transform of f(t) = e9t, t ≥ 0 .
Solution: We compute

L
{
e9t} =

∫ ∞
0

f(t)e−stdt =
∫ ∞

0
e9te−stdt

=
∫ ∞

0
e(9−s)tdt

= 1
9− s

[
e(9−s)t

]t=∞
t=0

= 1
9− s

[
lim
b→∞

e(9−s)b − e0
]

but since

lim
b→∞

e(9−s)b =
{
∞ a− s > 0
0 a− s < 0

then

L
{
e9t} =

{
1
s−9 s > 9
not defined s < 9

.

�

Example 6.1.6 Find the Laplace transform of f(t) = eat, t ≥ 0 .
We can use the same computation as in Example 1, but change every 9 to

an a and get
L
{
eat
}

= 1
s− a

s > a.

�

Example 6.1.7 Find the Laplace transform of f(t) = 1, t ≥ 0 .
Solution: Using a = 0 above we have that f(t) = e0·t = 1 hence we can use

the formula above to get
L{1} = 1

s
s > 0.

�
Eventually, we’ll make a table where we collect all of the Laplace transforms

that we have computed, so that we don’t have to redo the work everytime.

Example 6.1.8 Find the Laplace transform of f(t) = sin(at).
Solution: We compute

L{sin at} = F (s) =
∫ ∞

0
e−st sin(at)dt

= lim
B→∞

∫ B

0
e−st sin(at)dt.

Using integration by parts, we get

u = sin(at) dv = e−stdt

du = a cos(at)dt v = −e
−st

s
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so we have

F (s) = lim
B→∞

[
−e
−st sin(at)

s

∣∣∣∣t=B
t=0

+
∫ B

0

e−st

s
a cos(at)dt

]

= lim
B→∞

[
−e
−sB sin(aB)

s
+ 0 +

∫ B

0

e−st

s
a cos(at)dt

]

= 0 + a

s

∫ ∞
0

e−st cos(at)dt. (?)

Integrating
∫∞

0 e−st cos(at)dt again we get

u = cos(at) dv = e−stdt

du = −a sin(at)dt v = −e
−st

s

∫ ∞
0

e−st cos(at)dt = lim
B→∞

[
−e
−st cos(at)

s

∣∣∣∣t=B
t=0
−
∫ B

0

e−st

s
a sin(at)dt

]

= lim
B→∞

[
−e
−sB cos(aB)

s
+ e−st

s
− a

s

∫ B

0

e−st

s
a sin(at)dt

]

=
[
0 + t

s
− a

s

∫ ∞
0

e−st sin(at)dt
]
.

Plugging this back into (?) we have

F (t) = a

s

[
1
s
− a

s

∫ ∞
0

e−st sin(at)dt
]

= a

s

[
1
s
− a

s
F (s)

]
Then we can solve this equation using algebra for F (s) and get

F (s) = a

s2 + a2 , s > 0.

�

Properties of the Laplace Transform: Linearity.

If f, g are two function where L exists for s > a1 and s > a2, respectively,
Then

L{f(t)± g(t)} = L{f(t))} ± L{g(t)} , s > max {a1, a2} ,

and We have for c ∈ R,

L{cf(t))} = cL{f(t))} .

Example 6.1.9 Find the Laplace transform of f(t) = 7− e2t + 4 sin(3t).
Solution: Using what we have computed we get

L
{

7− e−5t + 4 sin(3t)
}

= L{7} − L
{
e(−5)t

}
+ 4L{sin(3t)}
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= 7
s
− 1
s− (−5) + 4 · 3

s2 + 9

= 7
s
− 1
s+ 5 + 12

s2 + 9 . s > 0

�

6.2 The Laplace Transform and Initial Value Prob-
lems

In this section we will show the connection between ODEs with given initial
value conditions and Laplace Transforms. Recall that our previous methods
for approaching IVPs involve solving first a homogeneous equation and then
using another method, such as undertermined coefficients, to find a particular
solution. Using the Laplace transform, we will be able to do this all at once.

First, we need to look at how the Laplace transform acts on derivatives.

Theorem 6.2.1 Laplace transform of df
dt . Suppose f has a Laplace trans-

form L{f} = F (s) and is controlled by some exponential Keat. Then the
Laplace transform of f ′ is given by

L{f ′(t)} = sL{f(t)} − f(0).
Proof. Let

L{f ′(t)} = lim
B→∞

∫ B

0
f ′(t)e−stdt

and we use integration by parts

u = e−st dv = f ′(t)dt
du = −se−stdt v = f(t)

we have

L{f ′(t)} = lim
B→∞

[
f(t)e−st

]t=B
t=0 +

∫ B

0
f(t)se−stdt

= [0− f(0)] + s

∫ ∞
0

f(t)e−stdt

= −f(0) + sL{f(t)} ,

here we use the condition from Theorem 6.2.1 that says |f(t)| ≤ Keat for t ≥M
which implies that limB→∞ f(B)e−sB = 0 when s > a. Rearranging gives us
the desired result. �

Corollary 6.2.2 Suppose f, f ′, . . . , f (n) are nice functions that have Laplace
transforms, then

L
{
f (n)(t)

}
= snL{f(t)} − sn−1f(0) · · · − sf (n−2)(0)− f (n−1)(0).

Example 6.2.3 L{f ′′(t)} = s2L{f(t)}−sf(0)−f ′(0). L{f ′′′(t)} = s3L{f(t)}−
s2f(0)− sf ′(0)− f ′′(0). �
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6.2.1 Inverse Laplace Transforms
The Inverse Laplace transform L−1 is the function that satisfies L−1 {L [f ]} = f .
In other words,

L−1 {F} = f ⇐⇒ L{f} = F.

Some example inverse transforms.

L−1
{

1
s

}
= 1.

L−1
{

1
s− 1

}
= et

L−1
{

10
s+ 1

}
= 10L−1

{
1

s− (−1)

}
= 10e−t.

L−1
{

6
s2 + 7

}
= 6L−1

{
1

s2 +
(√

7
)2
}

= 6√
7
L−1

{ √
7

s2 +
(√

7
)2
}

= 6√
7

sin
(√

7t
)
.

In general,
L−1

{
1

s− a

}
= eat.

We’ll typically have rational functions for which we need to find inverse
transforms. As an example, let’s compute L−1

{
4

(s−1)(s+1)

}
. Whenever we

have linear or irreducible quadratic factors in the denominator, we need to use
partial fractions:

4
(s− 1) (s+ 1) = A

(s− 1) + B

(s+ 1) ,

hence

4 = A (s+ 1) +B (s− 1) ,
0 · s+ 4 = (A+B) s+ (A−B)

so that

A+B = 0

A−B = 4

and get A = 2, B − 2. Thus

4
(s− 1) (s+ 1) = 2

s− 1 −
2

s+ 1 .

Therefore:

L−1
{

4
(s− 1) (s+ 1)

}
= L−1

{
4

(s− 1) (s+ 1)

}
= L−1

{
2

s− 1

}
− L−1

{
2

s+ 1

}
= 2et − 2e−t.
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Example 6.2.4 Find L−1
{

6
s(s+4)

}
.

First
6

s (s+ 4) = A

s
+ B

(s+ 4)
so that

6 = A (s+ 4) +Bs

or
0s+ 6 = (A+B) s+ 4A

and get

so that A = − 3
2 and B = 3

2 hence

L−1
{

6
s (s+ 4)

}
= L−1

{
3/2
s

+ −3/2
(s+ 4)

}
= 3

2L
−1
{

1
s

}
− 3

2L
{

1
(s+ 4)

}
= 3

2 · 1−
3
2L
{

1
s− (−4)

}
= 3

2 · 1−
3
2e
−4t

�

6.2.2 Solving IVPs using Laplace Transforms
We’ll now combine the partial fraction technique with the Laplace transform to
solve first order IVPS.
Example 6.2.5 Solve

y′ = y − 4e−t, y(0) = 1

using Laplace transforms.
Step 1: Find the Laplace Transform of the ODE (The going forwards part):

L{y′} = L{y} − 4L
{
e−t
}
⇐⇒ sL{y} − y(0) = L{y} − 4 1

s+ 1

⇐⇒ sL{y} − 1 = L{y} − 4 1
s+ 1 .

Step 2: Solve for L{y} using algebra: and get

L{y} = 1
s− 1 −

4
(s− 1) (s+ 1) .

Step 3: We want to go backwards and invert this. But first let’s do partial
fractions:

4
(s− 1) (s+ 1) = A

(s− 1) + B

(s+ 1) ,

hence

4 = A (s+ 1) +B (s− 1) ,
0 · s+ 4 = (A+B) s+ (A−B)
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so that

A+B = 0
A−B = 4

and get A = 2, B = −2. Thus

4
(s− 1) (s+ 1) = 2

s− 1 −
2

s+ 1 .

Step 4: Use the inverse Laplace transform to get

y = L−1 {L {y}} = L−1
{

1
s− 1

}
− L−1

{
4

(s− 1) (s+ 1)

}
= L−1

{
1

s− 1

}
−
(
L−1

{
2

s− 1

}
− L−1

{
2

s+ 1

})
= et − L−1

{
2

s− 1

}
+ L−1

{
2

s+ 1

}
= et − 2et + 2e−t

= −et + 2e−t.

�

Example 6.2.6 Solve
y′ + 4y = 6, y′(0) = 0

using Laplace transforms.
Step 1: Find the Laplace Transform of the ODE (The going forwards part):

L{y′}+ 4L{y} = L{6} ⇐⇒ sL{y} − y(0) + 4L{y} = 6
s

Step 2: Solve for L{y} using algebra: and get

L{y} = 6
s (s+ 4) .

Step 3: Partial Fractions (We did this already)

6
s (s+ 4) = 3/2

s
+ −3/2

(s+ 4)

Step 4: Use the inverse Laplace transform to get

y = L−1 {L {y}} = L−1
{

3/2
s

+ −3/2
(s+ 4)

}
= 3

2L
−1
{

1
s

}
− 3

2L
{

1
(s+ 4)

}
= 3

2 · 1−
3
2L
{

1
s− (−4)

}
= 3

2 · 1−
3
2e
−4t

�
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6.3 Solutions to higher order IVPs
Recall the folloing consequence of the Laplace transform of a derivative:

Corollary 6.3.1 Suppose f, f ′, . . . , f (n) are nice functions that have Laplace
transforms, then

L
{
f (n)(t)

}
= snL{f(t)} − sn−1f(0) · · · − sf (n−2)(0)− f (n−1)(0).

For example,

1. L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0).

2. L{f ′′′(t)} = s3L{f(t)} − s2f(0)− sf ′(0)− f ′′(0).

6.3.1 Laplace Transforms Table
Typically, we use a table to compute Laplace transforms and inverse transforms.
The examples below refer to the transforms listed on the following table.

f(t) = L−1{F (s)} F (s) = L{f(t)}
1. 1 1

s , s > 0
2. eat 1

s−a , s > a

3. tn, n = positive integer n!
sn+1 , s > 0

4. tp, p > −1 Γ(p+1)
sp+1 , s > 0

5. sin at a
s2+a2 , s > 0

6. cos at s
s2+a2 , s > 0

7. sinh at a
s2−a2 , s > |a|

8. cosh at s
s2−a2 , s > |a|

9. eat sin bt b
(s−a)2+b2 , s > a

10. eat cos bt s−a
(s−a)2+b2 , s > a

11. tneat, n = positive integer n!
(s−a)n+1 , s > a

6.3.2 Partial fractions
The essential step in computing an inverse Laplace transform is separating
the function F into pieces that we can apply the inverse transform to. This is
typically done via partial fractions. Make sure you first factor the denominator
as much as possible

1. The correct form of the partial fractions is

5s
(s− 1) (s2 + 1) = A

s− 1 + Bs+ C

s2 + 1
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2. The correct form of the partial fractions is

6s+ 1
(s− 1)3 (s2 + 3)

= A

s− 1 + B

(s− 1)2 + C

(s− 1)3 + Ds+ E

s2 + 3

3. The correct form of the partial fractions is

9s− 1
s (s2 + 9) (s− 5) = A

s
+ Bs+ C

s2 + 9 + D

s− 5

4. The correct form of the partial fractions is

s2 + s− 1
(s2 + 1)3 (s− 1)

= As+B

s2 + 1 + Cs+D

(s2 + 1)2 + Es+ F

(s2 + 1)3 + G

s− 1 .

5. The correct form of the partial fractions is

9s+ 1
(s4 + 1) (s2 + 2s+ 10) s2 = As3 +Bs2 + Cs+D

s4 + 1 + Es+ F

s2 + 2s+ 10 .

+ G

s
+ H

s2 .

6.3.3 Inverse Laplace Transforms

Example 6.3.2 Find the inverse transform of F (s) = 1
s4+s2

First let’s do partial fractions:

1
s2 (s2 + 1) = A

s
+ B

s2 + Cs+D

s2 + 1

hence
1 = As

(
s2 + 1

)
+B

(
s2 + 1

)
+ (Cs+D) s2

so that

0s3 + 0s2 + 0s+ 1 = (A+ C) s3 + (B +D) s2 +As+B

and get the equations

and get B = 1, A = 0, C = 0, D = −1. Thus

1
s2 (s2 + 1) = 1

s2 −
1

s2 + 1 .

Using Formulas 3 and 5 in the Laplace Trasform table:

L{tn} = n!
sn+1 , L{sin(at)} = a

s2 + a2 .

Use get the inverse Laplace transform:

L−1 {F (s)} = L−1
{

1
s2

}
− L−1

{
1

s2 + 1

}
= t− sin t,

�
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Example 6.3.3 (Harder) Find the inverse transform of F (s) = 1−2s
s2+4s+5 . Note

that we can’t factor s2 +4s+5 with real roots, thus we will complete the square.
Completing the Square: Suppose we have s2 + bs+ c, then the trick is

to ADD/SUBTRACT
(
b
2
)2, and the polynomials will become s2 + bs + c =(

s+ b
2
)2 − ( b2)2 + c. To complete the square for s2 + 4s+ 5: Then b = 4 hence

we add/subtract
(
b
2
)2 =

( 4
2
)2 = 4. Thus

s2 + 4s+ 5 = s2 + 4s+ 4 + (−4 + 5)
= (s+ 2)2 + 1

Going back to the problem of find the Laplace Transform we have that

F (s) = 1− 2s
s2 + 4s+ 5 = 1− 2s

(s+ 2)2 + 1

and looking at Formulas 9 and 10 from the Laplace trasnform table:

L
{
eat sin bt

}
= b

(s− a)2 + b2
and L

{
eat cos bt

}
= s− a

(s− a)2 + b2
.

We can apply these by separating F (s) into pieces like this:=

L−1 {F (s)} = L−1

{
1− 2s

(s+ 2)2 + 1

}

= L−1

{
−2 (s+ 2)

(s+ 2)2 + 1

}
+ L−1

{
+4 + 1

(s+ 2)2 + 1

}

= −2L−1

{
(s− (−2))

(s− (−2))2 + 1

}
+ 5L−1

{
1

(s+ 2)2 + 1

}
= −2e−2t cos t+ 5e−2t sin t.

�

Example 6.3.4 Find the inverse transform of F (s) = 2s−8
s2−4s+5 .

Note that we can’t factor s2 − 4s+ 5 with real roots, thus we will complete
the square.

Completing the square: Suppose we have s2 + bs+ c, then the trick is
to ADD/SUBTRACT

(
b
2
)2, and the polynomials will become s2 + bs + c =(

s+ b
2
)2− ( b2)2 + c. To complete the square for s2−4s+ 5: Then b = −4 hence

we add/subtract
(
b
2
)2 =

(−4
2
)2 = 4. Thus

s2 − 4s+ 5 = s2 − 4s+ 4 + 1
= (s− 2)2 + 1

Going back to the problem of find the Laplace Transform we have that

F (s) = 2s− 8
(s− 2)2 + 1

= 2 (s− 2)
(s− 2)2 + 1

− 4 1
(s− 2)2 + 1

We can apply these by separating F (s) into pieces like this:=

L−1 {F (s)} = L−1

{
2s− 8

(s− 2)2 + 1

}
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= L−1

{
2 (s− 2)

(s− 2)2 + 1

}
− 4L−1

{
1

(s− 2)2 + 1

}
= 2e2t cos t− 4e2t sin t

�

Example 6.3.5 Find the inverse transform of F (s) = 2s−3
s2−4 .

Notice that this one looks like Formulas 7 and 8 from the Table of Laplace
Transforms:

L{sinh(at)} = a

s2 − a2 and L{cosh (at)} = s

s2 − a2 s > |a| .

Hence we can separate F (s) into pieces so that we can make it look like the
formulas above:

L−1 {F (s)} = L−1
{

2s− 3
s2 − 4

}
= 2L−1

{
s

s2 − 22

}
− 3

2L
−1
{

2
s2 − 22

}
= 2 cosh (2t)− 3

2 sinh (2t) .

�

Example 6.3.6 Find the inverse transform of F (s) = 3s
s2−s−6 .

We want to use partial fractions

3s
(s− 3)(s+ 2) = A

s− 3 + B

s+ 2

and multiply both sides by the denominator of the LHS we get

3s = A (s+ 2) +B (s− 3)

and rewriting we get

3s+ 0 = (A+B) s+ (2A− 3B)

so that
3 = A+B and = 2A− 3B

and solving for A,B gets us

A = 9
5 , B = 6

5 .

So that using our table we have that

L−1 {F (s)} = L−1
{

9/5
s− 3

}
+ L−1

{
6/5

s− (−2)

}
= 9

5e
3t + 6

5e
−2t.

�
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6.3.4 Using Laplace Transforms to solve IVPs
Example 6.3.7 Use Laplace Transforms to solve:

y′′′ + y′ = 1, y(0) = y′(0) = y′′(0) = 0.

Step 1: Find the Laplace Transform of the ODE (The going forwards
part). Recall the formulas L{f ′(t)} = sL{f(t)} − f(0) and L{f ′′′(t)} =
s3L{f(t)} − s2f(0)− sf ′(0)− f ′′(0). Applying L to both sides we get

L{y′′′ + y′} = L{1} , ⇐⇒[
s3L{y} − s2y(0)− sy′(0)− y′′(0)

]
+ [sL{y} − y(0)] = 1

s
, ⇐⇒[

s3L{y} − s2 · 0− s · 0− 0
]

+ [sL{y} − 0] = 1
s
, ⇐⇒

L{y}
(
s3 + s

)
= 1
s
, ⇐⇒

Step 2: Solve for L{y} using algebra: and get

L{y} = 1
s2 (s2 + 1) .

Step 3: We want to go backwards. But first let’s do partial fractions: we
did this in Example 1 of the Laplace transforms and got

1
s2 (s2 + 1) = 1

s2 −
1

s2 + 1 .

Step 4: Formulas 3 and 5 in the Laplace Transform table:

L{tn} = n!
sn+1 , L{sin(at)} = a

s2 + a2 .

Use get the inverse Laplace transform:

y = L−1 {L {y}} = L−1
{

1
s2

}
− L−1

{
1

s2 + 1

}
= t− sin t,

�

Example 6.3.8 Use Laplace Transforms to solve:

y′′ − 4y′ + 5y = 2et, y(0) = 3, y′(0) = 1.

Step 1: Find the Laplace Transform of the ODE (The going forwards
part). Recall the formulas L{f ′(t)} = sL{f(t)} − f(0) and L{f ′′(t)} =
s2L{f(t)} − sf(0)− f ′(0). Applying L to both sides we get

L{y′′ − 4y′ + 5y} = L
{

2et
}
, ⇐⇒[

s2L{y} − sy(0)− y′(0)
]
− 4 [sL{y} − y(0)] + 5L{y} = 2

s− 1 , ⇐⇒

s2L{y} − 3s− 1− 4sL{y}+ 12 + 5L{y} = 2
s− 1 , ⇐⇒

L{y}
(
s2 − 4s+ 5

)
= 2
s− 1 + 3s− 11, ⇐⇒
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Step 2: Solve for L{y} using algebra: and get

L{y} = 2
(s− 1) (s2 − 4s+ 5) + 3s− 11

s2 − 4s+ 5 .

Step 3: Do Partial Fractions and complete the square:

2
(s− 1) (s2 − 4s+ 5) = A

s− 1 + Bs+ C

s2 − 4s+ 5

and get A = 1, B = −1, C = 3 so that

2
(s− 1) (s2 − 4s+ 5) = 1

s− 1 + −s+ 3
s2 − 4s+ 5

Step 4: The inverse Laplace transform:

y = L−1 {L {y}}

= L−1
{

1
s− 1 + −s+ 3

s2 − 4s+ 5 + 3s− 11
s2 − 4s+ 5

}
= L−1

{
1

s− 1

}
+ L−1

{
2s− 8

s2 − 4s+ 5

}
and recall that from an above example

L−1
{

2s− 8
s2 − 4s+ 5

}
= 2e2t cos t− 4e2t sin t

hence

y = L−1
{

1
s− 1

}
+ L−1

{
2s− 8

s2 − 4s+ 5

}
= et + 2e2t cos t− 4e2t sin t.

�

Example 6.3.9 Take the Laplace transform of the following equation:

y′′ + 4y = 3 cos t y(0) = y′(0) = 0.

Step 1: Find the Laplace Transform of the ODE (The going forwards
part). Recall the formulas L{f ′(t)} = sL{f(t)} − f(0) and L{f ′′(t)} =
s2L{f(t)} − sf(0)− f ′(0). Applying L to both sides we get

L{y′′ + 4y} = L{3 cos t } , ⇐⇒[
s2L{y} − sy(0)− y′(0)

]
+ 4L{y} = 3s

s2 + 1 , ⇐⇒

L{y}
(
s2 + 4

)
= 3s
s2 + 1 , ⇐⇒

Step 2: Solve for L{y} using algebra: and get

L{y} = 3s
(s2 + 4) (s2 + 1) .

Step 3: Do Partial Fractions and complete the square:

3s
(s2 + 4) (s2 + 1) = As+B

s2 + 4 + Cs+ C

s2 + 1
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and get A = −1, B = 0, C = 1, D = 0 so that

3s
(s2 + 4) (s2 + 1) = −s

s2 + 4 + s

s2 + 1

Step 4: The inverse Laplace transform:

y = L−1 {L {y}}

= L−1
{
−s

s2 + 4 + s

s2 + 1

}
= − cos(2t) + cos t.

�

6.4 Step functions
Step functions are often used in problems involving the flow of electric circuts,
and discontinuous impulsive forcing, such as in vibrations of mechanical systems.
Definition 6.4.1 The Heaviside function, or unit step function is defined
by

uc(t) =
{

0 t < c

1 t ≥ c
.

♦
Though it really doesn’t matter, we will assume c > 0. The step function

looks like

, which you can think of an “on-switch” that turns on at t = c. Note that
1− uc(t) is the corresponding “off-switch” and looks like:

Example 6.4.2 Sketch the following function and describe it as a piecewise
function:

f(t) = 2tu2(t)− (t− 1)u4(t).

We look at the critical points which are t = 2, 4 and consider different
cases: t < 2, f(t) = 0 + 0 = 0 2 ≤ t < 4, f(t) = 2t · 1 + 0 = 2t, 4 ≤ t,
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f(t) = 2t · 1− (t− 1) · 1 = t+ 1, hence

f(t) =


0 t < 2
2t 2 ≤ t < 4
t+ 1 t ≥ 4.

�

Example 6.4.3 Write f(t) in terms of step functions:

f(t) =


t 0 ≤ t < 1
t− 1 1 ≤ t < 2
t− 2 2 ≤ t < 3
0 3 ≤ t.

Solution: The discontinuity points are t = 0, 1, 2, 3. When 0 ≤ t < 1, the
function will be f(t) = tu0(t) + · · ·. Our goal is to figure out the rest. When
1 ≤ t < 2, the function will be f(t) = tu0(t) + ? · u1(t) + · · · = t− 1, hence

t+? = t− 1 =⇒ ? = −1.

Hence f(t) = tu0(t) − 1 · u1(t) + · · · When 2 ≤< 3, the function will be
f(t) = tu0(t)− 1 · u1(t) + ?u2(t) + · · · = t− 2, hence

t− 1+? = t− 2 =⇒ ? = −1.

Hence f(t) = tu0(t)− 1 · u1(t)− 1u2(t) + · · · When t ≥ 3, the function will be
f(t) = tu0(t)− 1 · u1(t)− 1u2(t) + ?u3(t) · · · = 0, hence

t− 1− 1+? = 0 =⇒ ? = 2− t

Thus
f(t) = tu0(t)− u1(t)− u2(t) + (2− t)u3(t).

�
We can compute the Laplace transform of uc(t):

L{uc(t)} =
∫ ∞

0
uc(t)e−stdt =

∫ ∞
c

e−stdt

=
[
−e
−st

s

]t=∞
t=c

= e−cs

s
.

Example 6.4.4 Find the Laplace Transform of

f(t) =
{

2 t < 3
−3 t ≥ 3

.

Solution: First use the technique from the first two examples two write f(t)
in terms of uc, and get

f(t) = 2− 5u3(t),
hence

F (s) = L{f(t)} = 2
s
− 5e

−3s

s
.

�
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The theorems that come next are called the translation theorems, because
they represent the effect of translation on both functions and their transforms.

Theorem 6.4.5 First translation theorem. If F (s) = L{f(t)} exists for
s > a ≥ 0 and c > 0, then

L{uc(t)f (t− c)} = e−csL{f(t)} = e−csF (s),

Conversely, if f(t) = L−1 {F (s)}, then

uc(t)f (t− c) = L−1 {e−csF (s)
}
.

Remark: Note that uc(t)f(t− c) translates a function to the right by c, and
leaves everything to the left as zero.

Theorem 6.4.6 Second translation theorem. If F (s) = L{f(t)} exists
for s > a ≥ 0 and c > 0, then

L
{
ectf (t)

}
= F (s− c), s > a+ c.

Conversely, if f(t) = L−1 {F (s− c)}, then

ectf(t) = L−1 {F (s− c)} .
The translation theorems are included in the table formulas:

1. L{tn} = n!
sn+1 , n positive integer.

2. L{t} = 1
s2 , L

{
t2
}

= 2
s3 , and L

{
t3
}

= 3!
s4 .

3. L{sin at} = a

s2 + a2

4. L{cos at} = s

s2 + a2

5. L{sinh at} = a

s2 − a2

6. L{cosh at} = s

s2 − a2

7. L{uc(t)f (t− c)} = e−csF (s)

8. L
{
ectf (t)

}
= F (s− c)

Example 6.4.7 Find the Laplace transform of

f(t) =
{

0 t < 2
t2 − 4t+ 5 t ≥ 2

Solution: First we complete the square by adding/subtracting
(
b
2
)2 =( 4

2
)2 = 4 and get

t2 − 4t+ 5 = t2 − 4t+ 4− 4 + 5 = (t− 2)2 − 4 + 5 = (t− 2)2 + 1

so that

f(t) =
{

0 t < 2
(t− 2)2 + 1 t ≥ 2
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= u2(t)
[
(t− 2)2 + 1

]
= u2(t) (t− 2)2 + u2(t),

hence using formulas L{uc(t)f (t− c)} = e−csF (s) and L
{
t2
}

= 2
s3 and c = 2,

L{f(t)} = e−2sF (s) + e−2s

s
, where f(t− 2) = (t− 2)2

, f(t) = t2

= e−2s 2
s3 + e−2s

s
.

�

Example 6.4.8 Take the Inverse Laplace Transform of:F (s) = e−2s

s2 + s− 2
SolutionL In this example we can actually factor

e−2s

s2 + s− 2 = e−2s

(s+ 2) (s− 1)

= e−2s
(
−1/3
s+ 2 + 1/3

s− 1

)
, by partial fractions

and use L{uc(t)f (t− c)} = e−csF (s) (use this whenever use see an e−cs when
taking \textbf{inverses}!)

L−1 {F (s)} = −1
3L
−1
{

e−2s

s− (−2)

}
+ 1

3L
−1
{
e−2s

s− 1

}
= −1

3u2(t)f1 (t− 2) + 1
3u2(t)f2 (t− 2) .

Use the fact that L{f1} = L
{
e−2t} = 1

s+2 and L{f2} = L{et} = 1
s−1 hence

L−1 {F (s)} = −1
3u2(t)e−2(t−2) + 1

3u2(t)e(t−2).

�

Example 6.4.9 Take the Inverse Laplace Transform of:F (s) = 9 (s− 3) e−5s

s2 − 6s+ 13
Solution: In this example we can only complete the square since we can’t

factor and get
9 (s− 3) e−5s

s2 − 6s+ 13 = 9 (s− 3) e−5s

(s− 3)2 + 22

Now note that by L{ectf (t)} = F (s− c) and L{cos at} = s
s2+a2 we have

L{cos (2t)} = s

s2 + 22 =⇒ L
{
e3t cos (2t)

}
= (s− 3)

(s− 3)2 + 22

(Need to take care of the e−5s) Now use L{uc(t)f1 (t− c)} = e−csF1(s) with
f1(t) = e3t cos (2t) and c = 5 so that f1(t− 5) = e3(t−5) cos (2 (t− 5)) hence

L
{
u5(t)e3(t−5) cos (2 (t− 5))

}
= e−5s (s− 3)

(s− 3)2 + 22

Thus multiplying both sides by 9

L−1 {F (s)} = 9u5(t)e3(t−5) cos (2 (t− 5)) .

�
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Example 6.4.10 Take the Inverse Laplace Transform of:F (s) = e−7s

s2 − 4 .
Solution: We note L{sinh 2t} = 2

s2−4 and use L{uc(t)f1 (t− c)} = e−csF1(s)
where f1(t) = sinh 2t =⇒ f1(t− 7) = sinh 2 (t− 7) to get that

L{u7(t)f1 (t− 7)} = e−7sF1(s), =⇒ L{u7(t) sinh 2 (t− 7)} = 2e−7s

s2 − 4

=⇒ 1
2L{u7(t) sinh 2 (t− 7)} = e−7s

s2 − 4

hence
L−1 {F (s)} = 1

2u7(t) sinh 2 (t− 7) .

�

Example 6.4.11 Take the Inverse Laplace Transform of:F (s) = 1
s2 + e−6s

(s− 2)3 .

We know L{t} = 1
s2 , L

{
t2
}

= 2
s3 and L{ectf (t)} = F (s − c) and

L{uc(t)f (t− c)} = e−csF (s) hence

L−1 {F (s)} = t+ 1
2L
−1

{
2e−6s

(s− 2)3

}

= t+ 1
2u6(t)e2(t−6)(t− 6)2.

�

Example 6.4.12 Take the Inverse Laplace Transform of: F (s) = 1
s2 − 10s+ 26.

Solution: (practice with using L{ectg (t)} = G(s− c)). First we complete
the square and get

1
s2 − 10s+ 26 = 1

(s− 5)2 + 1

and use L{sin at} = a
s2+a2 with a = 1 so that L{sin t} = 1

s2+1 Then use the
fact that L{ectg (t)} = G(s− c) with c = 5 and g(t) = sin t, thus we know that

L
{
e5t sin t

}
= 1

(s− 5)2 + 1

hence
L−1 {F (s)} = e5t sin t.

�

6.5 ODEs with discontinuous forcing functions
We will now do some examples involving intial value problems where the forcing
function have pieces that switch on and off. This will require the use of step
functions to turn parts of the forcing function on and off as the definition
requires. You can think of this as a way to rewrite a multi-part definition into
just one definition for a piecewise continuous function.
Example 6.5.1 Solve using Laplace Transforms:

y′ = −y + u3(t), y(0) = 2.
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Step 1: Take L of both sides and solve for L

L{y′} = L{−y}+ L{u3(t)}

so that
sL{y} − y(0) = −L{y}+ e−3s

s
.

Step 2: Solve for L{y},

L{y} = 2
s+ 1 + e−3s

s (s+ 1)

Step 3: We do partial fractions on

1
s (s+ 1) = 1

s
− 1
s+ 1

Step 4: Take the inverse Laplace transform: Using L [ua(t)f(t− a)] =
e−asF (s), and get

y = L−1
{

2
s+ 1 + e−3s 1

s
− e−3s 1

s+ 1

}
= 2e−t + u3(t)− u3(t)e−(t−3).

�

Example 6.5.2 Solve using Laplace Transforms:

y′ = −3y + 6u4(t)e−(t−4), y(0) = 5.

Step 1: Take L of both sides

L{y′} = −3L{y}+ 6L
{
u4(t)e−(t−4)

}
and get

sL{y} − y(0) = −3L{y}+ 6L
{
u4(t)e−(t−4)

}
Step 2: Solve for L{y} and get

L{y} = 5
s+ 3 + 6e−4s

(s+ 3) (s+ 1) .

Step 3: We do partial fractions

6
(s+ 3) (s+ 1) = −3

(s+ 3) + 3
(s+ 1) .

Step 3: Take the inverse Laplace transform: Using L [ua(t)f(t− a)] =
e−asF (s), and

y = L−1
{

5
s+ 3 + 6e−4s

(s+ 3) (s+ 1)

}
= L−1

{
5

s+ 3

}
+ L−1

{
−3e−4s 1

(s+ 3) + 3e−4s 1
(s+ 1)

}
= 5e−3t − 3u4(t)e−3(t−4) + 3u4(t)e−(t−4).

�
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Example 6.5.3 Solve using Laplace Transforms:

y′′ + 4y = 3u5(t) sin (t− 5) , y(0) = 1, y′(0) = 0.

Step 1: Take L of both sides and solve for L

L{y′′}+ 4L{y} = 3L{u5(t) sin (t− 5)}

and recall L [ua(t)f(t− a)] = e−asF (s), hence a = 4, f(t − 5) = sin (t− 5)
hence f(t) = sin t and L{sin t} = 1

s2+1 hence

s2L{y} − sy(0)− y′(0) + 4L{y} = 3 e−5s

s2 + 1 , =⇒(
s2 + 4

)
L{y} − s = 3 e−5s

s2 + 1 , =⇒

L{y} = 3 e−5s

(s2 + 4) (s2 + 1) + s

s2 + 4

Step 2: We do partial fractions on

3
(s2 + 4) (s2 + 1) = As+B

s2 + 4 + Cs+D

s2 + 1

hence

3 = (As+B)
(
s2 + 1

)
+ (Cs+D)

(
s2 + 4

)
, =⇒

0 · s3 + 0 · s2 + 0 · s+ 3 = (A+ C) s3 + (B +D) s2 + (A+ 4C) s+ (B + 4D)

hence

A+ C = 0
B +D = 0
A+ 4C = 0
B + 4D = 3

and get
A = 0 B = −1, C = 0, D = 1

hence
3

(s2 + 4) (s2 + 1) = −1
s2 + 4 + 1

s2 + 1
Step 3: Take the inverse Laplace transform: Using L [ua(t)f(t− a)] =

e−asF (s), and L{sin(at)} = a
s2+a2 and L{cos(at)} = a

s2+a2 we have

y = L−1
{
−e−5s

s2 + 4 + e−5s

s2 + 1 + s

s2 + 4

}
= −1

2L
−1
{

2e−5s

s2 + 22

}
+ L−1

{
e−5s

s2 + 1

}
+ L−1

{
s

s2 + 4

}
= −1

2u5(t) sin (2 (t− 5)) + u5(t) sin (t− 5) + cos (2t)

�

Example 6.5.4 Solve using Laplace Transforms:

y(4) − y = u1(t)− u2(t), y(0) = 0, y′(0) = 0, y′′(0) = 0., y′′′(0) = 0..
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Step 1: Take L of both sides and solve for L

L
{
y(4)

}
− L{y} = L{u1(t)− u2(t)}

hence

s4L{y} − s3y(0)− s2y′(0)− sy′′(0)− sy′′′ − y′(0)− L{y}

= e−s

s
− e−2s

s
=⇒(

s4 − 1
)
L{y} = e−s

s
− e−2s

s
, =⇒

L{y} = e−s

s (s4 − 1) −
e−2s

s (s4 − 1)

Step 2: We do partial fractions on

1
s (s4 − 1) = 1

s (s2 − 1) (s2 + 1) = 1
s (s+ 1) (s− 1) (s2 + 1) =

hence
1

s (s4 − 1) = A

s
+ B

s+ 1 + C

s− 1 + Ds+ E

s2 + 1
after doing the work to get the partial fractions you get

1
s (s4 − 1) = −1

s
+ 1

4
1

s+ 1 + 1
4

1
s− 1 + 1

2
s

s2 + 1

putting it back we need to take the inverse of

e−s
[
−1
s

+ 1
4

1
s+ 1 + 1

4
1

s− 1 + 1
2

s

s2 + 1

]
− e−2s

[
−1
s

+ 1
4

1
s+ 1 + 1

4
1

s− 1 + 1
2

s

s2 + 1

]
Step 3: Take the inverse Laplace transform: Using L [ua(t)f(t− a)] =

e−asF (s), and L{cos(at)} = a
s2+a2 and L{eat} = 1

s−a we have

y = L−1
{
e−s

[
−1
s

+ 1
4

1
s+ 1 + 1

4
1

s− 1 + 1
2

s

s2 + 1

]}
− L−1

{
e−2s

[
−1
s

+ 1
4

1
s+ 1 + 1

4
1

s− 1 + 1
2

s

s2 + 1

]}
= −u1(t) + u1(t)

[
1
4e
−1(t−1) + 1

4e
1(t−1) + 1

2 cos (t− 1)
]

+ u2(t)− u2(t)
{

1
4e
−1(t−2) + 1

4e
1(t−2) + 1

2 cos (t− 2)
}

�

Example 6.5.5 Find the Laplace transform of

f(t) =
{
t 0 ≤ t < 1
3t 1 ≤ t <∞

.

Step 1: First let us rewrite this in terms of unit step functions. When
0 ≤ t < 1: the function is f(t) = t When 1 ≤ t < ∞: then function is
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f(t) = t+? · u1(t) = 3t hence ? = 2t so that

f(t) = t+ 2tu1(t).

Step 2: Before we can take a Laplace transform, we notice that our fomula
involves L{uc(t)g (t− c)} = e−ctL{g(t)}. Thus we will need to turn 2tu1(t)
into this form:

f(t) = t+ 2tu1(t)
= t+ 2 (t− 1)u1(t) + 2u1(t)

hence

L{f(t)} = L{t}+ 2L{(t− 1)u1(t)}+ 2L{u1(t)}

= 1
s2 + 2e−s 1

s2 + 2e−s 1
s
.

�
We now introduce the following useful formula that is not included in the

table, which records the translation of a step function:
Fact 6.5.6 We have

L{uc(t)h(t)} = e−csL{h (t+ c)} .

Example 6.5.7 Take the Laplace transform of f(t) = u1(t)tet.
Notice that we cannot use the formula L{uc(t)g (t− c)} = e−ctL{g(t)}

directly since tet is not written as a function of (t− 1). Hence we’ll need to use
L{uc(t)h(t)} = e−csL{h (t+ c)} with h(t) = tet and c = 1. Thus

h (t+ 1) = (t+ 1)et+1

and we get

L
{
u1(t)tet

}
= e−csL{h (t+ c)}
= e−sL

{
(t+ 1)et+1}

= e−sL
{
tete+ ete

}
= e−s

(
eL
{
tet
}

+ eL
{
et
})

= e1−s

(
1

(s− 1)2 + 1
(s− 1)

)

where we used formula 2 and 11 in the table. �

6.6 Impulse functions
One of the most useful capabilities of the Laplace transform is to deal with
forcing functions that aren’t even functions, but that occur with great regularity
in the modeling of physical systems. The guiding question here that we should
keep in mind is “what happens to an oscillating mass when it gets struck by an
outside blow?”.

We consider
ay′′ + by′ + cy = f(t),
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where

g(t) =
{
large t0 − τ < t < t0 + τ.

0 elsewhere

Here g(t) is a force and

I(τ) =
∫ t0+τ

t0−τ
g(t)dt =

∫ ∞
−∞

g(t)dt

is the impulse of the force, or the amount of force in a short time period about
t0.

If y =current in an electric circuit, g(t) = is the time derivative of the
voltage, then I(τ) is the total voltage impressed on circuit in the time interval
I = (t0 − τ, t0 + τ). We will use the following particular example of a force
with τ = 0 (to simplify things):

g(t) = dτ (t) =
{

1
2τ −τ < t < τ,

0 elsewhere
,

where τ > 0 is small.
We’ll first look at some nice properties of dτ (t):

1. lim
τ→0+

dτ (t) = 0, whenever t 6= 0, and limτ→0+ dτ (0) =∞.

2. I(τ) =
∫ τ
−τ

1
2τ dt =

[ 1
2τ t
]τ
−τ = 1 for every τ . Hence lim

τ→0+
I(τ) = 1,
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We thus want to define a unit impulse function δ, with the properties

δ(t) =
{

0 t 6= 0
∞ t = 0

and ∫ ∞
−∞

δ(t)dt = 1.

This object isn’t actually a function, but there is a mathematically rigorous
way to define objects called generalized functions which includes δ. We call δ
the Dirac delta function. We can think of δ as a limit of the dτ (t) functions:

δ(t) = lim
τ→0+

dτ (t).

We can consider a unit impulse at an arbitrary point t = t0, meaning
δ (t− t0), hence

δ (t− t0) = 0, t 6= t0,∫ ∞
−∞

δ(t− t0)dt = 1.

We will now compute the Laplace Transform of δ (t− t0), using the properties
of the integral definition:

L{δ (t− t0)} = lim
τ→0+

L{dτ (t− t0)}

= lim
τ→0+

∫ t0+τ

t0−τ
e−stdτ (t− t0) dt

= lim
τ→0+

1
2τ

∫ t0+τ

t0−τ
e−stdt = lim

τ→0+

1
2τ

[
e−st

t

]t=t0+τ

t=t0−τ

= e−st0

s
lim
τ→0+

esτ − e−sτ

2τ , by algebra

= e−st0 lim
τ→0+

sinh(sτ)
sτ

, by formula below

= e−st0 lim
τ→0+

s cosh(sτ)
s

, by L’Hopitals rule

= e−st0 .
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where we used the fact that

sinh(sτ) = esτ − s−sτ

2 .

In summary,
L{δ (t− t0)} = e−st0 , t0 > 0.

We now compute some simple examples:

• If t0 = 0, then
L{δ (t)} = e−s·0 = 1.

• If t0 = 9 then
L{δ (t− 9)} = e−9s.

We’ll note the following important property of δ functions, which is usually
called “point evaluation”. Suppose f is a continuous function. Then∫ ∞

−∞
f(t)δ(t− t0)dt = f (t0) .

In the next example we show how the delta function is connected to the
Heaviside function.
Example 6.6.1 Solve the IVP

y′ = δ(t− c), y(0) = y0.

Take L of both sides and

L{y′} = L{δ (t− c)} =⇒
sL{y} − y(0) = e−cs =⇒

L{y} = y0

s
+ e−cs

s

hence

y = L−1
{y0

s

}
+ L−1

{
e−cs

s

}
= y0 + uc(t).

�
The example shows that the derivative of the Heaviside function is the

delta function! (To be totally clear, we should note that to define derivatives
of discontinuous functions requires that we understand differentiation in the
context of generalized functions. For now, we should accept the intuition that
the “slope” of a jump dicontinuity is the “infinite spike” of the delta function.
Fact 6.6.2

d

dt
[uc(t)] = δ (t− c) .

Example 6.6.3 Solve the IVP

y′′ + 4y = δ (t− π)− δ (t− 2π) , y(0) = 0, y′(0) = 0.

Step 1: Take L of both sides and solve for L{y}:

L{y′′}+ 4L{y} = L{δ (t− π)} − L{δ (t− 2π)} =⇒
s2L{y} − sy(0)− y′(0) + 4L{y} = e−πs − e−2πs =⇒
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s2 + 4

)
L{y} = e−πs − e−2πs =⇒

L{y} = e−πs

s2 + 4 −
e−2πs

s2 + 4 .

Step 2: Notice that we don’t need to do partial fractions or complete the
square here since s2 + 4 is already a sum of two squares.

Step3: Take an inverse Laplace transform: Using L [ua(t)f(t− a)] =
e−asF (s) and L{sin(at)} = a

s2+a2 we get

y = L−1
{
e−πs

s2 + 4

}
− L−1

{
e−2πs

s2 + 4

}
= 1

2L
−1
{
e−πs

2
s2 + 22

}
− 1

2L
−1
{
e−2πs 2

s2 + 22

}
= 1

2uπ(t)f1 (t− π)− 1
2u2π(t)f2 (t− 2π)

= 1
2uπ(t) sin (2 (t− π))− 1

2u2π(t) sin (2 (t− 2π))

where f1, f2 = sin(2t). Now it turns out, that

sin (2 (t− π)) = sin (2t− 2π) = sin(2t)

and
sin (2 (t− 2π)) = sin (2t− 4π) = sin(2t).

or in general
sin (x) = sin (x+ 2π) .

Hence a possible multiple choice answer could be:

y = 1
2uπ(t) sin (2t)− 1

2u2π(t) sin (2t) .

�

Example 6.6.4 Solve the IVP
y′′ + 2y′ + 3y = sin t+ δ (t− 3π) , y(0) = 0, y′(0) = 0.

Take L of both sides and solve for L{y}:

L{y′′}+ 2L{y′}+ 3L{y} = 1
s2 + 1 + e−3πs =⇒[

s2L{y} − sy(0)− y′(0)
]

+ 2 [sL{y} − y(0)] + 3L{y} = 1
s2 + 1 + e−3πs =⇒

s2L{y}+ 2sL{y}+ 3L{y} = 1
s2 + 1 + e−3πs =⇒(

s2 + 2s+ 3
)
L{y} = 1

s2 + 1 + e−3πs =⇒

L{y} = 1
(s2 + 2s+ 3) (s2 + 1) + e−3πs

s2 + 2s+ 3
Step 2: First we do partial fractions:

1
(s2 + 2s+ 3) (s2 + 1) = As+B

(s2 + 2s+ 3) + Cs+D

(s2 + 1)
and do the algebra to get

A = 1
4 , B = 1

4 , C = −1
4 , D = 1

4
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Also we need to complete the square:

s2 + 2s+ 3 = (s+ 1)2 + 2.

so that
1

(s2 + 2s+ 3) (s2 + 1) = 1
4

(
s+ 1

(s+ 1)2 + 2
+ −s+ 1

(s2 + 1)

)
Step 3: Take an inverse Laplace transform: Using L [ua(t)f(t− a)] =

e−asF (s) , L{cos(at)} = s
s2+a2 L{sin(at)} = a

s2+a2 , Also using L{eat cos(bt)} =
s−a

(s−a)2+b2 L{eat sin(bt)} = b
(s−a)2+b2 we get

y = 1
4L
−1

{
s+ 1

(s+ 1)2 + 2

}
+ 1

4L
−1
{
−s+ 1
(s2 + 1)

}

+ L−1

{
e−3πs

(s+ 1)2 + 2

}

= 1
4L
−1

{
s+ 1

(s+ 1)2 +
(√

2
)2
}
− 1

4L
−1
{

s

s2 + 1

}

+ 1
4L
−1
{

1
s2 + 1

}
+ 1√

2
L−1

{
e−3πs

√
2

(s+ 1)2 +
(√

2
)2
}

= 1
4

(
e−t cos

(√
2t
)
− cos t+ sin t

)
+ 1√

2
u3π (t) f1 (t− 3π)

= 1
4

(
e−t cos

(√
2t
)
− cos t+ sin t

)
+ 1√

2
u3π (t) e−1(t−3π) sin

(√
2 (t− 3π)

)
where f1 = L−1

{ √
2

(s+1)2+(√2)2

}
= e−t cos

√
2t. �

6.7 The convolution integral
Suppose we want to take the inverse Laplace transform of a product:

Is it true that

L−1 {F (s)G(s)} ?= L−1 {F (s)}L−1 {G(s)}?

The answer is a resounding NO!
In order to take the inverse of a product, we need to define the convolution

integral: Let f(t), g(t) be two nice functions, then

(f ? g) (t) =
∫ t

0
f (t− τ) g (τ) dτ =

∫ t

0
f(τ)g (t− τ) dτ.

The function h = f ? g is called the \textbf{convolution} of f and g. We can
think of convolution as somehow “mixing” or “averaging” the two functions
that are being convolved. In practice, convolutions are often used to take
jagged, unsmooth functions as input and return smoothed functions as output
by convoluting the rough function with an appropriate smooth one.
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Theorem 6.7.1 The Laplace transform of the convolution is

L{(f ? g) (t)} = L{f(t)}L {g(t)} = F (s)G(s);

that is
L−1 {F (s)G(s)} = (f ? g) (t) =

∫ t

0
f (t− τ) g (τ) dτ.

Convolutions have nice properties: We can treat ? almost like multiplication
of functions:

• f ? g = g ? f (commutative)

• f ? (g1 + g2) = f ? g1 + f ? g2 (distributive)

• (f ? g) ? h = f ? (g ? h) (associative)

• f ? 0 = 0 ? f = 0.

However it doesn’t have all the properties of ordinary multiplication. In
particular, (f ? 1) 6= 1 ? f .

Example 6.7.2 Find the Laplace transform of

h(t) =
∫ t

0
sin (t− τ) cos τdτ

Use f = sin t and g = cos t and we know that by the Theorem

L
{∫ t

0
sin (t− τ) cos τdτ

}
= L{sin t}L {cos t}

= 1
s2 + 1 ·

s

s2 + 1
= s

(s2 + 1)2 .

�

Example 6.7.3 Find the Laplace transform of

et
∫ t

0
sin τ cos (t− τ) dτ.

This question is testing if you know how to use formulas

L
{
ectf(t)

}
= F (s− c)

hence we need to first take the Laplace transform of

L
{∫ t

0
sin τ cos (t− τ) dτ

}
= L

{∫ t

0
sin (t− τ) cos (τ) dτ

}
= s

(s2 + 1)2

from Example1. Hence using the formula above we have

L
{
et
∫ t

0
sin τ cos (t− τ) dτ

}
= s− 1(

(s− 1)2 + 1
)2

�
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Example 6.7.4 Find the inverse Laplace transform of

H(s) = 30
(s− 3)3 (s2 + 25)

Split up H(S) = F (s)G(s) where F (s) = 2
(s−3)3 and G(s) = 5

s2+25 so that

H(s) = 3 · 2!
(s− 3)2+1 ·

5
s2 + 52

and since

L−1 {F} = L−1
{

2!
(s− 3)2+1

}
= t2e3t,

L−1 {G} = L−1
{

5
s2 + 52

}
= sin (5t)

so that

L−1 {H(s)} = 3
∫ t

0
f(t− τ)g(τ)dτ

= 3
∫ t

0
(t− τ)2e3(t−τ) sin (5τ) dτ

but you also need to be prepared that one of the possible solutions is

L−1 {H(s)} = 3
∫ t

0
f(τ)g(t− τ)dτ

= 3
∫ t

0
τ2e3τ sin (5 (t− τ)) dτ.

�

Example 6.7.5 Solve the IVP in terms of the convolution integrals:

4y′′ + 4y′ + 17y = g(t), y(0) = 0, y′(0) = 0.

Step 1: Take L of both sides and solve L{y}:

4
(
s2L{y} − sy(0)− y′(0)

)
+ 4 (sL{y} − y(0)) + 17L{y} = L{g(t)}

and plugging in the initial conditions we have

L{y}
(
4s2 + 4s+ 17

)
= L{g(t)}

so that
L{y} = L{g(t)}

4s2 + 4s+ 17
Step 2: Instead of doing partial fractions we will use the convolution integral.

But first let us complete the square by first wrtiting

4s2 + 4s+ 17 = 4
(
s2 + s+ 17

4

)
hence we want add/subtract

(
b
2
)2 =

( 1
2
)2 = 1

4hence

4
(
s2 + s+ 17

4

)
= 4

(
s2 + s+ 1

4 −
1
4 + 17

4

)
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= 4
((

s+ 1
2

)2
+ 16

4

)

= 4
((

s+ 1
2

)2
+ 4
)

hence
L{g(t)}

4s2 + 4s+ 17 = 1
4

1((
s+ 1

2
)2 + 4

)L{g(t)}
Step 3: We take the inverse Laplace transform of

L−1

1
4

1((
s+ 1

2
)2 + 4

)L{g(t)}
 = L−1

{
1
4L{f(t)}L {g(t)}

}

hence we need to take the inverse of

f(t) = L−1

 1((
s+ 1

2
)2 + 4

)


= 1
2L
−1

 2((
s+ 1

2
)2 + 4

)


= 1
2e
− 1

2 t sin (2t) .

Thus using the formula L−1 {F (s)G(s)} = (f ? g) (t) =
∫ t

0 f (t− τ) g (τ) dτ we
have

y = L−1
{

1
4L{f(t)}L {g(t)}

}
= 1

4

∫ t

0
f (t− τ) g (τ) dτ

= 1
4

∫ t

0

1
2e
− 1

2 (t−τ) sin (2 (t− τ)) g (τ) dτ

= 1
8

∫ t

0
e−

1
2 (t−τ) sin (2 (t− τ)) g (τ) dτ.

�

Example 6.7.6 Compute the following integral∫ 5

0
e−x sin xdx

using only Laplace transforms.
Solution:: First we want to write this as a convolution:∫ 5

0
e−x sin xdx = e−5

∫ 5

0
e5−x sin xdx.

and let
h(t) =

∫ t

0
et−τ sin τdτ.
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The Laplace trasnform of this is

L{h(t)} = L
{∫ t

0
et−τ sin τdτ

}
= L

{∫ t

0
f(t− τ)g(τ)dτ

}
= L{f(t)}L {g(t)}
= L

{
et
}
L{sin t}

= 1
(s− 1) (s2 + 1)

Now do partiial fractions on this and get

1
(s− 1) (s2 + 1) = 1

2

(
1

s− 1 −
s+ 1
s2 + 1

)
Hence we can now take the inverse Laplace transform of this:

h(t) = 1
2L
−1
{

1
s− 1

}
− 1

2L
−1
{

s

s2 + 1

}
− 1

2L
−1
{

1
s2 + 1

}
= 1

2e
t − 1

2 cos t− 1
2 sin t.

Thus we computed that

h(t) =
∫ t

0
et−τ sin τdτ = 1

2e
t − 1

2 cos t− 1
2 sin t

Thus

e−5
∫ 5

0
e5−x sin xdx = e−5h(5)

= e−5
(

1
2e

5 − 1
2 cos 5− 1

2 sin 5
)
.

�



Chapter 7

Series Solutions

7.1 Power Series
Suppose that we’re given the problem

dy

dx
= ex

2
.

This is pretty obviously a separable differential equation, and after resorting
we get

dy = ex
2
dx,

and so
y =

∫
ex

2
dx.

Unfortunately, the function ex2 (an enormously useful function that shows up
regularly in probability and statistics in the form of the Gaussian or normal
distribution), despite being a very nice function, has no closed form antideriva-
tive. That is, there is no function that I can write down for y. Can we really
not solve a problem like

∫ 1
0 e

x2
dx?

In calculus, we learn that one approach to a large class of problems like this
is to use power series, which are expressions of the form

∞∑
k=0

ak(x− a)k = a0 + a1(x− a) + a2(x− a)2 + . . .

where a0, a1, . . . are constants. (We’d really like to think of a power series like
giant polynomial, but this is isn’t always justified...)

A power series converges at x0 if

lim
n→∞

a0+a1(x0−a)+. . .+an(x0−a)n = lim
n→∞

∞∑
k=0

ak(x0−a)k = lim
n→∞

Sn exists.

The function Sn(x) is called the nth partial sum. Often times, we’ll use the
shorthand notation

∞∑
k=0

ak(x− a)k = lim
n→∞

n∑
k=0

ak(x− a)k

to represent the limit of the partial sums.

124
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The constant a is called the center of the power series. A power series
centered at a always converges at x = a (since all but one of the terms is 0).
If there is any other point for the series converges, we call it a convergent
power series. If a series fails to converge anywhere except at x = a, we call it
a divergent power series. A series is called absolutely convergent at x0
if

∞∑
k=0
|ak| |x0 − a|k exists.

If a powre series converges absolutely for some x = x0, then it also converges
for every value of x closer to the center a than x0 - that is, the series converges
for |x− a| < |x0 − a|. The proof of this follows from the squeeze theorem and
properties of positive series.

|x− a| ≤ |x0 − a|

⇔
n∑
k=0
|ak| |x− a|k ≤

m∑
k=0
|ak| |x0 − a|k

⇔ lim
n→∞

n∑
k=0
|ak| |x− a|k ≤ lim

n→∞

m∑
k=0
|ak| |x0 − a|k

and since the larger sum exists, so too must the smaller. This leads to a question
of some importance with power series generally - for a given center a, what
is the largest set around a on which the series converges? absolutely? The
largest number ρ for which a power series centered at a converges for every
x ∈ (a− ρ, a+ ρ) (alteratively all x so that |x− a| < ρ) is called the radius of
convergence. How can we find it?

Two of the most powerful tests for convergence we encounter in calculus
are the root and ratio tests, both of which work very nicely on power series
because power series contain terms of the form (x− a)n.

Theorem 7.1.1 Ratio test for convergence. Let
∑∞
k=0 ck be an infinite

series, and suppose that the limit

L = lim
n→∞

∣∣∣∣ck+1

ck

∣∣∣∣ exists.

Then the series converges if L < 1 and diverges if L > 1. If L = 1, the test is
inconclusive.

Now let’s apply the ratio test to a power series to see if we can discover for
which values of x the series converges. Consider the series S =

∑∞
k=0 ax(x−a)k.

We can apply the ratio test by computing the limit (if it exists)

L = lim
k→∞

∣∣ak+1(x− a)k+1∣∣ ak(x− a)k

= lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ |x− a| .
Presuming that L exists, the ratio test says that the series will converge if
L < 1. Let A = limk→∞

∣∣∣ak+1
ak

∣∣∣. Then L < 1 is equivalent to

L = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ |x− a| < 1

A |x− a| < 1

|x− a| < 1
A
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Theorem 7.1.2 Let
∑
ak(x − a)k be a power series centered at a so that

A = limk→∞
ak+1
ak

exists. If A = 0, then the radius of convergence for the series
is ρ =∞ (that is, the series converges for every x). Otherwise, the radius of
converge is ρ = 1

A . (that is, the series converges for x ∈ (a− ρ, a+ ρ)).
A convergent power series defines a very special kind of function on its

interval of convergence. Let

f(x) =
∞∑
k=0

ak(x− a)k

with domain D = (a− ρ, a+ ρ). The function f defined this way is called an
analytic function. Such functions are extremely nice - they are smooth, they
have derivatives to all orders, they can be integrated as many times as one
requires. (n.b.: Functions formed from power series are the central object of
study in complex analysis, which consequently is a beautiful subject.)

In calculus, we learn a method for deriving power series of a function called
Taylor series.
Definition 7.1.3 If f is analytic on an open interval I centered at a, then for
all x ∈ I,

f(x) =
∞∑
k=0

f (k)(a)
k! (x− a)k;

that is, f has a power series centered at a with ak = f(k)(a)
k! . ♦

Finite Taylor series, called Taylor polynomials, are typically excellent
approximations of functions near x = a.

So why care about this? We can essentially treat Taylor series like “infinitely
long polynomials” where they converge - convergent power series can be treated
algebraically like functions and are easily integrated and differentiated:

d

dx
f(x) = d

dx

[ ∞∑
k=0

ak(x− a)k
]

=
∞∑
k=0

d

dx
ak(x− a)k

=
∞∑
k=0

kak(x− a)k−1

=
∞∑
k=1

kak(x− a)k−1 (first term was 0)

=
∞∑
k=0

(k + 1)ak+1(x− a)k (re-index)

Taking another derivative gets us an expression for the second derivative of a
power series:

d2

dx2 f(x) =
∞∑
k=0

(k + 2)(k + 1)ak+2(x− a)k.
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If f(x) =
∑∞
k=0 ak(x− a)k, then we have

f ′(x) =
∞∑
k=0

(k + 1)ak+1(x− a)k

f ′′(x) =
∞∑
k=0

(k + 2)(k + 1)ak+2(x− a)k

We should generally have the following basic power series of common
functions memorized:

f(x) a
∑
ak(x− a)k ρ IOC

ex 0
∑

xk

k! ∞ (−∞,∞)
cosx 0

∑
(−1)k x2k

(2k)! ∞ (−∞,∞)
sin x 0

∑
(−1)k x2k+1

(2k+1)! ∞ (−∞,∞)
ln(1 + x) 0

∑
(−1)k+1 xk

k 1 (−1, 1)
1

1−x 0
∑
xk 1 (−1, 1)

Example 7.1.4 Integrate ex2 . We can now answer the question posed at
the beginning of this discussion: since ex =

∑
xk

k! , we get

ex
2

=
∑ (x2)k

k! =
∑ x2k

k! .

Then ∫
ex

2
dx =

∫ ∑ x2k

k! dx

=
∑∫

x2k

k! dx

=
[∑ x2k+1

(2k + 1)k!

]
+ C

This function has no closed form, but the result can be worked with easily (for
example, in approximation). �

Example 7.1.5 Applying the ratio test. Find the radius and interval of
convergence of the series

∞∑
k=0

(−1)k
10k (x− 5)k.

To apply the ratio test, we need the terms

ck = (−1)k
10k (x− 5)k

and
ck+1 = (−1)k+1

10k+1 (x− 5)k+1.

Then

lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣ = lim
k→∞

∣∣∣∣ (−1)k+1(x− 5)k+1

10k+1 · 10k
(−1)k (−1)k(x− 5)k

∣∣∣∣
= lim
k→∞

∣∣∣∣ 1
10(x− 5)

∣∣∣∣ = 1
10 |x− 5|
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which by the ratio test will converge if

1
10 |x− 5| < 1

or |x− 5| < 10.

Then the radius of convergence ρ = 10, and the interval of converge, which has
endpoints given by a± ρ, is (−5, 15). �

7.2 Method of series solutions
The idea of this section is to use series to construct solutions to linear differential
equations that don’t have obvious closed form solutions (which is most of them).
First, we need to know that the differential equation is itself sufficiently well-
behaved to have analytic solutions.
Definition 7.2.1 A point x = x0 is called an ordinary point for a homoge-
neous second order differential equation of the form

y′′ + P (x)y′ +Q(x)y = 0

if P and Q are analytic at x0. (Typical functions for P,Q are trig functions,
exponentials, polynomials, and rational functions, which are analytic away from
asymptotes). ♦

Example 7.2.2 Every point x = x0 is ordinary for the differential equation

y′′ + exy = 0.

�

Example 7.2.3 Every positive x0 is ordinary for the equation

y′′ + (ln x)y = 0.

However, ln x has an asymptote at x = 0, so this is a singular point for the
equation. (Singular points are important to consider but quite complicated to
analyze, and addressed in further advanced courses in ODE). �

The big idea of power series solutions is that if

y′′ + Py′ +Qy = 0

then at any ordinary point x = x0 we can find two linearly independent power
series centered at x0 that solve the differential equation of the form

y =
∞∑
k=0

ck(x− x0)k.

The challenge is to find the coefficients ck.
Example 7.2.4 First order example. To illustrate the method, we’ll begin
with the power series approach to a first order differential equation

y′ − 2y = 0.

Of course, we already know that the solution to this equation should be y = ke2x

by the method of characteristic equations, so we should expect our series answer
to recover that.

Since the equation is regular at every point, (2 is analytic), for convenience,
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we will work at the regular point x = 0. We will assume that the solution
y = f(x) is a power series, which gives the expressions

y =
∞∑
k=0

ckx
k = c0 + c1x+ c2x

2 + . . . ;

y′ =
∞∑
k=0

(k + 1)ck+1x
k = c1 + 2c2x+ 3c3x2 + . . . .

Plugging into the differential equation, we get

(c1 + 2c2x+ 3c3x2 + . . .)− 2(c0 + c1x+ c2x
2 + . . .) = 0

(c1 − 2c0) + (2c2 − 2c1)x+ (3c3 − 2c2)x2 + . . . = 0.

What we get when we set all the coefficients equal to 0 is called a recursion: if
we know c0, we can get c1, which lets us get c2 and so on. We use substitution
to get all the values in terms of the first value c0.

c1 − 2c0 = 0 ⇒ c1 = 2c0
2c2 − 2c1 = 0 ⇒ c2 = c1 = 2c0
3c3 − 2c2 = 0 ⇒ c3 = 2

3c2 = 4
3c0

4c4 − 2c3 = 0 ⇒ c4 = 2
4c3 = 2

3c0
...

...
...

Now we can substitute these expressions into our assumed solution y:

y = c0 + c1x+ c2x
2 + c3x

3 + . . .

= c0 + (2c0)x+ (2c0)x2 + (4
3c0)x3 + . . .

= c0

(
1 + 2x+ 2x2 + 4

3x
3 + . . .

)
︸ ︷︷ ︸

homogeneous solution

The quantity c0 comes from an intital condition, and the series in this case
turns out to be the power series of the function e2x (check if you like!). �

Example 7.2.5 Airy’s equation. The next example first appeared in work
on optics in 1838. It is a very simple second order linear equation, yet does not
have any closed form solutions. That is, the only approach to finding solutions
is to use series methods. The solutions turn out to have applications in quantum
physics as well as in optics. The equation is the straightforward looking

y′′ − xy = 0.
Since P = 0 and Q = x, both of which are analytic functions, series solutions

exist everywhere, so we assume a center point of x0 = 0. Then we have the
expressions

y =
∞∑
k=0

ckx
k = c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + . . .

y′ =
∞∑
k=0

(k + 1)ck+1x
k = c1 + 2c2x+ 3c3x2 + 4c4x3 + . . .

y′′ =
∞∑
k=0

(k + 2)(k + 1)ck+2x
k = 2c2 + 6c3x+ 12c4x2 + 20c5x3 + . . .
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Plugging into Airy’s equation, we get

(2c2 + 6c3x+ 12c4x2 + 20c5x3 + . . .)
− x(c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + . . .) = 0
(2c2 + 6c3x+ 12c4x2 + 20c5x3 + . . .)

− (c0x+ c1x
2 + c2x

3 + c3x
4 + c4x

5 + . . .) = 0
which resorts into
2c2 + (6c3 − c0)x+ (12c4 − c1)x2 + (20c5 − c2)x3

+ (30c6 − c3)x4 + (42c7 − c4)x5 + . . . = 0

Now we set the coefficients of each term equal to 0.
First, notice that 2c2 = 0 means that c2 = 0. But 20c5 − c2 = 0, and so

c5 = 0 as well. Since, c8 is given in terms of c5, c8 is also 0, and so on for the
family of coefficients c2, c5, c8, c11, . . .. The is one family of coefficients.

The second family is in terms of c0:

6c3 − c0 = 0 ⇒ c3 = 1
6c0

30c6 − c3 = 0 ⇒ c6 = 1
6·5c3 = 1

6·5·3·2c0
72c9 − c6 = 0 ⇒ c9 = 1

9·8c6 = 1
9·8·6·5·3·2c0

...
...

...

which gives expressions for c3, c6, c9, c12, . . . in terms of c0 (this will correspond
to the first linearly independent solution).

The third family of solutions is given by c1:

12c4 − c1 = 0 ⇒ c4 = 1
4·3c1

42c7 − c3 = 0 ⇒ c7 = 1
7·6c3 = 1

7·6·4·3c1
90c10 − c7 ⇒ c10 = 1

10·9·7·6·4·3c1
...

...
...

which gives expressions for c4, c7, c10, c13, . . . in terms of c_1 (this represents
the second linearly independent solution).

Then we are ready to solve the equation. Starting with our assumed solution
of the form y =

∑
ckx

k and sorting into the three families we’ve identified, we
get

y = c0 + c1x+ c2x
2 + c3x

3 . . .

= c0 + c3x
3 + c6x

6 + c9x
9 + . . . c0 family

+ c1x+ c4x
4 + c7x

7 + c10x
10 + . . . c1 family

+ c2x
2 + c5x

5 + c8x
8 + . . . c2 family

= c0

(
1 + 1

3 · 2x
3 + 1

6 · 5 · 3 · 2x
6 + 1

9 · 8 · 6 · 5 · 3 · 2x
9 + . . .

)
+ c1

(
x+ 1

4 · 3x
4 + 1

7 · 6 · 4 · 3x
7 + 1

10 · 9 · 7 · 6 · 4 · 3x
10 + . . .

)
+ 0 + 0 + 0 + 0 + . . .

Then the two linearly independent solutions to Airy’s equation are

y1 = 1 + 1
3 · 2x

3 + 1
6 · 5 · 3 · 2x

6 + 1
9 · 8 · 6 · 5 · 3 · 2x

9 + . . .
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and
y2 = x+ 1

4 · 3x
4 + 1

7 · 6 · 4 · 3x
7 + 1

10 · 9 · 7 · 6 · 4 · 3x
10 + . . .

where neither function has a closed form. (The complicated behavior of the
solutions is part of why there isn’t much better than a series or improper integral
form, as can be seen from their plots. The plot below is a slight rearrangment
of the two solutions into a different fundamental set, but preserves the same
behavior - namely, the functions are oscillating and then become exponential.)
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y = Graphics ();
y += plot(airy_ai(x), (x,-10,5), ymin = -1, ymax = 1, color

= 'red');
y += plot(airy_bi(x), (x,-10,5), ymin = -1, ymax = 1);
y.show()

�

Example 7.2.6 Bessel equations. Another important example is the so
callled Bessel Differential Equation:

x2y′′ + xy′ +
(
x2 − ν2) y = 0, x > 0

where ν is some constant. For sake of simplicity, let us pick ν = 0, so that

x2y′′ + xy′ + x2y = 0 x > 0

and we can rewrite this equation by dividing by x2 to get

y′′ + 1
x
y′ + y = 0, x > 0.

Much like Airy’s equation, this seems like such a simple equation, but it turns
out there is no nice solution in terms of elementary functions. In turns out
that one way to solve this Bessel ODE is to use power series. (Since x > 0, the
function 1

x is analytic.) One can find out that

y1(x) = J0(x),
y2(x) = Y0(x)

where
J0(x) =

∞∑
n=0

(−1)n

(n!)2 22n
x2n.

J0(x) is called the Bessel function of first kind of order ν = 0. Y0(x) is called
the Bessel function of second kind of order ν = 0. Y0(x) can also be represented
by a series, but is more complicated. Another way to write Y0 is as an integral,

Y0(x) = − 2
π

∫ ∞
1

cos (tx)√
t2 − 1

dt, x > 0

Thus the general solution to Bessel Equation

y′′ + 1
x
y′ + y = 0, x > 0

is given by

y(x) = c1J0(x) + c2Y0(x)

= c1

∞∑
n=0

(−1)n

(n!)2 22n
x2n − c2

∫ ∞
1

2
π

cos (tx)√
t2 − 1

dt.

�
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A fast quadratic method

Consider the quadratic equation

ax2 + bx+ c = 0.

Students typically learn to solve this equation with the quadratic formula

x = −b±
√
b2 − 4ac

2a

or with the method of completing the square.
A recently introduced method for solving quadratic equations makes this

process much easier, particularly when complex numbers are involved. We’ll
first look at the theory behind the method, and then we’ll give some examples
that show how easy it is to do. Suppose that a = 1. What we are looking for is
two numbers, the roots R and S so that we can factor the equation as

(x−R)(x− S) = 0.

Multiplying out shows that

x2 + bx+ c = x2 − (R+ S)x+RS,

so that −b = (R+ S) and c = RS. Here is the key step: R+ S will equal −b
when the average of R and S is −b/2. Because parabolas are symmetric about
the vertex, the number −b/2 is precisely halfway in between R and S. So we
get

R = −b/2 + z and S = −b/2− z.

Since RS = c, we can compute

c = RS = (−b/2 + z)(−b/2− z) = b2

4 − z
2

and so

z = ±
√
B2

4 − C,

which is the quadratic formula when a = 1.
This might seem a bit complicated to parse, but the idea is very easy to use

in practice. Consider the equation

x2 + 5x− 6 = 0.

132
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Then we have that the roots are 5/2± z. Since the roots must multiply to c,
we get

(5/2 + z)(5/2− z) = −6
⇒ 25/4− z2 = −6
⇒ z2 = 49/4
⇒ z = ±7/2

Then the roots are −5/2±7/2, so R = −6 and S = 1, which means the equation
factors as (x+ 6)(x− 1) = 0.

This works even better for complex roots. Consider the equation

x2 + 2x+ 10 = 0

so that the roots have the form −2/2± z = −1± z. Then

(−1− z)(−1 + z) = 10

and so
z2 − 1 = −10

and
z = ±3i.

Then the solutions to the equation are −1± 3i.
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Exercises for Chapter 1

B.1 Section 1.1

Exercises
1. What does it mean to be a solution to a differential equation?
2. Check if the function y(t) = t + 1 a particular solution to the following

differential equation:
dy

dt
= y2 − 1
t2 + 2t .

3. Check if the function y(x) = x + x ln x solves the following initial value
problem:

x
dy

dx
= x+ y, y(1) = 3.

4. Find the equilibrium solutions to the equation

dy

dt
= y2 + 2y

5. Find the equilibrium solutions to the equation

dy

dt
= y4t− 3y3t+ 2y2t.

6. Classify the following equations as ODEs or PDEs.

(a) dy

dt
= 2yt

(b) ∂u
∂t = ∂2u

∂x2 Fun Fact: This particular PDE is a very famous PDE and
is called the heat equation. It models the flow of heat in a medium
over time.

(c) ∂2u
∂t2 = ∂2u

∂x2 + ∂2u
∂y2 Fun Fact: This particular PDE is a very famous

PDE and is called the wave equation. This PDE along with boundary
conditions, describes the amplitude and phase of the wave.

(d) xd
2y

dx2 = y
dy

dx
+ x2y

(e) 2y′′ − y′ + y = 0
7. Classify the order of the following differential equations. Also classify if it

134
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is linear or nonlinear.

(a) dy

dt
= 2yt

(b) y d
2y

dt2
= cos t

(c) ty′′′ − y′′ − 2y = 0

(d) dy6

dt6
− 2dy

dt
+ y = t2

(e) cos y + y′ = t

(f) 6y′′′ − y2 = y(5)

(g) d2y

dt2
= y

y + t

B.2 Section 1.2

Exercises
1. Match the following slope fields with their equations.

(a) dy

dt
= sin t

(b) dy

dt
= t− y

(c) dy

dt
= 2− y

(d) dy

dt
= t

2. Match the following slope fields with their equations.
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(a) dy

dt
= t4(y2 − 1)

(b) dy

dt
= t3(t2 − 1)

(c) dy

dt
= (y − 1)(y + 1)

(d) dy

dt
= −

√
1 + y4

3. Suppose the following ODE

dy

dt
= y2 − t

has the following slope field:
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(a) Suppose y(t) is a solution to this ODE and also you know that
y (−1) = 1. Then based on the slope field, what is your prediction
for the long term behavior of y(t). That is, what is your prediction
of

lim
t→∞

y(t)?

(b) Suppose y(t) is a solution to this ODE and also you know that
y (1) = 0. Then based on the slope field, what is your prediction for
the long term behavior of y(t), that is, what is your prediction of

lim
t→∞

y(t) =?

4. Let P (t) represent the population of the Phan fish breed. Suppose you
come up with the following differential equation that models P (t):

dP

dt
= P (P − 100) (P + 100) /100000

Its slope field is given by:
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(a) Suppose that the population of the Phan fish is 80 at time t = 0.
What is the long term behavior for the population of the Phan fish?
Will it keep increasing/decreasing, stabilize to a certain number, or
go extinct?
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Exercises for Chapter 2

C.1 Section 2.1

Exercises
1. Use a computer app to draw the direction field for the given differential

equations. Use the direction field to describe the long term behavior
of the solution for large t. (Meaning use the direction field to predict
limt→∞ y(t) for different starting points). Find the general solution of the
given differential equations, and use it to determine how solutions behave
as t→∞.
(a) y′ + 3y = t+ e−2t

(b) y′ + y = te−t + 1

(c) ty′ − y = t2e−t

(d) 2y′ + y = 3t
2. Find the particular solution to given initial value problem.

(a) y′ − y = 2te2t, y(0) = 1

(b) ty′ + 2y = sin t, y (π/2) = 1, t > 0
3. Consider the following initial value problem:

ty′ + (t+ 1) y = 2te−t, y(1) = a, t > 0

where a is any real number. Find the particular solution that solves this
IVP.

C.2 Section 2.2

Exercises
1. Find the general solutions for the following differential equations. Find

the explicit solutions if you can. If you can’t solve for y exactly, then leave
it as an implicit solution:
(a) y′ = ky where k is a parameter.

139
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(b) y′ = x2

y

(c) dy

dx
= 3x2 − 1

3 + 2y

(d) xy′ =
(
1− y2)1/2

y

(e) dy

dx
= x2

1 + y2

(f) dy

dx
= x

cos (y2) y
2. Consider the ODE

dy

dt
= 4y

t
.

(a) What kind of differential equation is this? Is it linear? Is it separable?

(b) If the ODE is both separable and Linear. Then use both methods
to solve this equation. And check to make sure you get the same
answer.

3. Find the general solution to the following differential equation:

dy

dt
= (y + 1) (y − 2) .

(Hint: Use partial fractions!)

C.3 Section 2.3

Exercises
1. First check each if the following differential equations are homogeneous.

Then find the general solutions for the following differential equations.

(a) x2 dy

dx
= −

(
y2 − yx

)
.

(b) dy

dx
=
x+ 3y + 2y

2

x

3x+ y
.

(c) dy

dx
= y

x
− x2 − y2

2xy .

2. Consider the following homogeneous equation:

dy

dx
= y − x
y + x

.

(a) Use the substitution v = y
x to rewrite the equation only in terms of

v and x.

(b) Solve for the general solution.
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3. Consider the following homogeneous equation:

dy

dx
= −y

2 − yx
x2 .

(a) Use the substitution v = y
x to rewrite the equation only in terms of

v and x.

(b) Solve for the general solution.
4. Using the given substitution, solve the differential equation:

(a) Rewrite dy
dx + xy = x2y2 using the substitution u = 1

y , only in terms
of u, x.

(b) Rewrite dy
dx + y = x

y2 using the substitution u = y3, only in terms of
u, x.

C.4 Section 2.4

Exercises
1. Initially, a tank contains 100 L of water with 10 kg of sugar in solution.

Water containing sugar flows into the tank at the rate of 2 L/min, and
the well-stirred mixture in the tank flows out at the rate of 5 L/min. The
concentration c(t) of sugar in the incoming water varies as c(t) = 2+cos(3t)
kg/L. Let Q(t) be the amount of sugar (in kilograms) in the tank at time
t (in minutes). Write the Initial Value Problem that Q(t) satisfies.

2. Initially, a tank contains 500 L (liters) of pure water. Water containing
0.3kg of salt per liter is entering at a rate of 2 L/min, and the mixture
is allowed to flow out of the tank at a rate of 1 L/min. Let Q(t) be the
amount of salt at time t measured in kilograms (kg). What is the IVP
that Q(t) satisfies?

3. Initially, a tank contains 400 L of water with 10 kg of salt in solution.
Water containing 0.1 kg of salt per liter (L) is entering at a rate of 1 L/min,
and the mixture is allowed to flow out of the tank at a rate of 2 L/min.
Let Q(t) be the amount of salt at time t measured in kilograms. What is
the IVP that Q(t) satisfies?

4. Consider a pond that initially constains 10 million gal of pure water. Water
containing a polluted chemical flows into the pond at the rate of 6 million
gal/year, and the mixture in the pond flows out at the rate of 5 million
gal/year. The concentration γ(t) of chemical in the incoming water varies
as γ(t) = 2 + sin 2t grams/gal. Let Q(t) be the amount of chemical at time
t measured by millions of grams. What is the IVP that Q(t) satisfies?

5. A tank contains 200 gal of liquid. Initially, the tank contains pure water.
At time t = 0, brine containing 3 lb/gal of salt begins to pour into the
tank at a rate of 2 gal/min, and the well-stirred mixture is allowed to
drain away at the same rate. How many minutes must elapse before there
are 100 lb of salt in the tank?

6. A huge tank initially contains 10 gallons (gal) of water with 6 lb of salt in
solution. Water containing 1 lb of salt per gallon is entering at a rate of 3
gal/min, and the well-stirred mixture is allowed to flow out of the tank at
a rate of 2 gal/min. What is the amount of the salt in the tank after 10
min?
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7. Initially a tank holds 40 gallons of water with 10 lb of salt in solution. A
salt solution containing 1

2b of salt per gallon runs into the tank at the rate
of 4 gallons per minute. The well mixed solution runs out of the tank at a
rate of 2 gallons per minute. Let y(t) be the amount of salt in the tank
after t minutes. Then what is y(20).

C.5 Section 2.5

Exercises
1. A detective is called to the scene of a crime where a dead body has just

been found.
(a) She arrives on the scene at 10:23 pm and begins her investigation.

Immediately, the temperature of the body is taken and is found to
be 80◦F. The detective checks the programmable thermostat and
finds that the room has been kept at a constant 68◦F for the past 3
days.\

(b) After evidence from the crime scene is collected, the temperature
of the body is taken once more and found to be 78.5◦ F. This last
temperature reading was taken exactly one hour after the first one.

(c) The next day the detective is asked by another investigator, “What
time did our victim die?” Assuming that the victim’s body tem-
perature was normal (98.6◦) prior to death, what is her answer to
this question? Newton’s Law of Cooling can be used to determine a
victim’s time of death.

C.6 Section 2.6

Exercises
1. What is the largest open interval in which the solution to the IVPs in part

(a) and part (b) are guaranteed to exist by the existence and uniqueness
theorems?
(a) The IVP given by:{(

t2 + t− 2
)
y′ + ety = (t−4)

(t−6)

y(−3) = −1.

(b) The IVP given by:{(
t2 + t− 2

)
y′ + ety = (t−4)

(t−6)

y(5) = 47.
2. What is the largest open interval in which the solution of the initial value

problem {
(t− 3) y′ + y = (t−3)·ln(t−1)

t−10
y(6) = −7.

is guaranteed to exist by the existence and uniqueness Theorem?
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3. What is the largest open interval in which the solution of the initial value
problem {

(t− 1) y′ +
√
t+ 2y = 3

t−3
y(2) = −5.

is guaranteed to exist by the Existence and Uniqueness Theorem?
4. What is the largest open interval in which the solution of the initial value

problem {
t2y′ + ln |t− 4| y = t−1

sin t
y(5) = 9.

is guaranteed to exist by the existence and uniqueness Theorem?
5. Consider the IVP below

dy

dt
= y1/5, y(0) = 0.

(a) Is this a linear or nonlinear equation? Can you use Theorem 2.6.1?

(b) Using Theorem 2.6.4 (the general theorem), can you guarantee that
there is a unique solution to this IVP? Why?

C.7 Section 2.7

Exercises
1. Consider the following differential equation:

dy

dt
= (y + 2) (y − 1) (y + 5)

(a) Draw a phase line. Classify the equilibrium solutions. Draw all
possible sketch of solutions of this differential equation.

(b) Consider the IVP

dy

dt
= (y + 2) (y − 1) (y + 5) , y(0) = 3.

Let y(t) be the unique solution that solves this IVP. Draw a sketch
of y(t) and use it to find limt→∞ y(t) and limt→−∞ y(t)?

2. Consider the following differential equation:
dy

dt
= y (y − 3)2 (y + 4)

(a) Draw a phase line. Classify the equilibrium solutions.

(b) Draw all possible sketch of solutions of this differential equation.

(c) Consider the IVP

dy

dt
= y (y − 3)2 (y + 4) , y(0) = −5.

Let y(t) be the unique solution that solves this IVP. Draw a sketch
of y(t) and use it to find limt→∞ y(t) and limt→−∞ y(t)?
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(d) Consider the IVP

dy

dt
= y (y − 3)2 (y + 4) , y(0) = 1.

Let y(t) be the unique solution that solves this IVP. Draw a sketch
of y(t) and use it to find limt→∞ y(t) and limt→−∞ y(t)?

3. Let y(t) be the unique solution to the IVP given by

dy

dt
= y2 sin y, y(0) = 1.

Draw a phase line for the ODE to find out limt→∞ y(t) for the unique
solution of the IVP above.

4. Consider the differential equation

dy

dt
= f (y)

where f(y) is given by the following graph (in y versus f(y)):

Draw the phase line and classify the equilibrium solutions.
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C.8 Section 2.8

Exercises
1. Determine whether each of the following equations are exact. If it is exact,

find the solution. Implicit solutions are fine.
(a) (2x+ 3) + (2y − 2) y′ = 0

(b) (2x+ 4y) + (2x− 2y) y′ = 0

(c)
(
3x2 − 2xy + 2

)
dx+

(
6y2 − x2 + 3

)
dy = 0

(d)
(
2xy2 + 2y

)
+
(
2x2y + 2x

)
y′ = 0

(e) dy

dx
= −ax+ by

bx+ cy

(f) (ex sin y + 3y) dx− (3x− ex sin y) dy = 0

(g)
(
y
x + 6x

)
dx+ (ln x− 2) dy = 0,x > 0

2. Find the implicit particular solution to the initial value problem(
9x2 + y − 1

)
dx− (4y − x) dy = 0, y(1) = 0.

3. Find the values of b for which the given equation is exact.(
ye2xy + x

)
dx+ bxe2xydy = 0.

C.9 Section 2.9

Exercises
1. Find the approximate values of the solution of the given initial value

problem at t = 0.1, 0.2, 0.3 and 0.4 using Euler’s Method with h = 0.1.

dy

dt
= t+ y, y(0) = 1.

2. Find the approximate values of the solution of the given initial value
problem at t = 0.1, 0.2, 0.3 and 0.4 using Euler’s Method with h = 0.05.

dy

dt
= t+ y2, y(0) = 1.

3. Find the approximate value of y (2) using Euler’s Method with h = 0.5 for
the solution of the following IVP

dy

dt
= y (3− ty) , y(0) = 0.5.

4. Consider the solution y(t) to the IVP:

dy

dt
= y (t+ y) /10, y(0) = 1.

Use the slope field below with Euler’s Method (using h = .5) to estimate
the value of y(3):
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Appendix D

Exercises for Chapter 3

D.1 Section 3.2

Exercises
1. Check if the following functions are solutions to the given EQ.

(a) Check directly if y1 = 2e5t is a solution or not to y′′ − 6y′ + 5y = 0.

(b) Check directly if y2 = 2et is a solution or not to y′′ − 6y′ + 5y = t.
2. Recall that if y(t) = ert is a solution to the ODE given by

ay′′ + by′ + cy = 0

for constant a, b, c where a 6= 0, then the exponent r in front the t must
be a solution to the characteristic equation ar2 + br + c = 0.

By yourself, rederive that if y(t) = Aert is a solution to the equation
above, then the number r must satisfy the characteristic equation ar2 +
br + c = 0 or A = 0.

3. Use the method given in Section 3.2 to find the general solution to

y′′ + 5y′ − 6y = 0
4. Use the method given in Section 3.2 to find the general solution to

y′′ − 7y′ = 0
5. Use the method given in Section 3.2 to find the particular solution to the

IVP
y′′ + y′ − 20y = 0, y(0) = 18, y′(0) = 9

D.2 Section 3.3

Exercises

147
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1. What is the largest open interval in which the solution of the initial value
problem

(t− 3) y′′ + sin ty′ + y = ln (t− 1)
t− 10 , y(15) = −7, y′(15) = 10

is guaranteed to exist by Theorem 3.3.1?
2. What is the largest open interval in which the solution of the initial value

problem

t2y′′ + ety′ + (t− 1) y =
√
t+ 2, y(−1) = 1, y′(−1) = 5

is guaranteed to exist by Theorem 3.3.1?
3. Consider the equation

y′′ + p(t)y′ + q(t)y = 0,

where p, q are continuous in some interval I. What are the two things you
have to do by Theorem 3.3.8 in order to find the general solution to the
ODE above?

4. Consider the equation

2t2y′′ + 3ty′ − y = 0, t > 0.

(a) Is the function y1(t) = t
1
2 a solution to this ODE?

(b) Is the function y2(t) = t−1 a solution to this ODE?

(c) Use Theorem 3.3.8 to show that

y(t) = c1t
1
2 + c2t

−1

gives the general solution to the ODE above.

D.3 Section 3.4

Exercises
1. Find the general solution of the following second order linear ODEs with

constant coefficients.
(a) y′′ + 16y = 0

(b) y′′ − 4y′ + 9y = 0

(c) y′′ − 4y′ + 29y = 0
2. Find the particular solution to the following IVP:

y′′ − 8y′ + 17y = 0, y(0) = −4, y′(0) = −1.
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D.4 Section 3.5

D.4.1 Repeated roots
Exercises

1. Find the general solution of the following 2nd Order Linear ODEs with
constant coefficients.
(a) y′′ + 14y′ + 49y = 0

(b) y′′ − 18y′ + 81y = 0
2. Find the particular solution to the following IVP:

y′′ − 4y′ + 4y = 0, y(0) = 12, y′(0) = −3.

D.4.2 Reduction of order
Exercises

1. Suppose you know that y1(t) = t is a solution to

t2y′′ − 3ty′ + 3y = 0, t > 0.

Find a second solution y2(t) that makes y = c1y1+c2y2 the general solution
of this ODE.

2. Suppose you know that y1(t) = t−1 is a solution to

2t2y′′ + ty′ − 3y = 0, t > 0.

Find a second solution y2(t) that makes y = c1y1+c2y2 the general solution
of this ODE.

3. Suppose you know that y1(t) = t is a solution to

t2y′′ + 2ty′ − 2y = 0, t > 0.

Find a second solution y2(t) that makes y = c1y1+c2y2 the general solution
of this ODE.

4. Suppose you know that y1(t) = t2 is a solution to

t2y′′ − 3ty′ + 4y = 0, t > 0.

Find a second solution y2(t) that makes y = c1y1+c2y2 the general solution
of this ODE.

D.5 Section 3.6

Exercises
1. Consider the following non-homogeneous 2nd order ODE:

y′′ + y′ − 2y = e3t.

(a) Find the general solution.
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(b) Find the particular solution to the IVP:

y′′ + y′ − 2y = e3t, y(0) = 1
10 , y

′(0) = 13
10 .

2. Find the general solution to the following non-homogeneous 2nd order
ODE:

y′′ − 2y′ + 2y = e2t.

3. Find the general solution to the following non-homogeneous 2nd order
ODE:

y′′ − 4y′ + 3y = 4e3t.

4. Find the general solution to the following non-homogeneous 2nd order
ODE:

y′′ − 2y′ + y = et.

5. Find the general solution to the following non-homogeneous 2nd order
ODE:

y′′ + y′ − 6y = 52 cos (2t) .
6. Find the general solution to the following non-homogeneous 2nd order

ODE:
y′′ + 2y′ + 3y = sin (t) .

7. For the following ODEs. Use the method of undertermined coefficients
(MOUC) to make the correct guess for the yp. You DO NOT have to solve
for the coefficients, A,B,C . . .. Simply make the correct guess for the yp.
(a) y′′ − 2y′ + y = tet,

(b) y′′ + y′ − 2y = t2et,

(c) y′′ + y′ = t2 + cos t,

(d) y′′ + y′ − 6y = e5t + sin(3t),

(e) y′′ + y′ − 2y = tet + t2,

D.6 Section 3.7/Section 3.8

Exercises
1. A 64 lb mass stretches a spring 4 feet. The mass is displaced an additional

5 feet. and then released; and is in a medium with a damping coefficients
γ = 7 lb sec

ft . Suppose there is no external forcing. Formulate the IVP that
governs the motion of this mass.

2. A 32 lb mass stretches a spring 4 feet. The mass is displaced an additional
6 feet. and then released with an initial velocity of 3 ft

sec ; and is in a
medium with a damping coefficients γ = 2 lb sec

ft . Suppose there is an
external forcing due to wind given by F (t) = 3 cos (3t). Formulate the
IVP that governs the motion of this mass.

3. Consider the following undamped harmonic oscillator with forcing:

u′′ + 5u = sin (3t) , u(0) = 0, u′(0) = 0.

What is the natural frequency? What is the frequency for the external
force? Will you get resonance? What is your guess for up?
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4. Consider the following undamped harmonic oscillator with forcing:

u′′ + 16u = 7 cos (4t) , u(0) = 0, u′(0) = 0.

What is the natural frequency? What is the frequency for the external
force? Will you get resonance? What is your guess for up?

D.7 Section 3.9

Exercises
1. Consider the following ODE

y′′ + 16y = 1
sin (4t) .

(a) Find a particular solution to the ODE above using the method of
variation of parameters.

(b) What is the general solution to the ODE above?
2. Find the general solution to

t2y′′ − 4ty′ + 6y = t3, t > 0

given that
y1(t) = t2, y2(t) = t3

forms a fundamental set of solution for the corresponding homogeneous
differential equation.

3. Find the general solution to

t2y′′ − 3ty′ + 3y = 8t3, t > 0

given that
y1(t) = t, y2(t) = t3

forms a fundamental set of solution for the corresponding homogeneous
differential equation.

4. Find the general solution to

2t2y′′ + ty′ − 3y = 2t5/2, t > 0

given that
y1(t) = t−1, y2(t) = t3/2

forms a fundamental set of solution for the corresponding homogeneous
differential equation.



Appendix E

Exercises for Chapter 4

E.1 Section 4.1

Exercises
1. What is the largest interval for which there exists a unique solution by the

Existence and Uniqueness Theorem for the following IVP:

(t− 5) y(4) − ln(t+7)
t y′′ + ety = t2+1

(t−1)

y(2) = −1
y′(2) = 1
y′′(2) = 2
y′′′(2) = 5.

2. Find general solution of

y′′′ + 10y′′ + 7y′ − 18y = 0.

(Hint: r3 + 10r2 + 7r − 18 = (r − 1) (r + 2) (r + 9))
3. Find general solution of

y(4) − 10y′′′ + 36y′′ − 54y′ + 27y = 0.

(Hint: r4 − 10r3 + 36r2 − 54r + 27 = (r − 1) (r − 3)3)
4. Find general solution of

y(5) − 4y(4) + 13y′′′ − 36y′′ + 36y = 0.

(Hint: r5 − 4r4 + 13r3 − 36r2 + 36r = r (r − 2)2 (
r2 + 9

)
)

5. Find general solution of

y(4) + 11y′′ + 18y = 0.

(Hint: r4 + 11r2 + 18 =
(
r2 + 2

) (
r2 + 9

)
)

6. Find general solution of

y(6) + 32y(4) + 256y′′ = 0.

(Hint: r6 + 32r4 + 256r2 = r2 (r2 + 16
)2)

152
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E.2 Section 4.2

Exercises
1. Consider

y′′′ − 4y′′ − 11y′ + 30y = 4e−3t + cos t.

Find the general form of yp. (Hint: r3−4r2−11r+30 = (r + 3) (r − 2) (r − 5))
2. Consider

y(4) + 8y′′′ + 16y′′ = t+ et.

Find the general form of yp(Hint: r4 + 8r3 + 16r2 = r2 (r + 4)2)
3. Consider

y(4) − 10y′′′ + 36y′′ − 54y′ + 27y = 2tet + cos(3t),

and suppose you know that yh = c1e
t + c2e

−3t + c3te
−3t + c4t

2e−3t. Find
the general form of yp.

4. Consider
y(4) − 2y′′′ = 2t+ 1.

Find the general form of yp. (Hint: r4 − 2r3 = r3 (r − 2))
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Exercises for Chapter 6

F.1 Section 6.1

Exercises
1. Use the definition of Laplace transform to find the Laplace transform of

f(t) = 1. That is, find L{1} .
2. Use the definition of Laplace transform to find the Laplace transform of

f(t) = t. That is, find L{t} .
3. Use the definition of Laplace transform to find the Laplace transform of

f(t) = t2. That is, find L
{
t2
}
.

4. Use the properties of Laplace transform and the following facts

L{1} = 1
s
, s > 0

L
{
eat
}

= 1
s− a

, s > a,

L{t} = 1
s2 , s > 0,

L
{
t2
}

= 2
s3 , s > 0,

L{sin(at)} = a

s2 + a2 , s > 0,

L{cos(at)} = s

s2 + a2 , s > 0,

to compute the Laplace transforms of the following functions.
(a) L

{
2e5t + 7 cos(3t) + 2t

}
=

(b) L
{
−7e−9t − 5t2 − 5 sin(3t)

}
=

(c) L
{
−5 sin(

√
7t) + 2 + 5t

}
=

(d) L
{

4e−t − 6e3t + cos(3t)
}

=

154
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F.2 Section 6.2

Exercises
1. Use the table of Laplace Transform given in Subsection 6.3.1 to help you

compute the following inverse Laplace transforms.

(a) L−1
{

5
s− 6

}

(b) L−1
{

5
7− s + 1

s+ 3

}

(c) L−1
{

3
s+ 9 −

10
s2

}

(d) L−1

{
3

s2 + 7 + 2
(s− 5)3

}

(e) L−1

{
s− 3

(s− 3)2 + 36

}

(f) L−1

{
s

s2 + 9 + 2
s
− s− 1

(s− 1)2 + 25

}
2. Solve the following IVP using Laplace Transforms:

y′ + 4y = e−t, y(0) = 0
3. Solve the following IVP using Laplace Transforms:

y′ + y = e−2t, y(0) = 2
4. Solve the following IVP using Laplace Transforms:

y′ + 7y = 1, y(0) = 3.

F.3 Section 6.3

Exercises
1. What is the correct form of the partial fractions?

(a) 5s− 1
(s− 3) (s2 + 2s+ 5) =

(b) s− 2
(s− 2)2 (s+ 5)

=

(c) s+ 1
(s2 + 9) (s3 + 2) =

(d) s

(s+ 1) (s2 + 10) s3 =

2. Take the inverse Laplace Transforms of the following:

(a) F (s) = 1
s2 − 8s+ 7
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(b) F (s) = s+ 7
s2 + 6s+ 13

(c) F (s) = 2s− 1
s2 − 8s+ 18

3. Solve the following IVP using Laplace Transforms:

y′′ + 4y = 8, y(0) = 11, y′(0) = 5.
4. Solve the following IVP using Laplace Transforms:

y′′ − 4y′ + 5y = 2et, y(0) = 3, y′(0) = 1.

F.4 Section 6.4

Exercises
1. Take the Laplace transforms of the following functions

(a) f(t) = u7(t)e6(t−7)

(b) f(t) = u2(t)e−9(t−2)

(c) f(t) = u2(t) (t− 2)3

(d) f(t) = u6(t) sin (3 (t− 6))

(e) f(t) = u1(t) cos (7 (t− 1))
2. Take the inverse Laplace transforms of the following functions

(a) F (s) = e−3s

s+ 1

(b) F (s) = e−5s

s− 7

(c) F (s) = 2e−2s

s2 + 4

(d) F (s) = se−9s

s2 + 7

(e) F (s) = (s+ 2) e−3s

(s+ 2)2 + 16
3. Take the inverse Laplace transforms of

F (s) = e−3s

s2 − 3s+ 2 .

4. Take the inverse Laplace transforms of

F (s) = se−9s

s2 + 6s+ 11 .
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F.5 Section 6.5

Exercises
1. Find the solution to the following IVP using Laplace Transforms

y′ + 9y = u5(t), y(0) = −2.
2. Find the solution to the following IVP using Laplace Transforms

y′ + y = u7(t)e−2(t−7), y(0) = 1.
3. Find the solution to the following IVP using Laplace Transforms

y′′ + 9y = u3(t) sin (2 (t− 3)) , y(0) = 2.
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