Differential Equations Exercises Solutions






CHAPTER 1

Introduction

1.1. Problems

(1) What does it mean to be a solution to a differential equation?
e Solution: A solution is a function y(¢) that when you plug the function into both sides of the
Differential Equation, you get equality.
(2) Check if the function y(t) =t + 1 a solution to the following differential equation:
dy y? -1
dt 242t
e Solution: The left hand side of the equation is

ras = L 14 1)

dt
=1
while the right hand side of the equation is
y(t)* -1
RHS = =—&F——
2 4+ 2t
D)1 242t 1-1
242t 2 4 2t
P2
242t

Since the LHS = RHS, then y(t) =t + 1 is a solution to this differential equation.
(3) Check if the function y(x) = x + z lnx solves the following Initial Value Problem (IVP):
dy

—-— = 1) =3.
e =rty )

e Solution:
e We first check that y(z) solves the differential equation. The left hand side of the equation is
dy(x) d

LHS ==« dr =T (x+xlnx)

1
x <1 +Inx+x- ) , by product rule
x

=z(1+nz+1)

c+xlnr+x

=2r+xlnx
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while the right hand side of the equation is
RHS =z + y(x)
=z+ (z+zlnz)
=2x+zha.
Since the LHS = RHS, then y(z) = x +x lnx is a solution to this differential equation. YES,

this is a particular solution to the Diff. Eq.
e Now we need to check if y(z) = 2 4+ 2 Inz solves the Initial condition.

y(1)=1+1-In1
=140
=1.
e But unfortunately this does not solve the initial condition because the initial condition was

y(1) = 3, hence it is not a solution to the IVP.
(4) Find the equilibrium solutions to the equation

dy 2

A 9

dt Yo+ 2y
e Solution: By factoring the RHS we get

dy

= — 2

priak AU

and setting the RHS equal to zero we get that y = 0, —2 are the equilibrium(constant) solutions.
(5) Find the equilibrium solutions to the equation

dy 4 3 2
— =yt —3y°t+ 2yt
dt Y YL+ 2y

e Solution: By factoring the RHS we get
dy 2
=Pty —1) (y— 2
g = Vtly-1(y-2)

and setting the RHS equal to zero we get that y = 0, 1, 2 are the equlibrium(constant) solutions.
Note that ¢ = 0, is NOT an equilibrium solution, because that wouldn’t even make any sense
since ¢ is an independent variable. Solutions are functions y(¢). So when I write y =0, 1,2 are
solutions, I mean the functions

y(t) = 0,y(t) = 1,y(t) = 2

are the solutions. If you plot these functions, they are constant horizontal lines.
(6) Classify the following equations as ODEs or PDEs.
(a) % =2yt
e Solution: The solution to this equation would be a function y = y(t). Since there is
only one independent variable, then this is an ODE.
(b) 2u = 8%u
ot — Ox?
e Solution: The solution to this equation would be a function u = u(t, ). Since there are
two independent variables, then this is a PDE. Note that the dependent variable is u,
which is different than the standard y that we have been using. We can always change

the letters of our variables. Please don’t let that confuse you.
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— Fun Fact: This particular PDE is a very famous PDE and is called the heat equation.
It models the flow of heat in a medium over time.
Pu _ %u  2%u
(©) 37 = 028 + oy
e Solution: The solution to this equation would be a function u = u(t, z,y). Since there
are three independent variables, then this is a PDE.

— Fun Fact: This particular PDE is a very famous PDE and is called the wave
equation. This PDE along with boundary conditions, describes the amplitude and
phase of the wave.

2
(d) 254 =y% + 2%y
e Solution: The solution to this equation would be a function y = y(x). Since there is
only one independent variable, then this is an ODE.
(e) 2y —y' +y=0
e Solution: The solution to this equation would be a function y = y(¢). Since there is
only one independent variable, then this is an ODE.
(7) Classify the order of the following differential equations. Also classify if it is linear or nonlinear.
(a) % =2yt
,® Solution: This is a first order linear ODE.
(b) y‘flTé’ = cost

e Solution: This second order non-linear ODE. The y% makes this nonlinear.
(C) ty’” _ y// —2y=0
e Solution: This is a third order linear ODE. Don’t let the ty”’ fool you into thinking
it’s non-linear. When we talk about linear, we’re only looking for linear in y, and we
, can treat ¢’s as constants.
(d) % —2% 4y =2
e Solution: This is a sixth order linear ODE. Don’t let the t? fool you into thinking it’s
non-linear. When we talk about linear, we’re only looking for linear in y, not in t.
(e) cosy+y =t
e Solution: This is a first order non-linear ODE.
(f) 6y/// _ y2 _ y(5)
e Solution: This is a fifth order non-linear ODE. The y? makes this non-linear. Note
. that y? means y - y, while y®) would mean second derivative.
(8) @ = 7
e Solution: This is a second order non-linear ODE.
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1.2. Problems
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(1) Match the following slope fields with their equations e A= b
(a) %:sint
e Solution: C
dy _
(b) F=t—y
e Solution: D
dy _
() F=2-y
e Solution: A
dy _
(d) g =t
e Solution: B
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(2) Match the following slope fields with their equations
(a) G =t"(—1)
e Solution: IV
(b) % =32 - 1)
e Solution: III

() %=@w-Dy+1)
e Solution: II
(d) ¥ =—-V1+y
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e Solution: I
(3) Suppose the following ODE

%ny,t
dt

I
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has the following Slope Field: ~= =

(a) Suppose y(t) is a solution to this ODE and also you know that y (—1) = 1. Then based on
the slope field, what is your prediction for the long term behavior of y(t), that is, what is your

prediction of

-1

05

i =?
tlgrolo y(t) =

e Solution: If the solution goes through the point y(—1) = 1, then my prediction for the

0

05

1

15

2

solution would have to follow the tangent curves.
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e It would probably look like: - s s 0 05 i s
e Hence by my sketch
lim y(t) = oo.

t—o0

(b) Suppose y(t) is a solution to this ODE and also you know that y (1) = 0. Then based on the
slope field, what is your prediction for the long term behavior of y(t), that is, what is your

prediction of

lim y(t) =7

t—o0
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e Solution: If the solution goes through the point y(1) = 0, then my prediction for the
solution would have to follow the tangent curves.
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e It would probably look like: *= s &+ < o 1 s e
e Using the given information, we have could say that

lim y(¢) < —1.

t—o0

e It might be too bold to say that the limit is —oo. This is because what if the solution
keeps going down but then eventually goes back up? Who knows? But given the current
slope field, the only prediction we can make is that it is less than —1, because the tangents
above the point (2, —1) all point down.

e If you'd like to be more precise, it actually seems that the limit might be between —1.5
and —1.

(4) Let P(t) represent the population of the Phan fish breed. Suppose you come up with the following
differential equation that models P(¢):

P
‘;7 — P (P — 100) (P + 100) /100000
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Its Slope Field is given by:

(a) Suppose that the population of the Phan fish is 80 at time ¢ = 0. What is the long term

behavior for the population of the Phan fish? Will it keep increasing/decreasing, stabilize to

a certain number, or go extinct?

80 then my prediction for the solution would have to follow the

e Solution: If P(0)

tangent curves.
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e It would probably look like:

e Hence by my sketch we can make a guess that

0,

(t)

hence we model that the population of the Phan fish will go extinct.

lim P
t—o00



CHAPTER 2

First Order Differential Equations

2.1. Problems

(1) Use a computer app to draw the direction field for the given differential equations. Use the direction
field to describe the long term behavior of the solution for large t. (Meaning use the direction field to
predict lim;_, y(t) for different starting points). Find the general solution of the given differential
equations, and use it to determined how solutions behave as ¢t — oc.

(a) v +3y=t+e
e Solution:
e Qualitative analysis: Using the applet DField, and rewriting

dy —2t
—= =1 -3
It +e Y

we have that following Slope Field with some sketch of solution:

y = tren(-2'0)3y
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e Using the slope Field we predict that all solutions satisfy

lim y(t) = 4o0.

t—o0
e Solve analytically: We have p(t) = 3, and g(t) = t + e~2!. The integrating factor is

pu(t) = el P()dt _ o [3dt _ 3t

11
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Then the solution is given by

1

o3t

)= | [uiatvar+ |
e
3t

1
pen
1
|
1

=t
3

e3t (t + e*Qt) dt + C’}

+éf dt+C’]

/
v

3t 93t+e +C:|

1
—§+€_2t+06_3t.

e Now that we have the exact solution we can indeed confirm that

t—o0

(b) ¥ +y=te " +1
e Solution:
e Qualitative analysis:Using the applet DField, and rewriting

t—o0

1 1
lim y(¢) = lim <3t ~9 +e % ¢ Ce_3t)

=o00+0

= +-00.

dy . _
~ =tet4+1—y
dt
we have that following Slope Field with some sketch of solution:
y = ten(4)Hy
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e Using the slope Field we predict that all solutions satisfy

tliglo y(t) = 1.

e Solve analytically: We have p(t) = 1, and g(¢t) = te~* + 1. The integrating factor is

u(t) =e

Sp@®dt _ [ 1dt _ et
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Then the solution is given by

5 | [ nostorar+c|

= /et (te™* +1)dt + C]

== /(t+et)dt+C’]

1 [¢2
= — 2+6t+0:|

=—et414Cet
2
e Now that we have the exact solution we can indeed confirm that
) . ., —t
Ji ot = fim (G 41 0e)

=0+1+0
— 1

(c) ty' —y =t
e Solution:
e Qualitative analysis:Using the applet DField, and rewriting

dy . 1
et
a Y
we have that following Slope Field with some sketch of solution:
J ¥’ = eIy,
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e Using the slope Field we predict that all solutions satisfy
Jim y(t) = oo or lim y(t) = —oo, or lim y(t) =0

depending on the starting point.
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e Solve analytically: Don’t forget to first rewrite it in the form % +p(t)y = g(¢):

1
I — t —t
Y ty €
We have p(t) = —1, and g(t) = te'. The integrating factor is
M(t) _ efp(t)dt _ ef—%dt

— -1 —
—e lnt:elnt :tl

Then the solution is given by

e Now that we have the exact solution we can indeed confirm that

lim y(t) = tllglo (—te™" + Ct)

t—o0
— Tim (—te—t .
= thm (—te™") + thm (Ct)

=0+C lim t.
t—o00

e Now note that if C' > 0 then lim;_, y(t) = 400, and if C' < 0 then lim;_, o, y(t) = —o0,
and finally if C' = 0 then lim; ., y(¢) = 0.
(d) 2y +y=3t
e Solution:
— Try the qualitative analysis yourself. The Analytic soluton is y(t) = 3t — 64 Ce~*/?
and note that we always have

lim y(t) = lim (St -6+ C’e_t/2>
t—ro0 t—ro0

=00—-6+4+0

= 4-00.

(2) Find the particular solution to given initial value problem.

(a) ¥ —y =2te™, y(0) =1
e Solution: Using integrating factors, one obtains the general solution

y(t) = 2te® — 2e* + Cel.
Using the initial condition we have that
1=y(0)=2-0-*0 -2 + Ce’ = 2+ C
hence C' = 3, thus the particular solution to the IVP is
y(t) = 2te** — 2 + 3¢,
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(b) ty' +2y =sint, y(7/2)=1,t>0
e Solution: Using integrating factors, one obtains the general solution

(t) L t ! t+ ¢
= —sint — — cost + —.
4 t2 t t2

Using the initial condition we have that
1 .7 1 ™ C

1:y(0):?81n7—?cosf‘|’ﬂ2
(%) 2.2 2 (3)
4 4
:ﬁ‘f'ﬁc

hence C = %2 — 1, thus the particular solution to the IVP is

(t) Lsint— Leost+ 2 ™
= — SInt — — COoS — _— .
y 2 ¢ 2\ 1

(3) Consider the following initial value problem:
ty +(t+Dy=2tet, y(1)=a, t>0

where a is any real number.
(a) Find the particular solution that solves this IVP.
e Solution: Using the technique for Linear 1st order ODE, you should get:

y(t) =te™t —e "t +eae it
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2.2. Problems

(1) Find the general solutions for the following differential equations. Find the ezplicit solutions if you
can. If you can’t solve for y exactly, then leave it as an implicit solution:
(a) 3y’ = ky where k is a parameter.
e Solution: First note y = 0 is an equilibrium solution. Since k is a parameter then we
y

want to keep track of it. Then rewrite ¢’ = Zth and separate variables

dy _

1
i ky <— gdy = kdt

/ldy: /kydt
Y

In|y| =kt+

ly| = e™rrer,
c1 kt

ly| = e“e™, rename ¢y = €

|y\ = Czekt-

[

Now since
T x>0
|z| =
—x x<0

then we can get rid of the absolute value by putting a + on the RHS (we’ll use this trick
often)

kt

ly| = coeft = y = tcpekt

< y = c3e’, rename c3 = +cy
e Thus since c3is our final constant I’ll just rename it as C' and get

General solution : y(t) = Ce*.

e Note that the equilibrium solution of y = 0 is included in our formula by setting C' = 0.
So this is indeed the most general solution.
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e Solution: First note there are no equilibrium solutions. Then rewrite 3’ = W and

dx
separate variable

2

Y2 x3+
<= —=—+c
2 3 !
23
<:>y2:%+2cl,
23
<:>y2:7+02,rename02:201
2z3
<:>y::|2 T-’-CQ

Thus since cpis our final constant I'll just rename it as C' and get

. 23
General solution : y(t) = + 3 +C.

dy 32° -1
(c) — =
dx 3+ 2y
e Solution: First note there are no equilibrium solutions. Separate variable
dy 32%—1 9
-— = — (3+2y)dy=(32"-1)d
ir= 313y (3+2y)dy = (32” — 1) da

— /(3+2y)dy=/(3$2—1)dx

— Wty =2 -+

We need to solve for y. Since this is a quadratic in y then we can use the quadratic
formula: Rewrite the above as

V43— 4+ —c =0,
rename cg = —c; and get
43y —ad+r+c=0

then just like in the notes, we can solve ay? + by + ¢ = 0 with here a, b, ¢ being

b=3

c:fx‘3+x+02.
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and using the quadratic formula we get

_ —b+Vb? —4ac

B 2a

3+ —d(-P+rte)

N 2
-3 1

= 24 /94423 — 4z — 4y
2 2

but notice that 9 — 4c, is just a constant, so I’ll rename that as c3 = 9 — 4c, and get
3 .1
General solution : y(t) = 5 + 3 423 — 4x + c3.

e Now this is a perfectly good correct answer, but if you can simplify even more (if
you’d like to, but you don’t have to on exams), by factoring out the 4 inside the square

root, to get
3 1 C3
=24~ 4(‘3 7)
yt) =-5 %3 -zt
3 2 C3
T . 1
2 T\ Ty
3 C3
=-3 + V23 — x + ¢4, renamed ¢4 = R

And hence an even more simplified version of the General solution is

More simplified General solution : y(t) = —g +vad—x+C.

1/2
@ ay = L=V
Y
e Solution: Note that y(t) = 1, —1. are equilibrium solutions. Then separate variables
1/2
LAy (-7 ydy

_dzy) v 1,
doe y fy2)1/27ac

(1
R
= [ 3
— /(1y2)1/2dyln|x|+c
-y

To integrate the LHS we use u-substitution with v = 1 — %2 and get du = —2ydy , or

—%“ = ydy so that
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Thus

LHS=RHS «<— —v/1—-y?=Inlz|+c
= V1-y?=—-In|z|+c
—Inlz|)?

= (c
— P =1-(C—Inlz|)’
<

y=+1/1-(C—Inlz|)?

1—9y? =

19

e Note that since the formula does not contain y(z) = #1/1 — (C' — In|z|)* the equilibrium

dy _
de

e Solution: Note that there are no equilibrium solutions. Then rewrite

solutions y = 1, —1 then the general explicit solution is given by

y(t) = £1/1 = (C — Inz|)?

General solution : ¢ 4(¢) = —1

.732

1+y?

separate variables

dy x?

der  141y2

= (1 + y2) dy = 22dx

g /(1+y2)dy=/x2dx

— er3 x3+
I Y 4.
Y 3 3 1
g3 ad
— y—l—?—?—&—C:O, where I let C' — ¢;

dy _

dx

IQ
1+y2

and

e Recall we are trying to solve for y. And in general it is hard to solve for cubic (even
though there is a “cubic formula”, T don’t expect you to know what it is). Hence we will

leave the solution as an implicit solution:
Thus

3z

General Implicit solution : y + % -3 +C=0.
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e Solution: Note that there are no equilibrium solutions. Then separate variables

y___ T = cos(yQ)ydy:/xdx

dx  cos(y?)y
= /cos (v*) ydy = /mdx
1

2
= 3 sin (yQ) = % + ¢1, by u-substitution

<= sin (yg) =22+

e Note that we can solve this exactly to get

General Explicit solution : y(t) = 4y/sin™* (22 + C).

e What is the domain of this function? We have to be careful here. Because the

domain of sin~! z is [~1, 1], while its range is [~ Z, 2| And since we can only put positive

numbers in the square root function. Then the domain of y(t) is all real numbers where
—1<2?2+C<1and 0 <sin~! (Jc2 +C)
and this only happens when
0<z’+C<1

e In general, I won’t expect you to know the domain and range of inverse trig functions.
So the domains of the functions is whereever the equations are defined. Thus it might
be easier to write solutions implicitely:

General Implicit solution : All functions satisfyingsin (yQ) =22+ C.

(2) Consider the ODE
dy _ 4y

at — t°
(a) What kind of differential equation is this? Is it Linear? Is it separable?
e Solution: Note that since we can write the ODE as
dy 4
2 Zy=0
it~ tY
then it is linear. It is also separable!
e This means, any of the two methods would work.
(b) If the ODE is both Separable and Linear. Then use both methods to solve this equation. And
check to make sure you get the same answer.
e Solution:
e Solving it as a Linear ODE: Since % — 2y =0 then we can let p(t) = —% and g(t) = 0.
The integrating factor is

H(t) _ 6fp(t)dt _ ej‘fédt

_ —a 1
—e 41Int _ elnt _
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Then the solution is given by

e Solving it by treating as a separable equation: Separating we get

d
w_ty = d—y:édt
dt t t

Y
d

[ [
Y t

—
<~ Inly|=4ln|t|+
— Inly|=nt*+¢
|y| _ elnt4+c1
|y| _ eclelnt4
— y=Ce" t47 by letting C' = +e!
— y=Cth

And we get the same answer. Note that the equilibrium solution y = 0, is also included
by letting C' = 0.
e In general you can choose whichever method you prefer.
(3) Find the general solution to the following differential equation:

dy

EZ(y+1)(y—2)~

(Hint: Use Partial fractions!)
e Solution: Note that y(¢) = —1, 2. are equilibrium solutions. Then rewrite %‘:{ =Wy+1)(y—2)
and separate variable

dy

Z -t -2) =

_dy
(y+1)(y—2)

dy B
‘:)/<y+1><y—2>/dt

dy B .
‘:’/<y+1><y—2>"5+ v

to integrate [ (yﬂg)l% we need to use partial fractions.
e Recall to do partial fractions we have
1 A n B
(y+1y-2) y+1 y-2

=dt
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multiply both sides by (y + 1) (y — 2) and get
1=A(y—-2)+B(y+1)
LHS =RHS
rewrite the RHS by putting all y’s together
1=(A+B)y+ (B-24)
and rewrite the LHS and recall there is an imaginary 0 - y and get
0-y+1=(A+B)y+ (B—24)

comparing coefficients we have that

0=A+B

1=B-2A

and solving this system we have that
1 1
A = —g and B = g

e Putting back into the ODE equation we have

/ L1 +1 ! dy =t+ <:>11| 2| 11\+1\ t+
—_—— = = —Inly—2|—=1In =

3y+1 3y—2)%Y “ 3 Y 3 “
1/3

(:>1n|y—2\1/3—1n\y+1| =t+ac
21/3
<=>ln|y ‘1/3—t—|—61
ly + 1]
|y 2|1/3 c1 .t c
= 1/37616,andthenleth:e1
ly +1]
1/3
y—2"* _
e
—2
<— ly | = c3€>, where ¢3 = Ch
ly+1
-2
= (y ) = ¢4, where ¢y = +c3
(y+1)
= (y—2)=ce (y+1)
= y—2=ce3y + cge®
=y (1 — C463t) =yt +2
gt 42
vy= 1 — cyedt

Since this formula already includes the Equilibrium solution y(t) = 2 when C = 0, then

3t
y(t) = ffcz_a%

y(t) = -1

General Explicit solution : {
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2.3. Problems

(1) First check each if the following differential equations are homogeneous. Then find the general
solutions for the following differential equations.
d
2

—_— 2_
xdm_ (y yx).

(a)

(b)

x@ =—? = /U_de:—/ldx
dx x

27
Solution: First we write it as g—g = — (v wzym) and we try to get the RHS to look like

F (%) by doing some algebra note that

2=+
de (m + T
hence we can make the substitution v = % on the RHS and use the fact that % = xg—; +v
on the LHS:

dv 9
r—+v=—-v"+v
dz
and simplifying we get
dv 9
I% = —v.

This new equation is separable:

= /v_gdv:—ln|x|+C
1
= —E:—ln|m|+C’

1
<= - =In|z| + C, note that I just renamed — C by C again
v

1

T hEyC

Now that we’ve solve for v. We need to go back to y, using the substitution we had

made v = £
xT

1 Y 1
V= == L=
In|z|+C z  Injz|+C

x
= y=—
4 In|z|+C

Thus y(z) = o 18 our final answer.
— There is also an equilibrium solution of y =0
Thus the general explicit solution is given by

{y(””) = mlel+C
y(z) =0

dy _x+3y+2%

dzx

3r+y



1 1
3tan"' v+ §1HIU2+1| =In|z|+C <= 3tan"! <7> + iln

() &=

dx
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e Solution: First we try to get the RHS to look like F (%) By doing some algebra (divide

by x everywhere) note that

dy 1+3Y+2(Y)°
@ stL
hence we can make the substitution v = % on the RHS and use the fact that % = :cg—z +v
on the LHS:
dv 1+ 3v+ 202
x% TU= 3+wv
and simplifying we get

dv 1+ 3v + 202 dv 1+3v+202 3v+02
= <~

mﬁ_ 3+ - x%: 3+v 34w
dv 1+ v?
== r— =
dx 3+wv

e This new equation is separable:

m@—l—'_vQ <:>/3+vdv—/ldx
dr  3+v v+1 ) oz
3 v

1
= 3tanflv+§1n}”u2+l| =ln|z|+C

e We won’t be able to solve for v in this equation. (tan=! and In don’t mix) . But we still

need to go back to y, using the substitution we had made v = £

Y

y2
2+1‘:1n|a:|+0
xr T

e Thus the implicit general solution is given by:

3tan ! (Q) + 1 In
T 2

y2
T

y  a?—y?

T 2zy

e Solution: First we try to get the RHS to look like F (%) By doing some algebra (divide

the fraction by x? everywhere, because the leading in y in the numerator is 3?) note that

2
_y 2oy _y (@) oy 1-(3)
RHS =Y _ . .
x 2y x (2zy) /2 x 24

hence we can make the substitution v = % on the RHS and use the fact that % = x% +v

on the LHS:

v, 1—(v)?
rT—tv=v— ———
dx 2v
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and simplifying we get

dv 1?2 -1
m% T
e Then we can separate variables:
xﬁzl_ﬁ(:) 2v dv:dij
dx 2v v2 -1 T

In|v* = 1| =Infz|+ ¢
[0 — 1] = ecelnle]
v —1=clz|

v =1+ clz|

rtree

v==%+1+c|z|
e Putting v = £ back in we get

v==% 1+c|9:|<:>£: 1+ clz|
x

= y==+z\/1+clz|
y(x) = £a\/1+ clz|.

(2) Consider the following homogeneous equation:
dy y—=x
dr — y+a
(a) Use the substitution v = ¥ to rewrite the equation only in terms of v and z.
e Solution: First we write it as % = Y and we try to get the RHS to look like F (¥).

e General solution is

dz y+x
by doing some algebra (fivide everything by ) and note that
dy _ 51
de 2 +1
hence we can make the substitution v = £ on the RHS and use the fact that % = x% +v
on the LHS:
dv n v—1
T— +v=
dx v+ 1
and simplifying we get
dv wv—1
rT— = —v
dr  v+1
note that z—jr} —v= ZH _;’i?’ = —“fjll thus
dv v 41
r— = — .
dx v+1

(b) Solve for the general solution.
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e Solution: Using

dv v?+1
T— = — .
dx v+1
— This new equation is separable:
dv v +1 v+1 d ld
T— = — = ———dv=——dzx
dx v+1 v2+1 T

v+1 1

We need to integrate [ v"gtll dv: Write

v+1 v 1
— dv= | ——d —d
/U2—|—1v /112+1 U+/v2—|—1v

and do u-substitution on the first integral, and the second integral remember that its an
inverse tan:

v+1 1 9 1
/U2+1dv=§1n|v —|—1|+tan V.

— Putting this back in (x) we get

1 1 1
Ldv:f —dr <= fln|v2+1|+tan71fu:fln|x|+0
v2+1 x 2

— Now that we’ve solve for v. We need to go back to y, using the substitution we had
made v = ¥

1
—1In

2

2 2
y2+1’+tan_1 <y2> =—Injz|+C
x x

x2

— We can simplify even more by noting that % In ‘y—z + 1‘ = %ln (ac_2 (y2 + xz)) = % In (x_2)+
1ln (y? +2?) = —In|z| + L In (y? + 2?)and substitution this into the LHS we get
1 2 2 -1 y?
—1n|x|+§ln(y + 2%) + tan =S )=-hz[+C
x
which we can cancel the —In |z| in each side. And get

11 2 2 -1 y? —C
in(y +x)+tan 2)=¢

— We will leave this as the implicit solution.
(3) Consider the following homogeneous equation:

dy  —y*—yx

dx x?
(a) Use the substitution v = ¥ to rewrite the equation only in terms of v and z.
2
e Solution: First we write it as % = 4% and we try to get the RHS to look like

F (%) By doing some algebra note that

oo (2
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hence we can make the substitution v = % on the RHS and use the fact that Z—Z = m% +v

on the LHS:
x—v + v = —v2 — v
dx o
and simplifying we get
dv 9
— = —v° — 2u.
xdz v v

(b) Solve for the general solution.
e Solution: Using

dv 9
e
T v v
— This new equation is separable:
dv 1
— =0 -0 = | 57— —d
Tz vt~ 20 / 2+ 20 / e
dv
= | ——=—ln|z|+C, (>
| 5 =kl @)
- We need to integrate the LHS of [ ;-5 +2) (use partial fractions) to get U(v+2) =11_

1

Hence plugging this into the LHS of (x) we get

21}-{-2
dv 11
— =1 C = ——— = dv=—1
/v(v+2) n|z|+ /<2v 2v+2> v nlz|+
1
= §ln|v|f§1n\v+2|:fln|z|+cl
<~ Injv|—Injv+2| = -2Iln|z|+c2

— Taking e of everything we get

eln|v\7ln|v+2| — 672ln|x|+C eln\v|67 Injo+2| _ ecz6721n|x|

<
v -2
| | :Cgelnm
v+ 2]
v Cq
— 7:—2WhereC4:i03
v+ 2 T
c c
<= ”:%”JFQ%
T T
Cy4 Cq
= v(1——2):+2—2
— 204
V= ——————
2 ca
z (1_932)

— We need to go back to y, using the substitution we had made v = ¥

Yy _ 2¢y _ 2xcy
PR () A ) (Y

2xcy

— y:x2_04.
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— and dividing out everyting by cywe get
2x

1.2 1
c4

y:

and finally renaming C' = i we get the simplest version:

2x

(4) Using the given substitution. Solve the differential equation:
d
(a) Rewrite LA xy==1a

7 2y% using the substitution u = %, only in terms of u, x.
x
e Solution: Using u = % then solving for y we get
1
y=—.
U
e Then differentiating
dy _odu
= =—u ‘.
dx dx

and substitution this into LHS and RHS of the ODE we get
1 du 1 5 1

2
u? dx U u?
hence
du 9
— —zu = —x°.
dx

(b) Rewrite T +y= % using the substitution u = y3, only in terms of w, .
x y
e Solution: Using u = 33 then solving for y we get
y= ul/3,
e Then differentiating
d 1
dy 1 _ysdu
de 3 dx
and substitution this into LHS and RHS of the ODE we get
1
1 —2psdu | s @
3 dx (u1/3)2
hence multiplying everyting by u2?/? we get

28
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2.4. Problems

(1) Initially, a tank contains 100 L of water with 10 kg of sugar in solution. Water containing sugar
flows into the tank at the rate of 2 L/min, and the well-stirred mixture in the tank flows out at the
rate of 5 L/min. The concentration c(t) of sugar in the incoming water varies as ¢(t) = 2 + cos(3t)
kg/L. Let Q(¢) be the amount of sugar (in kilograms) in the tank at time ¢ (in minutes). Write the
Initial Value Problem that Q(¢) satisfies?

e Solution:
Stepl: Define variables
Let Q(t) =amount of sugar at time ¢. Let Q(0) = 10 kg.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always find the Rate In as

. concentrarion
Rate in = ( of stuff coming in ) x Rate.
Similarly you can always find the Rate out as
concentrarion
Rate out = ( of stuff going out ) x Rate.

Using the information from the problem we have

kg L
Rate i = t)— 2——
ate in <C()L)<min)
-sugar water solution
kg
= 2(2 t)) —.
(2 + cos(3t)) —
and
concentrarion
Rate out ( of stuff going out ) x Rate
t L
<Q()kLg> X H——.
w(t) min
where
w(t) = water at time t
L L
= 100L + (2. — 5,) t
min min
= 100 — 3t.
hence

Rate out = (Q(t)kg>><5L.

w(t) L min
5Q(t)

100 — 3t°
Step 3: Write the IVP
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Always recall that for mixing problems we have

d

aT? = Rate in — Rate out,

— p— 2 2 BT Y
p (2 + cos(3t)) 100 — 3¢

and the initial condition is
Q(0) = 10.

(2) Initially, a tank contains 500 L (liters) of pure water. Water containing 0.3kg of salt per liter is
entering at a rate of 2 L/min, and the mixture is allowed to flow out of the tank at a rate of 1
L/min. Let Q(t) be the amount of salt at time ¢ measured in kilograms (kg). What is the IVP
that Q(t) satisfies?

e Solution:
Stepl: Define variables
Let Q(t) =amount of salt at time ¢t. Let Q(0) = 0 kg since the tank only contains pure water
initially.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always find the Rate In as

. concentrarion
Rate in = < of stuff coming in ) x Rate.
Similarly you can always find the Rate out as
concentrarion
Rate out = < of stuff going out > x Rate.

Using the information from the problem we have

Ratein = <3kg> <2L>
L min

-salt water solution

k
- 65
min
and
concentrarion
Rate out = ( of stuff going out ) x Rate
Q) kg, ; L
w(t) ¥ min’
where

w(t) = water at time t

L L
= 500L + (2 — 1) t

min min

=500 +¢.
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hence
L
Rate out = (Q(t)%’) X 1—-.
w(t) min
Q@)
500 +t.”

Step 3: Write the IVP
Always recall that for mixing problems we have

d

—Q = Rate in — Rate out,
dt

Q _ s _9

dt ' 500 + ¢

and the initial condition is
Q(0) =0.

(3) Initially, a tank contains 400 L of water with 10 kg of salt in solution. Water containing 0.1 kg of
salt per liter (L) is entering at a rate of 1 L/min, and the mixture is allowed to flow out of the tank
at a rate of 2 L/min. Let Q(¢) be the amount of salt at time ¢ measured in kilograms. What is the
IVP that Q(t) satisfies?

e Solution:
Stepl: Define variables
Let Q(t) =amount of salt at time ¢. Let Q(0) = 10 kg.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always find the Rate In as

. concentrarion
Rate in = ( of stuff coming in ) x Rate.
Similarly you can always find the Rate out as
concentrarion
Rate out = ( of stuff going out ) x Rate.

Using the information from the problem we have

Ratein = (1kg> (1L>
L min

-salt water solution

and

concentrarion
of stuff going out

Rate out = ( ) x Rate
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where
w(t) = water at time t
= 400L + <1L — QL) t
min min
=400 — t¢.
hence

Rate out = (Q(ﬂ@) X QL..

w(t) ¥ min

2Q(t)
400 — ¢.”

Step 3: Write the IVP
Always recall that for mixing problems we have

@ = Rate in — Rate out,
dt

Q- _ 20

dt 7 400t

and the initial condition is
Q(0) = 10.

(4) Consider a pond that initially constains 10 million gal of pure water. Water containing a polluted
chemical flows into the pond at the rate of 6 million gal/year, and the mixture in the pond flows
out at the rate of 5 million gal/year. The concentration v(¢) of chemical in the incoming water
varies as y(t) = 2 + sin 2t grams/gal. Let Q(¢) be the amount of chemical at time ¢ measured by
millions of grams. What is the IVP that Q(t) satisfies?

e Solution:
Stepl: Define variables
Let Q(t) =amount of chemical at time ¢. Let Q(0) = 0 grams, since initially the pond has only
pure water.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always find the Rate In as

Rate in = concentrarlon. x Rate.
of stuff coming in
Similarly you can always find the Rate out as
Rate out = concentr.a ron x Rate.
of stuff going out
Using the information from the problem we have
rams al
Ratein = (fy(t)g > (6 & )
gal year
chemical solution
= 124 6sin2tE0

year
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and
concentrarion
Rate out = ( of stuff going out ) x Rate
Q(t) grams %< 5 ga‘l )
w(t) & year
where
w(t) = water at time t
11 11
= 10 gallons + (Gga .ons — 5ga .ons> t
min min
=10+t
hence
t L
Rate out = ()%g X 5—
w(t) min
_5Q0)
10 +¢.

Step 3: Write the IVP
Always recall that for mixing problems we have

d
d—? = Rate in — Rate out,
dQ . 5Q
— = 12 2t — .
dt +Osin2t = 5
and the initial condition is
Q(0) =0.

(5) A tank contains 200 gal of liquid. Initially, the tank contains pure water. At time ¢ = 0, brine
containing 3 Ib/gal of salt begins to pour into the tank at a rate of 2 gal/min, and the well-stirred
mixture is allowed to drain away at the same rate. How many minutes must elapse before there
are 100 1b of salt in the tank?

e Solution:
Stepl: Define variables
Let y(t) =amount of salt at time ¢. Let y(0) = 0 , since initially the tank has only pure water.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always find the Rate In as

concentrarion

Rate in = ( of stuff coming in

) x Rate.

Similarly you can always find the Rate out as

concentrarion

Rate out = ( of stuff going out

> x Rate.
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Using the information from the problem we have

1 1
Rate in = <3b) (2@)
gal min

brine solution
b
6—.
min
and

concentrarion
Rate out = (

of stuff going out

where since it’s draining the same rate that it is leaving, then the amounut of solution in the tank
is constant:

) x Rate

w(t) = water at time t

11 11
= 200 gallons + <2ga ons _,8a 0ns> .

min min
=200
hence
Rate out = ¥t X 2g—E_ﬂ.
w(t) 83l min
o2y 1
= 200 1007

Step 3: Write the IVP
Always recall that for mixing problems we have

d
W Rate in — Rate out,
dt
dy 1
@ = 97 100v
and the initial condition is
y(0) = 0.

Step 4: Solve IVP as a linear equation (it’s also separable) and get

y(t) = 600 — 600e /100,
But the questions for what time it takes until there is 100 lbs of salt in the tank, Then set

y(t) = 100

and solve for ¢t. That is, solve

100 = 600 — 600e /100
and get

time it takes to fill tank to hundred Ibs = 100 lng

=~ 18.23 minutes
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(6) A huge tank initially contains 10 gallons (gal) of water with 6 Ib of salt in solution. Water containing
1 1b of salt per gallon is entering at a rate of 3 gal/min, and the well-stirred mixture is allowed to
flow out of the tank at a rate of 2 gal/min. What is the amount of the salt in the tank after 10
min?

e Solution:
Stepl: Define variables
Let y(t) =amount of salt at time ¢. Let y(0) = 6 lbs, since initially the tank has only pure
water.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always find the Rate In as

. concentrarion
Rate in = < of stuff coming in ) x Rate.
Similarly you can always find the Rate out as
concentrarion
Rate out = ( of stuff going out > x Rate.

Using the information from the problem we have

| 1
Ratein = <1b) (3@)
gal min

brine solution

b
min
and
Rate out = concentr.a ron x Rate
of stuff going out
YO X Qg—?l.
w(t) 821 min
where
w(t) = water at time t
11 11
= 10 gallons + (Sga .ons _ 982 .ons> t
min min
=10+t
hence
t 1
Rate out = ﬁ& X 2&.
w(t) & min
()
10+ ¢

Step 3: Write the IVP
Always recall that for mixing problems we have

d

9o Rate in — Rate out,
dt

dy 2

a - ST
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and the initial condition is

y(0) = 6.
Step 4: Solve IVP as a linear equation (it’s also separable) and get that rewriting
dy 2
ot -3
at 10+ 1”

then

2

,u(t) _ ef o dt — 621n(10+t) _ (10 + t)2

y(t) = %t) Ug(t)p(t)dH C}

1

= W57 [3/(10+t)2dt+0]

(10+t
- M (10+1)°+C]

and solving for C' we get
10+ C

0= "1
(10 4 £)® — 400
y(t) = ———5—
(10+¢t)
But the questions for the amount of salt at time ¢ = 10, hence the answer is
(20)° — 400 .
(20)°
(7) Initially a tank holds 40 gallons of water with 10 1b of salt in solution. A salt solution containing
%b of salt per gallon runs into the tank at the rate of 4 gallons per minute. The well mixed solution
runs out of the tank at a rate of 2 gallons per minute. Let y(¢) be the amount of salt in the tank
after ¢t minutes. Then what is y(20).
e Solution:
e Just like before we can set up the following IVP
dy 2y
—=2- 0
dt wrze YO
and then solving for y(¢) and plugging ¢ = 20 we get

y(20) = 35.

= (' =—-400

y(10) =

=10
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2.5. Problems

(1) A detective is called to the scene of a crime where a dead body has just been found.

e She arrives on the scene at 10:23 pm and begins her investigation. Immediately, the temper-
ature of the body is taken and is found to be 80°F. The detective checks the programmable
thermostat and finds that the room has been kept at a constant 68°F for the past 3 days.

e After evidence from the crime scene is collected, the temperature of the body is taken once
more and found to be 78.5° F. This last temperature reading was taken exactly one hour after
the first one.

e The next day the detective is asked by another investigator, “What time did our victim die?”
Assuming that the victim’s body temperature was normal (98.6°) prior to death, what is her
answer to this question? Newton’s Law of Cooling can be used to determine a victim’s time

of death.
e Solution: One needs to solve the following IVP: Let T'(¢) be the temperature of the victim,
then JT
= k(T —68), T(0)=986

and need to use the information
T(tc) = 80,
T(t.+1)="785

to solve for k and t..
e First solving for T'(¢) we get

T(t) = 68+ (98.6 — 68) ™
= 68 + 30.6¢".
e Then using
80 = 68 + 30.6e"",
78.5 = 68 + 30.6eF (D)

e Solving the first equation for k& we get
1 12
k=—In—
t. ' 30.6

and plugging this into second equation we get
78.5 = 68 + 30.6e 7 ™ 506 (bt D)

and hence
t. ~ 7.01 hours.
e This means the murder occured 7 hours and .6 minutes ago. That is, the muder occured
arround 3 : 23 pm.
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2.6. Problems

(1) What is the largest open interval in which the solution to the IVPs in part (a) and part (b) are
guaranteed to exist by the Existence and Uniqueness Theorem?
(a) The IVP given by:

(P +t—2)y +e'y = (=g
y(=3) =—-1

Solution:
e First rewrite

et B (t—4)
t+2t-0D"" -6 (t+2)(t—1)

. et o (t—4)
o Where p(t) = 55—y and 9(t) = =01

e To find the largest open interval, we simply need to check the largest open interval
containing the initial value ¢y in which both p(¢) and g¢(¢) are continuous
e To do this we look for the bad points (non-continuous points) of p and ¢
e The function p(t) = mis continuous whenever ¢t +2 # 0 and when ¢t — 1 # 0
— Thus we must have ¢ # —2, 1.
e The function g(t) = H)E;:%is continuous whenever (t —6)(t+2)(t—1) # 0.
(Note that ¢ = 4is NOT a problem since it’s in the numerator )
— Thus we must have ¢ # —2,1,6.
e Both functions are simultaneously continuous (draw a number line to help you find out

when p, g are both continuous) on
(=00, —2) U (—=2,1) U (1,6) U (6,00)

since tp = —3 falls inside (—o0, —2) then the solution to this IVP must have a domain
as large as

Y+

I'= (7007 72) )
as guaranteed by the theorem.
(b) The IVP given by:

|

(t2+t—2)y +ely= Ei:—g)
y(5) = 47.
e Solution:
e Note that this is the same equation as in part (a), so we know that both p, g are continuous
on
(=00, —2)U(=2,1)U(1,6) U (6,00)
e Since the new initial point ty = 5 falls inside (1,6) then the solution to this IVP must have a
domain as large as
I= (17 6),
by the theorem.
(2) What is the largest open interval in which the solution of the initial value problem

_ (1=3)-In(t—1)
(t=3)y +y="——=5—
y(6) = —7.

is guaranteed to exist by the Existence and Uniqueness Theorem?
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e Solution:
e To apply the Existence and Uniqueness Theorem we first need to rewrite this Linear equation
in the form

y' +p(t)y =g(t)
and we get
1 In(t—1)
t—-37" t-10

e Where p(t) = ﬁ and g(t) = h;(rol)'

e To find the largest open interval, we simply need to check the largest open interval containing
the initial value ¢ in which both p(¢) and g(¢) are continuous
e To do this we look for the bad points (non-continuous points) of p and ¢
e The function p(t) = ﬁis continuous whenever t # 3.
— Thus we must have ¢ # 3.
e The function g(t) = “?Etfol)is continuous whenever t — 1 > 0 and when ¢ — 10 # 0
— Meaning when ¢ > 1 and ¢ # 10.
e Both functions are simultaneously continuous (draw a number line to help you find out when
p, g are both continuous) on

(1,3) U (3,10) U (10, 00)

y +

since to = 6 falls inside (3, 10) then the solution to this IVP must have a domain as large as
I =(3,10),

by the theorem.
(3) What is the largest open interval in which the solution of the initial value problem

-1y +Vt+2y=2
y(2) = —5.

is guaranteed to exist by the Existence and Uniqueness Theorem?
e Solution:
e First rewrite
vit+2 3
-1 t=3) (-1
e Where p(t) = ﬁ and g(t) = m
e To find the largest open interval, we simply need to check the largest open interval containing
the initial value ¢y in which both p(t) and g(¢) are continuous
e To do this we look for the bad points (non-continuous points) of p and ¢
e The function p(t) = ﬁis continuous whenever t — 1 # 0 and when ¢ +2 > 0
— Thus we must have t # 1 and t > —2.
e The function g(t) = mis continuous whenever t —3 # 0 and t — 1 # 0
— Meaning when ¢ # 1, 3.
e Both functions are simultaneously continuous (draw a number line to help you find out when
p, g are both continuous) on

(=2,1)U(1,3) U (3,00)

y +
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since to = 2 falls inside (1, 3) then the solution to this IVP must have a domain as large as
I=(1,3),
by the theorem.

(4) What is the largest open interval in which the solution of the initial value problem

t*y +In|t — 4|y = L2
y(5) =09.

is guaranteed to exist by the Existence and Uniqueness Theorem?

Solution:
First rewrite

,+ln\t—4| _t—1
Y 2  t2sint
The function p(t) = 1“";7;‘” is continuous when ¢ # 0 and ¢ — 4 # 0.
— Thus we must have t # 0, 4.

The function g(t) = =1 is continuous when ¢ # 0 and when ¢ # £nn for any interger n.
— So continuous whenever ¢t £ 0 and t # ..., —37 — 27w, —7,0, 7, 27,37 . ..

Note that the problem point 4 is in between 7 and 27, that is; 7 < 4 < 27!
Both functions are simultaneously continuous (draw number lines to help you find out when
p, g are both continuous) on

U (=2m,—m) U (—=m,0)U (0,7) U (m,4) U (4,2m)U---
since to = 5 falls inside (4, 27) then the solution to this IVP must have a domain as large as
I=(4,2nm),
by the theorem.

(5) Consider the IVP below

(

a)

(a)

Wy =0
Is this a Linear or nonlinear equation? Can you use Theorem 1 from Section 2.67
Solution:
This is a nonlinear equation, due to the y/5.
Theorem 1 from Section 2.6 only applies to Linear equations, thus we can’t use Theorem 1 for
this IVP.
Using Theorem 2 from Section 2.6 (the general theorem), can you guarantee that there is a
unique solution to this IVP? Why?

e Solution:
e To apply Theorem 2, we need the right hand side equation

flty) =y'/°
to be continuous and we need

af 1

dy By

to be continous around the point (tg,yo) = (0,0). But since @%/5 is not continuous when
1o = 0, then we cannot guarantee uniqueness of the solution.
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2.7. Problems
(1) Consider the following differential equation:

Y 2D +)

(a) Draw a Phase Line. Classify the Equilibrium solutions
¢ Solution:

4 '\)‘“l)%""m ¢

2 Stuble

~L v hstable

(b) Draw all possible sketch of solutions of this differential equation.

e Solution:

(c) Consider the IVP

dy

S =Wt y+5), y0)=3.

Let y(t) be the unique solution that solves this IVP. Draw a sketch of y(¢) and use it to find

limy_ o0 y(¢) and limy—, o y(¢)?
e Solution:

41
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[ ]
(2) Consider the following differential equation:
dy 2
— = -3 4
o V=3 (y+4)

(a) Draw a Phase Line. Classify the Equilibrium solutions.
e Solution:

s
9 3 Sem sl le

/
¢ 0 unstahle

9 1y SThle

[}
(b) Draw all possible sketch of solutions of this differential equation.

e Solution:

3 Com sl le

v

~ U.‘yhl‘."r

v

—y  fiehle
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(¢) Consider the IVP

dy
=W =37 @+, y(0)=-5
Let y(t) be the unique solution that solves this IVP. Draw a sketch of y(¢) and use it to find
lim; 00 y(t) and lims, o y(¢)?
e Solution:

- B 6
i ) T Tty o i - n
,[/,:
;\ b - ) ———
_Ibc/ Fim Y@z —y J‘!wf‘*\ yly= —o0 |

// % o 1 t2-n

(d) Consider the IVP

dy
=y =3) (w4, yO) =1
Let y(t) be the unique solution that solves this IVP. Draw a sketch of y(¢) and use it to find
limy 00 y(t) and limy, o y(¢)?
e Solution:

Lime YW= 7 [ = yw: 0

(3) Let y(t) be the unique solution to the IVP given by

d
d%{ =y’siny, y(0) =1
Draw a Phase Line for the ODE to find out lim;_, . y(¢) for the unique solution of the IVP above.

e Solution:
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& ~ " )
¥ e _)!1! —“I O‘ l i J

5 ) 4
0 T i t
\'e

(4) Consider the differential equation

where f(y) is given by the following graph (in y versus f(y)):
\ .

&

I/

(a) Draw the Phase Line and classify the Equilibrium solutions.
e Solution:

44
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2.8. Problems

(1) Determine whether each of the following equations are exact. If it is exact, find the general implicit
solution in the form ¢ (z,y) = C.
(a) 2z +3)+2y—2)y' =0
e Solution:
e Note that M(x,y) = 2z + 3 and N(x,y) = 2y — 2 and we compute

M, =0
N, =0

and since M, = N, then this equation is exact!
e To solve we compute find the implicit general solution ¢ (z,y) = C.
e By the Theorem from Sec 2.8, we know that we have that

Yo =M :>¢=/M(:E,y)dgc

:/(2x+3)dm
=22 + 32 + h(y)

while

w=N = o= [Ny
=/(2y—2)dy

=y® —2y+g(z)

e Thus we collect everything that we have missing from the two versions of ¢ (without
overcounting) and get

d(ay) =2 + 3z +y° 2
e Thus the general implicit solution is given by
2+ 3z +y* -2y =C.

(b) 2z +4y)+ (22 —2y)y' =0
e Solution:
e Note that M (z,y) = 2z + 4y and N(z,y) = 2z — 2y and we compute
M, =4
N, =2
and since M, # N, then this equation is NOT exact! Hence we can’t solve it using the
methods from this section.
(c) (322 —2zy +2)dz+ (6y> —2? +3)dy =0
e Solution:
e Note that M(x,y) = 322 — 22y + 2 and N(z,y) = 6y*> — 2% + 3 and we compute
M, = —2x
N, = —2x
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and since M, = N, then this equation is exact!
e To solve we compute find the implicit general solution ¢ (x,y) = C.
e By the Theorem from Sec 2.8, we know that we have that

Yy =M :>¢=/M(a:,y)dx

= / (31‘2 — 2xy—|—2) dx
=23 — 2%y + 22 + h(y)

while

w=N = b= [Ny
2/(6y2—:c2+3)dy

=2y — 2’y + 3y + g(x)

e Thus we collect everything that we have missing from the two versions of ¢ (without
overcounting) and get

U(w,y) = — 2’y + 20 +2y° + 3y
e Thus the general implicit solution is given by
x3 — 2%y + 20+ 23 + 3y = C.

(d) (2zy*+2y) + (22%y +22)y =0
e Solution:
e Note that M (x,y) = 2zy* + 2y and N(z,y) = 22%y + 2x and we compute

M, = 4zy + 2
N, =4xy +2

and since M, = N, then this equation is exact!
e To solve we compute find the implicit general solution ¢ (z,y) = C.
e By the Theorem from Sec 2.8, we know that we have that

Yy =M :>¢:/M(x,y)d:c

= / (2zy® + 2y) da
=22y 4+ 2zy + h(y)

while

by =N =:¢=/Nmm@

= / (22°y + 22) dy

= 2%y® + 22y + g()
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e Thus we collect everything that we have missing from the two versions of ¢ (without
overcounting) and get

U(x,y) = 2%y + 2zy

e Thus the general implicit solution is given by

dy _aaz—I—by

dx bx + cy
e Solution:

22y? + 22y = C.

e First we need to rewrite this in the form Mdz + Ndy = O:

(ax +by)dz + (bz +cy)dy =0

e Note that M(x,y) = axz + by and N(z,y) = bz + cy and we compute

M, =b
N, =b

and since M, = N, then this equation is exact!
e To solve we compute find the implicit general solution ¢ (z,y) = C.
e By the Theorem from Sec 2.8, we know that we have that

while

Vo= M = w:/M(x,y)dx
:/(aerby)dx

2

= a% + bxy + h(y)

Gy=N — wz/N(ay)dy
:/(bx+cy)dy

2

eyt gt

e Thus we collect everything that we have missing from the two versions of ¢ (without
overcounting) and get

2 2
x
bla,y) = a% +bay+

e Thus the general implicit solution is given by

2 2
a%—i—bxy—l—c%: .

(f) (e"siny + 3y) dx — (3z — e®siny)dy =0

e Solution:
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e Note that M(x,y) = e*siny + 3y and N(z,y) = —3z + e” siny and we compute
M, =e"cosy +3
N, = -3+ ¢€"siny
and since M, # N, then this equation is NOT exact!
) (% +62) dz + (Inz — 2) dy = 0, > 0

e Solution:
e Note that M(z,y) = £ + 62 and N(z,y) = Inz — 2 and we compute

1
My:;
1
N, ==
x

and since M, = N, then this equation is exact!
e To solve we compute find the implicit general solution ¢ (z,y) = C.
e By the Theorem from Sec 2.8, we know that we have that

Yy = M =:w:/Mwww

= / (£ +60)do
x
=ylnz + 32% + h(y)

while

Yy =N =¢¢=/wa@

:/(mfz)dy

=ylnz -2y +g(x)
e Thus we collect everything that we have missing from the two versions of ¢ (without
overcounting) and get
U(z,y) =ylnz+ 32 — 2y
e Thus the general implicit solution is given by
ylnz + 322 — 2y = C.
(2) Find the implicit particular solution to the initial value problem
(9x2+y— 1)dz — (4y —z)dy =0, y(1) =0.
e Solution:
e Note that M(z,y) = 922 +y — 1 and N(x,y) = —4y + x and we compute
M, =1
N, =1

and since M, = N, then this equation is exact!
e To solve we compute find the implicit general solution ¢ (z,y) = C.



2.8. PROBLEMS 50

e By the Theorem from Sec 2.8, we know that we have that

b= M — w:/M@:,y)dx

:/(9x2+y—1)dx
=32% + 2y — x + h(y)

while

Py=N — ¢=/N(x,y)dy

:/(*4y+w) dy
= —2y° +ay + g(z)

e Thus we collect everything that we have missing from the two versions of ¢ (without over-
counting) and get
U(a,y) = 32° + zy — 2 — 2y
e Thus the general implicit solution is given by
328 +ay—ax— 2% =C.
e To find the value of C, we simply use the initial condition y(1) =0 to get
340-1-0=C = C=2
to get
328 oy —x— 2% =2.
(3) Find the values of b for which the given equation is exact.
(ye%y + m) dx + bxe**¥dy = 0.
e Solution:
e Note that M (x,y) = ye?*¥ + x and N(x,y) = bze?*¥ and we compute
M, = e 4 2pye®™V
N, = be*™¥ + 2ybxe*™¥
and for this ODE to be exact we need
M, =N,
hence
e 4+ 2xye®™ = be®™Y + 2ybre®™Y

which are equal only when
b=1.
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2.9. Problems

(1) Find the approximate values of the solution of the given initial value problem at ¢ = 0.1,0.2,0.3
and 0.4 using Euler’s Method with A = 0.1.

dy
-7 ¢ 0) = 1.
pria a2 y(0)

e Solution:
e We make a table:

(klte | wr=wea+f (-1 yp—1) h \ f (e, yn) =t + Y
0] 0 1 0+1=1
1]01 n=1+1 (=11 FlLy) =01+11=12
2102 =11+ (1.20) (1) =1.22 Flta,ys) = 0.2+ 1.22 = 1.42
3103 ys =122+ (1.42)- (1) =1.362 | f (t3,y3) = 0.3 + 1.362 = 1.662
1[04 | ys=1.362+ (1.662) - (1) = 1.5282
e Hence
y(0.1) =~ 1.1
y(0.2) ~ 1.22
y(0.3) ~ 1.362
y(0.4) ~ 1.5282

(2) Find the approximate values of the solution of the given initial value problem at ¢ = 0.1,0.2,0.3
and 0.4 using Euler’s Method with h = 0.05.

d
F—t+y?,

= y(0) = 1.

e Solution:
e We make a table:

k] t Y =ye1+ G,y h ] f (e, yx) = tr + i
0 0 1 1
110.05 v =1.05 7 (1, y1) = 461/400
21 0.1 y2 = 8861/8000 = 1.107625 f(t1,y1) = 12963660/9770377
310.15 y3 = 4292730/3656603 f (t1,y1) 8658620/5665903
41 0.2 11178230/8939891 1545168/876223
510.25 6566530/4905709 3681136,/1802965
6| 0.3 1099469/763184 84140/35421
710.35 7333465,/4702731 3211634/1154539
8| 0.4 | 1398466/823357 = 1.69849287733
Hence
y(0.1) ~ 1.10762
y(0.2) ~ 1.25037
y(0.3) ~ 1.44063
y(0.4) ~ 1.6984
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(3) Find the approximate value of y (2) using Euler’s Method with A = 0.5 for the solution of the
following IVP

dy
e y(3—ty), y(0)=05.

e Solution:
e We make a table:

k]t Jue=wna+Fte—ve—)h | F(eur) =ur B —tryr) |
0] 0 0.5 1.5
105 1 =5/4=1.25 F1.y1) = 95/32
2 1.0 | y2 = 175/64 = 2.734375 F(t2, y2) = 2975/4096
3115 Ys = 25375/8192 S (ts,y3) = —21280010/4172981
4| 2.0 | 5435048/9921647 ~ 0.54779
Hence

y(2) ~ 0.54779.
(4) Consider the solution y(¢) to the IVP:

Wyt w0 =1

Use the Slope field below with Euler’s Method (using h = .5) to estimate the value of y(3):

¥ = (y)(ty)i0
]

S~
s

e

S

T

S

Ta “a
_—
—
—

SR

y
R

e Solution:



2.9. PROBLEMS

Stop ¥ = ()10

y
iy
T2
T2
T
T
—
—
—
2
—
—_—

435

36

25

05

-0.5

-1
[ ]

e Hence from the curve sketch we have that
y(3) = 2.4



CHAPTER 3

Second Order Linear Equations

3.1. Problems

No Homework

3.2. Problems

(1) Check if the following functions are solutions to the given EQ?
(a) Check directly if y; = 2¢° is a solution or not to 3" — 6y’ + 5y = 07
e Solution:
e To check y; = 2¢° is a solution to the ODE above we first plug y; into the LHS and set
it Equal to the RHS.
e But before we do, let’s first start taking some derivatives

Y1 = 2€5t
y) = 10
yl = 50e’

and now we can plug this into the LHS:
LHS =} — 6, + 5y
= (50e®) — 6 (10e™) + 5 (2¢°")
= 50e” — 60e® + 10e™
= (50 — 60 + 10) €™
= O7
Now since the RHS of the equation is already
RHS =0

then since
LHS = RHS

then y; must be a solution.
(b) Check directly if yo = 2¢ is a solution or not to y” — 6y’ + 5y = t?
e Solution:
e To check 7, = 2¢t is a solution to the ODE above we first plug y» into the LHS and set
it Equal to the RHS.

54
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e But before we do, let’s first start taking some derivatives

Yo = 2€t
Yy = 2¢’
Yy = 2€'

and now we can plug this into the LHS:
LHS =y} — 6y} + 5y1
= (2¢") — 6 (2¢") + 5 (2¢)
= 2¢e” — 1265 + 10e°!
=(2-12+10)€*

= O,
Now since the RHS of the equation is
RHS =t
then since
LHS # RHS

then y2 IS NOT a solution.
(2) Recall from the Lecture Notes, that if y(t) = ¢ is a solution to the ODE given by
ay” +by +cy=0
for constant a,b,c where a # 0, then the exponent r in front the ¢ must be a solution to the

characteristic EQ ar? +br +c = 0.

(a) By yourself, rederive that if y(t) = Ae™ is a solution to the equation above then the number
r must satisfy the characteristic EQ ar®> +br +c¢ = 0 or A = 0. (Hint: How do we check
something is a solution? Well you just plug it to the LHS and RHS and check if they are
equal!)

e Solution:
e Again, how do we check something is a solution? We plug in y(t) = Ae" into the LHS and
RHS and set them equal to each other.
e Let’s first start taking some derivative:
y(t) = Ae™
y'(t) = Are™
y//(t) — ATZert,
e Now plug in y into the LHS
LHS = ay” + by’ + cy
=a (ATQe”) +b (Are”) +c (Ae”)
= aAr?e™ + bAre™ + cAe"t
= (ar2 + br + c) Ae

e Now the RHS is
RHS = 0.
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e Thus if y is really a solution then LHS = RHS:
LHS = RHS — (ar2 +br+c) Ae™ =0
— (ar2+br+c) =0
where I divided both sides by Ae™ # 0.
e Thus is order for y(t) = Ae" to be a solution to the ODE, then r must satisfy the equation
ar’ +br+c¢=0,
which from class is called the characteristic equation.
(3) Use the method given in Section 3.2 to find the general solution to
y' +5y —6y=0

e Solution:
e From Section 3.2, in order to the solutions to Linear constant coefficient ODEs, we

— 1) Solve the characteristic EQ: ar? + br + ¢ = 0 and say 71, r» are distinct and real!

— 2) Then it was given to us that the general solution is given by y(t) = cie™? + ce™?.
e First we solve the characteristic EQ:

P2 4+5r—6=0 <= (r+6)(r—1)=0
so that vy = 1 and ry = —6.

e Then the general solution is given by
y(t) = cre’ 4 coe 0.
(4) Use the method given in Section 3.2 to find the general solution to
y' =7y =0

e Solution:
e From Section 3.1, in order to the solutions to Linear constant coefficient ODEs, we
— 1) Solve the characteristic EQ: ar? 4+ br + ¢ = 0 and say 71, r» are distinct and real!
— 2) Then it was given to us that the general solution is given by y(t) = c1e™* + cae
e First we solve the characteristic EQ:

7"2t

2 —Tr=0 <= r(r—7=0
sothat ry =0and ro = 7.
e Then the general solution is given by
y(t) = cre™t + coe™t
=%+ 026”

=c1 + cze7t.

(5) Use the method given in Section 3.2 to find the particular solution to the IVP
y'+y =20y =0, y(0)=18,5(0)=9

e Solution:
e First we find the general solution:
— From Section 3.2, in order to the solutions to Linear constant coefficient ODEs, we
% 1) Solve the characteristic EQ: ar? + br + ¢ = 0 and say 71,72 are distinct and real!
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* 2) Then it was given to us that the general solution is given by y(t) = cie"™! +
coem?t.
e First we solve the characteristic EQ:

P 4+r—20=0 < (r+5)(r—4) =0

so that vy =4 and ry = —5.
e Then the general solution is given by

y(t) = cre*® + cpe".

e To find the values of ¢, co, we use the initial conditions y(0) = 18,¢'(0) = 9:
— But first take a derivative:

y(t) = cret + cqe”

y'(t) = dcre*’ — 5ege

5t

— Solve for ¢y, cs:
18=y(0)=c1 +c2
9 =4cy — 5eo
and solving this system we get
c1=11,c0 =7
hence the particular solution is
y(t) = 11e** + 7e75¢
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3.3. Problems

(1) What is the largest open interval in which the solution of the initial value problem

. _ In(t-1)
(t=3)y" +sinty’ +y= -5
y(15) = —7,y/(15) = 10

is guaranteed to exist by the Existence and Uniqueness Theorem?

Solution:
To apply the Existence and Uniqueness Theorem we first need to rewrite this Linear equation
in the form

Y +pt)y +qt)y = g(t)
and we get
" sint 1 In(t—1)
vt W =Y T =3 =10

(t—3
sin In(t—
Where p(t) = ¢k , q(t) = izrand g(t) = 25715

To find the largest open interval, we simply need to check the largest open interval containing
the initial value ¢y in which both p(t), ¢(t) and g(¢) are simultaneously continuous

e To do this we look for the bad points (non-continuous points) of p, ¢ and g
e The function p(t) = (ilfg) is continuous whenever t # 3.

— Thus we must have t # 3.
1

The function ¢(t) = =318 continuous whenever ¢ 7 3.
— Thus we must have ¢ # 3.
The function ¢(t) = %
t—3#0
— Meaning when ¢ > 1 and ¢ # 3, 10.
All functions are simultaneously continuous (draw a number line to help you find out when

P, g, g are all continuous) on
(1,3) U (3,10) U (10, 00)
since to = 15 falls inside (10, c0) then the solution to this IVP must have a domain as large as

I =(10,00),

is continuous whenever t — 1 > 0 and when ¢ — 10 # 0 and

by the theorem.

(2) What is the largest open interval in which the solution of the initial value problem

2y ey’ +(t-1)y=Vi+2
y(=1) =1y (-1)=5

is guaranteed to exist by the Existence and Uniqueness Theorem?

Solution:
To apply the Existence and Uniqueness Theorem we first need to rewrite this Linear equation
in the form
y" +p(t)y +a(t)y = g(t)
and we get
et (t—1) Vit+2

v+ V=7

"
vt 2 12
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e Where p(t) = %ﬁ s q(t) = Y5 and g(t) = el

t2

e To find the largest open interval, we simply need to check the largest open interval containing

the initial value ¢ in which both p(t), ¢(¢t) and g(t) are simultaneously continuous
To do this we look for the bad points (non-continuous points) of p, ¢ and g
The function p(t) = f—;is continuous whenever % # 0.
— Thus we must have ¢ # 0.
The function ¢(t) = (t;zl)is continuous whenever ¢? # 0.
— Thus we must have ¢ # 0.
The function g(t) = ‘/zf?is continuous whenever ¢ + 2 > 0 and when t? # 0.
— Meaning when ¢t > —2 and t # 0.
All functions are simultaneously continuous (draw a number line to help you find out when

P, q, g are all continuous) on

(_27 0) U (Oa OO)
since to = —1 falls inside (—2,0) then the solution to this IVP must have a domain as large as
I=(-20),

by the theorem.

(3) Consider the equation

¥ +pt)y +q(t)y =0,

where p, g are continuous in some interval I. What are the 2 things you have to do by the General
Solution Theorem in order to find the general solution to the ODE above

Solution:

The general solution theorem says that if y” + p(¢t)y’ + q(¢t)y = 0 is homogeneous 2nd order
ODE, Then the roadmap to finding the general solution is:

1) Find y; and y, that are solution to the ODE above,

2) Check that the wronskian W (y1y2) (t) = ‘ i(t) v2(t)

S vhlt) is NOT ZERO for at least one

point in the interval
Then the general solution is given by

y(t) = c1ya(t) + caya(t).

(4) Consider the equation

(a)

262" 43ty —y =0, t>0.

Is the function y;(t) = 2 a solution to this ODE?
e Solution:
e We take derivatives
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then plug into the LHS
LHS = 2%y + 3ty —

1 1.
= 212 (—4t—3) + 3t (215—2) - (t

_ L 3
2 2
=0.
since LHS = 0 then yes!
(b) Is the function ys(t) = t~! a solution to this ODE?
e Solution:
e We take derivatives

N
~——

yo(t) =t1
Ya(t) = —t2
ys (1) = 2

then plug into the LHS
LHS = 2%yl + 3tyy — yo
=2t* (2t7%) + 3t (—t72) — (¢t7)
R e A
=0.

since LHS = 0 then yes!
(¢) Use the General Solution Theorem to show that

y(t) = clt% + ottt
gives the general solution to the ODE above.
e Solution:
e The General Solution Theorem says
e 1) Find y; and y» that are solution to the ODE above.
— Which we already found in parts (a) and (b) that y(t) = t2 and yo(t) = t~! are
solutions.

e 2) Check that the wronskian W (y1y2) (t) = ’ y} (t) ()

is NOT ZERO for at least
yi (1) ya(t)

one point in the interval I
— We compute this:

— _§t—3/2 # 0

tz ¢!
t 2

Wy, y2) = 42

Nl

1
2
Then the general solution is given by

y(t) = ciya(t) + caya(t)
and plugging y1, y2in we have

y(t) = e1t? +eot™!
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3.4. Problems

(1) Find the general solution of the following 2nd Order Linear ODEs with constant coefficients.

(a) '+ 16y =0
e Solution:
e The characteristic equation is given by

r24+16=0

and the roots are r; o = +4.
e For complex solutions, 7 = « + 45 then general solution is given by

y(t) = c1e® cos (Bt) + coe™ sin (Bt)
hence the general solution is given by

y(t) = c1e cos (4t) + coe sin (4t)
= ¢y cos (4t) + cosin (4t)

(b) ¢y —4y’ +9y =0
e Solution:
e The characteristic equation is given by

r2—4r4+9=0
e We can always use the quadratic fomula:

_ —bEVb? —4ac
"= 2a
AT 419
2
44+./16 — 36
2

=2+ %\/—20

:2:&%\/74-5

2
:21%%

=2+ /5i

e For complex solutions, 7 = « + 48 then general solution is given by

y(t) = c1e® cos (Bt) + cae™ sin (Bt)

hence the general solution is given by
y(t) = 016275 COs (\/gt) + cze% sin (\/5t> .

(c) y' =4y’ +29y =0
e Solution:

61
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e The characteristic equation is given by
2 —4r4+29=0

and once can always use the quadratic formula and arrive at r = 2 + 54!
— Another way is to complete the square for a 72 + br + ¢ = 0 and the trick is to use
(2)? to complete the square.
b

— Hence b = —4 so we'll use (5) = (_74)2 = 4 to split 25 into pieces
— That is,
r?—dr+25=0 < r* —4r+4+25=0
—= (r—2%4+2=0
— (r—2)7%=-25
— r—2==+v-25
— r—2=45i
<~ r=2=£5i
e For complex solutions, 7 = « + i3 then general solution is given by
y(t) = c1e™ cos (Bt) + coe® sin (Bt)
hence the general solution is given by
y(t) = c1e* cos (5t) + coe*! sin (5t).
(2) Find the particular solution to the following IVP:
y' =8y +17y =0, y(0)=—4,4/(0)=—1.
e Solution:
e The characteristic equation is given by

r*—8r+18=0

and the roots are r; o = 4 +1.
e The general solution and its derivative is given by

y(t) = cre? cos(t) 4 coett sin(t),
Y (t) = 4cre? cos(t) — cret sin(t) + dege sin(t) + cpe cos(t)

amd using initial conditions we have

—4=y(0) =
—1= y/(O) =4c1 + co
and hence ¢; = —4 and c¢o = 15, hence the particular solution to the IVP is given by

y(t) = —4e* cos(t) + 15¢* sint.



3.5. PROBLEMS

3.5. Problems

3.5.1. Part 1; Repeated roots.

(1) Find the general solution of the following 2nd Order Linear ODEs with constant coefficients.
(a) v+ 14y +49y =0
e Solution:
e The characteristic equation is given by

P24 14r+49=0 < (r+7)2=0

and the roots are r; o = —7, —7 real and repeated
e For repeated real roots, then general solution is given by

y(t) = cre™t + cote™!
hence the general solution is given by
y(t) = cre™ ™ + cote ™.

(b) vy’ — 18y +8ly =0
e Solution:
e The characteristic equation is given by

P2 =18 +81=0 < (r—92=0

and the roots are r; o = 9,9 real and repeated
e For repeated real roots, then general solution is given by

y(t) = 1% + cote®
hence the general solution is given by
y(t) = c1e” + cote®.
(2) Find the particular solution to the following IVP:
y' — 4y +4y =0, y(0)=12,y'(0) = -3.

e Solution:
e The characteristic equation is given by

r?—4r+4=0

and the roots are r1 2 = 2,2, real and repeated

e The general solution and its derivative is given by
y(t) = c1e®’ + cote®
Y (t) = 2¢1?t + coe® + 2cote?!

amd using initial conditions we have

12=9(0)=¢
-3=9(0) =2¢1 + ¢
and hence ¢; = 12 and co = —27, hence the particular solution to the IVP is given by

y(t) = 12e* — 27te?.
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3.5.2. Part 2; the method of reduction of order.
(1) Suppose you know that y;(t) = ¢ is a solution to

t2y" — 3ty +3y =0, t>0.

Find a second solution ya(t) that makes y = ¢1y1 + cay2 the general solution of this ODE.
e Solution:
e Step 1: Use method of reduction of order to make guess y>(t) = v(t)y1(t) and take its
derivatives.

Yz = vt
Yy =0Vt + o
yy = 0"t + 0" + 0 ="t + 20
e Step 2: Plug y» into LHS and simplify as much as possible.
LHS = t%y4 — 3tyb + 3y
=12 ("t +20") — 3t (V't +v) + 3 (vt)
= 30" + 2t%0" — 3t*0 — 3tv + 3tv
= 30" — %0/,
e Step 3: Set LHS equal to zero and obtain an equation of the form a(t)v” 4+ b(t)v’ = 0. Namely
30" —t*' = 0.
Solve for v by making the substitution w = v’ (and use w’ = v") to get
3w’ — t2w = 0.

and you can solve this as a 1st Order Linear, or 1st Order separable. I'll use that fact that its

separable:
d
B — 2w =0 <> t3d—1; = 2w
/dw dt
= [ —=] =
w t
< Inw=Int+ k;
— w = kot
and plugging w = v’ back in we get
w = kot <— ’U/:kgt
k
= p= ?2152 + k.
Choosing k2 = 2 and k3 = 0 we get the simplest nontrivial v to be

v =t
e Step 4: Plug v back into ys:
Yo = vt = 2t = t5.
Hence the general solution to this equation is given by
y(t) = 1t + cot®.
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(2) Suppose you know that y;(t) = ¢t~1 is a solution to
2%y +ty' —3y =0, t>0.

Find a second solution y2(t) that makes y = c1y1 + cayo the general solution of this ODE.
e Solution:
e Step 1: Use method of reduction of order to make guess y(t) = v(t)y1(¢t) and take its
derivatives.

Yo = vt~
yh =0t —t™?
y ="t =t =t 4 2073
=o"t7 — 't 4 20t
e Step 2: Plug y» into LHS and simplify as much as possible.
LHS = 262y} + tyh — 3y
=2t (vt =20t 2 4 20t70) +t (VT —wtT?) = 3 (vt
=02 — 4 + 4t o+ —vt7! = 3ut™?
= 2tv"” — 3v.
e Step 3: Set LHS equal to zero and obtain an equation of the form a(t)v” 4+ b(¢)v’ = 0. Namely
2tv" — 30" = 0.

Solve for v by making the substitution w = v’ (and use w’ = v") to get

2tw’ — 3w = 0.
and you can solve this as a 1st Order Linear, or 1st Order separable. I’ll use that fact that its
separable:
, dw
2w — 3w =0 <= QtE:&u
dw 3 [di
w2 t

<~ lnw= glnt—i—kl
— = ekleglnt
= w= k2t3/2
and plugging w = v’ back in we get
w = kot*? = v = kot/?

2 -
< ’U:kggto/2+k3.

Choosing ko = 5/2 and ks = 0 we get the simplest nontrivial v to be

v =12,
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e Step 4: Plug v back into y»:
yo = t5/2~L = ¢5/24=1 — 43/2,
Hence the general solution to this equation is given by
y(t) = ert ™! + ept®/2
(3) Suppose you know that y;(t) = ¢ is a solution to
t2y" + 2ty —2y =0, t>0.

Find a second solution yo(t) that makes y = ¢1y1 + cay2 the general solution of this ODE.
e Solution:
e Step 1: Use method of reduction of order to make guess y»(t) = v(t)y1(t) and take its
derivatives.

Y2 = vt
Yy =Vt + 0
yy =0t +0 +v =0t + 20
e Step 2: Plug y» into LHS and simplify as much as possible.
LHS = 2y} + 2tyh — 2y»
=12 ("t +20") + 2t (V't +v) — 2 (vt)
="t 4+ 2620 + 02t + 02t — 20t
="t3 + 420,
e Step 3: Set LHS equal to zero and obtain an equation of the form a(¢)v” +b(t)v" = 0. Namely
V't 4 420" = 0.
Solve for v by making the substitution w = v" (and use w’ = v"") to get
P’ + 41w = 0.

and you can solve this as a 1st Order Linear, or 1st Order separable. I'll use that fact that its

separable:
dw
3w + 42w =0 <= t3ﬁ = —4t?w
dw 4
= — = ——dt
w t
<~ lnw=—4Int+ k;
e = 6_4 Int+ky
w = ek16—4lnt
= w=kyt*

and plugging w = v’ back in we get

w = kgt_4 = v = kgt_4

k
= v:%t*3+k3
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Choosing ke = —3 and ks = 0 we get the simplest nontrivial v to be

v=t73.

e Step 4: Plug v back into ys:

Yo = vt =t 3t =t

Hence the general solution to this equation is given by

y(t) = 1t + cot 2.

(4) Suppose you know that y;(t) = t2

is a solution to

t2y" — 3ty +4y =0, t>0.

Find a second solution ys(t) that makes y = ¢1y1 + cayo the general solution of this ODE.

e Solution:

e Step 1: Use method of reduction of order to make guess y2(t) = v(t)yi(¢t) and take its

derivatives.

Y2 = vt?

yh = v't? + 2ut

1
Y2

=v"t? + 20"t + 't + 20

="t + 't + 2

e Step 2: Plug y» into LHS and simplify as much as possible.

LHS = t%y4 — 3tyb + 4y

=t* (V"t? + 't + 2v) — 3t (V1 + 2vt) + 4 (vt?)

= 0"t* + '3 + 20t —

— ,U//t4 + U/t3

30't3 — 6ut? + 4ot?

e Step 3: Set LHS equal to zero and obtain an equation of the form a(t)v” 4+ b(t)v’ = 0. Namely

V"t 0"t = 0.

Solve for v by making the substitution w = v’ (and use w’ = v") to get

t*w' + 2w = 0.

and you can solve this as a 1st Order Linear, or 1st Order separable. I'll use that fact that its

separable:

!

t*w' + 2w =0

11t

t*w' + 3w

dw 1

— = ——dt

w t
Inw=—Int+ Kk
w = e—lnt+k1

w = ekle—lnt

w = kgtil
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and plugging w = v’ back in we get
w=kot™! = v = kot !
<~ v=rkolnt+ ks
Choosing k2 = 1 and ks = 0 we get the simplest nontrivial v to be
v=Int.
e Step 4: Plug v back into ys:
yo = vt = t*Int.
Hence the general solution to this equation is given by

y(t) = c1t? + cot? Int.

68



3.6. PROBLEMS 69

3.6. Problems
(1) Consider the following non-homogeneous 2nd order ODE:
y// + y/ _ 2y — €3t.

(a) Find the General Solution
e Solution:
e Stepl: Find y;(t) , which is simply the general solution to the homogeneous EQ,

y'+y' —2y=0

but we learned that we must solve the characteristic polynomial 72 +7r —2 = (r +2)(r —
1) =0 and get 7 = —2,1 so that the solution is

yn(t) = cre” 2t + cqet.

o Step2: We find y,(¢) by making our guess and to find the undertermined coefficient.
— 1st Guess: (always based on the general form of the RHS= ¢(%))

* Since the RHS = €3, we let y,(t) = Ae3".
— 2nd Guess? To make sure we don’t need to second guess. We check that there are

no repeats with y;,. Since Ae® is not already part of y, = e~ 2! + coe, then we

made the correct guess.
— We want to find what the value of A is. We need to plug this into the LHS. So we

start by taking derivatives:

Yp = Ae3ta
y;, = 3Ac®
Yy = 9Ae*
e Step3: Set the LHS equal to the RHS and solve for A to get. Plug ¥, into the LHS:
LHS = y;/ + y;, -2y, = (9Ae3t) + (3Ae3t) -2 (Ae?’t)
= 10Ae™

e Setting LHS = RH Swe have
LHS = RHS
104e3" = e3¢

so that A = 1—10.
e Step4: Plug A back in and get y,(t) = 75¢*" and a general solution of

y(t) = yn + yp-
1 .
y(t) = cre™ 4 cpet + 1—()6‘“.

(b) Find the particular solution to the IVP:

1 13
" !9y = 3t — [ —
y'+y —2y=e, y(0) 10,y(O) 10

e Solution:



3.6. PROBLEMS 70

e By Part (a), we know the general solution is given by

1
y(t) = cre™ + cpe’ + I—Oe3t,

3
Y (t) = —2cre™ 2t + coet + l—oeSt.
Using the initial conditions we have

1 1
— = (0) = il
0 YO =atetp
13 , 3
- YO ="ataty
the equations reduce to
O0=c+co
1= 7201 + c2
and you get ¢; = —% and ¢ = % so that the particular solution to the IVP is

]‘ —2t ]‘ t ]‘ 3t
P Set 4 — Bt
yt) = —ge T F gt e

(2) Find the general solution to the following non-homogeneous 2nd order ODE:
y// _ 2y’ 4 2y _ e2t.

e Solution:
e Stepl: Find y,(¢) , which is simply the general solution to the homogeneous EQ,

y' =2y +2y=0

but we learned that we must solve the characteristic polynomial r? — 2r + 2 = 0 and get
r = 1+ 4 so that the solution is

yn(t) = cie’ cost + coel sint.

e Step2: We find y,(¢) by making our guess and to find the undertermined coefficient.

— 1st Guess: (always based on the general form of the RHS= ¢(¢))

* Since the RHS = e, we let y,(t) = Ae?'.

— 2nd Guess? To make sure we don’t need to second guess. We check that there are no
repeats with y,. Since Ae?® is not already part of y,(t) = cief cost + coel sint, then we
made the correct guess.

— We want to find what the value of A is. We need to plug this into the LHS. So we start
by taking derivatives:

yp = Ae*,
yl = 24e%
Yy, = 4Ae*
e Step3: Set the LHS equal to the RHS and solve for A to get. Plug y, into the LHS:
LHS = yl/)’ — Qy;7 +2y, = <4A€2t> -2 (2A€2t) +2 (Ath)

= 4Ae* — 4Ae%* + 24¢%
2Ae%
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o Setting LHS = RH Swe have
LHS = RHS

24e* = e*

so that A = 3.
e Step4: Plug A back in and get y,(t) = %e% and a general solution of

y(t) = yn + Yp-
1
y(t) = cie cost + coe’ sint + ie%,

3) Find the general solution to the following non-homogeneous 2nd order ODE:
( g g g
y" — 4y + 3y = 4.

e Solution:
e Stepl: Find y,(¢) , which is simply the general solution to the homogeneous EQ,

y' —4y' +3y=0

but we learned that we must solve the characteristic polynomial > —4r+3 = (r — 1) (r —3) =0
and get r = 1, 3 so that the solution is
yn(t) = cre’ + coe3t.
e Step2: We find y,(t) by making our guess and to find the undertermined coefficient.
— 1st Guess: (always based on the general form of the RHS= g¢(¢))
* Since the RHS = 4¢e%, we let y,(t) = Ae’".

— 2nd Guess? To make sure we don’t need to second guess. We check that there are no
repeats with y;,. Since Ae3' IS already part of y,(t) = cie! + coe’, then we need to
guess.

+ 2nd Guess (when second guessing, multiply by ¢): y,(t) = Ate>".

— 3rd Guess? To make sure we don’t need to third guess. We check that there are no
repeats with y;,. Since Ate3! IS NOT already part of y;,(t) = ciet + coe3t, then we
made the right guess here.

— We want to find what the value of A is. We need to plug this into the LHS. So we start
by taking derivatives:

Yp = Ate®t,

Y, = Ae3t 4 3Ate3!

y;,/ = 34e3" + 3463 + 9Ate™
= 6A4e3" + 9Ate®

e Step3: Set the LHS equal to the RHS and solve for A to get. Plug y, into the LHS:
LHS =y — 4y, + 3y, = (6Ae™ +9Ate®) — 4 (Ae® + 3Ate™)
+3 (Ate?’t)
= 6Ae3 +9Ate3 — 4463 — 12Ate3" + 3Ate®
2Ae3t
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o Setting LHS = RH Swe have
LHS = RHS
243 = 4¢3

so that A = 2.
e Step4: Plug A back in and get y,(t) = Ate3' = 2te3! and a general solution of

y(t) = yn + yp-
y(t) = cre’ + coed + 2t
(4) Find the general solution to the following non-homogeneous 2nd order ODE:
y' =2y +y=e.
e Solution:
e Stepl: Find yx(t) , which is simply the general solution to the homogeneous EQ,
y' =2y +y=0
but we learned that we must solve the characteristic polynomial 72 —2r+1 = (r — 1) (r — 1) =0
and get 7 = 1,1 (repeated real) so that the solution is
yn(t) = cre’ + cotel.

e Step2: We find y,(t) by making our guess and to find the undertermined coefficient.

— 1st Guess: (always based on the general form of the RHS= g(?))

* Since the RHS = €', we let y,(t) = Ae’.

— 2nd Guess? To make sure we don’t need to second guess. We check that there are no
repeats with y,. Since Ae! IS already part of y;,(t) = cief + caotel, then we need to
second guess.

* 2nd Guess (when second guessing, multiply by ¢): y,(t) = Ate’.

— 3rd Guess? To make sure we don’t need to third guess. We check that there are no
repeats with y,,. Since Ate' IS already part of y,(t) = cie! + cate!, nhen we need to
guess again

* 3rd Guess (when second guessing, multiply previous guess by t): y,(t) = At%e’.

— We want to find what the value of A is. We need to plug this into the LHS. So we start

by taking derivatives:

yp = At?e’,
y;) = 2Ate! + At?et
yy = 2Ae" + 2Ate" + 2Ate" + At’e’
= 24e! + 4Atet + At?e!
e Step3: Set the LHS equal to the RHS and solve for A to get. Plug y, into the LHS:

LHS =y, — 2y, +y, = (24e"+4Ate' + At*e’) — 2 (2Ate" + At’e")
+ (At%e")
= 24e" + 4Ate’ + At?e’ — 4Ate! — 2At%€!
+At?et

= 24¢!
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o Setting LHS = RH Swe have
LHS = RHS
24et = ¢!
so that A = %
e Step4: Plug A back in and get y,(t) = At%c' = $t%¢! and a general solution of
y(t) = yn + yp-
1
y(t) = cre’ + cote! + itht.
5) Find the general solution to the following non-homogeneous 2nd order ODE:
g g g
y" +1y — 6y = 52cos (2t).

e Solution:
e Stepl: Find yx(t) , which is simply the general solution to the homogeneous EQ,

y'+y —6y=0

but we learned that we must solve the characteristic polynomial 72 +r—6 = (r +3) (r —2) =0
and get r = —3,2 so that the solution is

yp(t) = cre 3t 4 e

e Step2: We find y,(¢) by making our guess and to find the undertermined coefficient.

— 1st Guess: (always based on the general form of the RHS= g(¢))

* Since the RHS = 52 cos (2t), we let y,(t) = Acos (2t) + Bsin (2t).

— 2nd Guess? To make sure we don’t need to second guess. We check that there are no
repeats with yj,. Since A cos (2t)+ Bsin (2t) is not already part of yj,(t) = cre ™3 +coe?,
then we made the correct guess.

— We want to find what the value of A, B is. We need to plug this into the LHS. So we

start by taking derivatives:
yp = Acos (2t) + Bsin (2t)
y, = —2Asin (2t) + 2B cos (2t)
y, = —4Acos (2t) — 4B sin (2t)

e Step3: Set the LHS equal to the RHS and solve for A to get. Plug y, into the LHS:
LHS =y, +y, — 6y, = (—4Acos(2t)—4Bsin(2t))
+ (—2Asin (2t) + 2B cos (2t))
—6 (Acos (2t) + Bsin (2t))
= (—10A+2B)cos(2t) + (—2A — 10B)sin (2t)
e Setting LHS = RH Swe have
LHS = RHS
(=10A + 2B) cos (2t) + (—2A — 10B) sin (2t) = 52 cos (2t) + 0 - sin(2t)
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so that you have to solve
52 = —10A + 2B
0=-2A-10B
and solving this system we get
A=-5DB=1.
e Step4: Plug A, B back in and get y,(t) = —5cos (2t) + sin (2¢) and a general solution of
y(t) = yn + Yp-
y(t) = cre™3" + coe® + —5cos (2t) + sin (2t) .
(6) Find the general solution to the following non-homogeneous 2nd order ODE:
y" +2y + 3y =sin(t).
e Solution:
e Stepl: Find y;,(¢) , which is simply the general solution to the homogeneous EQ,
y' +2y +3y=0
and get

yn(t) = cie”'sin (\@t) + cqe "t cos (\/515)

e Step2: We find y,(t) by making our guess and to find the undertermined coefficient.

— 1st Guess: (always based on the general form of the RHS= ¢(¢))

% Since the RHS = sin (¢), we let y,(t) = Acos (t) + Bsin (1).

— 2nd Guess? To make sure we don’t need to second guess. We check that there are no
repeats with yj. Since A cos (£)+Bsin (t) is not already part of yj (t) = cie ! sin (v2t) +
coe~t cos (V2t), then we made the correct guess.

— We want to find what the value of A, B is. We need to plug this into the LHS. So we
start by taking derivatives:

yp = Acos(t) + Bsin(t),
y,, = —Asin (t) + B cos (t)
y, = —Acos (t) — Bsin (t)
e Step3: Set the LHS equal to the RHS and solve for A to get. Plug y, into the LHS:
LHS = y;,’ + 2y;, +3y, = DO WORK
= —Acos(t) — Bsin (t)
—2Asin (t) + 2B cos (t)
+3Acos (t) + 3B sin (¢)
= (2A+2B)Acos(t)+ (—2A +2B) Bsin (t)
e Setting LHS = RH Swe have

LHS = RHS
FROM STEP 2 = 0cos (t) + sin (¢)
(2A+2B) Acos (t) + (—2A + 2B) Bsin (t) = 0cos (t) + sin (t)
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set up a system of equations
2A+2B=0
—2A+2B=1
and solving this system we get
A=-1/4,B=1/4.
e Step4: Plug A, B back in and get y,(t) = — cos () + § sin (t) and a general solution of
y(t) = yn + yp-
y(t) = cre”'sin (ﬁt) + et cos (ﬁt) - icos (t) + isin (t).
(7) Find the general solution to the following non-homogeneous 2nd order ODE:
Y+ 9y = 272

e Solution:
e Stepl: Find y,(¢) , which is simply the general solution to the homogeneous EQ,

y'+9y=0

but we learned that we must solve the characteristic polynomial 72 +9 = 0 and get r = +3i
so that the solution is

yn(t) = c1 cos(3t) + co sin(3t)

e Step2: We find y,(¢) by making our guess and to find the undertermined coefficient.

— 1st Guess: (always based on the general form of the RHS= ¢(¢))

* Since the RHS = 271, we let y,(t) = At*> + Bt + C.

— 2nd Guess? To make sure we don’t need to second guess. We check that there are no
repeats with y;,. Since At2+ Bt+ C is not already part of y,(t) = ¢ cos(3t) + ¢ sin(3t),
then we made the correct guess.

— We want to find what the value of A, B is. We need to plug this into the LHS. So we

start by taking derivatives:

yp = At> + Bt + C,

y, = 2At + B
y, =24

e Step3: Set the LHS equal to the RHS and solve for A to get. Plug y, into the LHS:
LHS =y, +9y, = (24)

+9 (At* + Bt + O)

9At* + 9Bt + (9C + 2A)

e Setting LHS = RH Swe have
LHS = RHS
9At? + 9Bt + (9C + 2A4) = 27t* + 0t + 0
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so that you have to solve

9A =27
9B =0
9C+24=0
and solving this system we get
A=3,B=0,C= —;

e Step4: Plug A, B back in and get y,(t) = 3t> — 2 and a general solution of

y(t) = yn + yp-
2
y(t) = c1 cos(3t) + cosin(3t) + 3t* — 3

(8) For the following ODEs. Use the method of undertermined coefficients (MOUC) to make the correct
guess for the y,. You DO NOT have to solve for the coefficients, A, B,C.... Simply make the
correct guess for the y,,.

(a) ¥ — 2y +y = te'
Solution:
Stepl: Find y(t) , which is simply the general solution to the homogeneous EQ,

y//_2y/+yzo

but we learned that we must solve the characteristic polynomial 72 —2r+1 = (r — 1) (r — 1) =
0 and get r = 1,1 (repeated real) so that the solution is

yn(t) = cre’ + cate’.

Step2:
1st Guess:(based on RHS) y, = (At + B) €'
2nd Guess: (based on if there are repeats with y3,) y, = (At*> + Bt) '
3rd Guess: (based on if there are repeats with y,) y, = (At® + Bt?) €',
— Since there no repeats with y; then this is the final guess.
(b) y// + y/ _ 2y — tht
Solution:
Stepl: Find yp(t) , which is simply the general solution to the homogeneous EQ,

y'+y' —2y=0

but we learned that we must solve the characteristic polynomial 7% +7r —2 = (r +2)(r —
1) =0 and get » = —2,1 so that the solution is

yn(t) = cre ™" + coel.

Step2:
1st Guess:(based on RHS) y, = (At*> + Bt + C) ¢’
2nd Guess: (based on if there are repeats with yz) y, = (At3 + Bt? + C’t) et
— Since there no repeats with y; then this is the final guess.
(c) y" +y' =1t>+ cost
e Solution:
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e Stepl: Find y;(t) , which is simply the general solution to the homogeneous EQ,
y// + yl — 0
but we learned that we must solve the characteristic polynomial 72 + 7 = 7(r +1) = 0

and get r = 0, —1 so that the solution is

yn(t) = c1e% 4 cpe™".

=c + 026715

Step2:
1st Guess:(based on RHS) y, = (At*> + Bt + C) + (D cost + Esint)
2nd Guess: (based on if there are repeats with yp) yp = yp = (At3 + Bt? + Ct) +
(Dcost+ Esint)
— Since there no repeats with y;, then this is the final guess.
(d) v +y' — 6y = e +sin(3t)
e Solution:
e Stepl: Find y;(t) , which is simply the general solution to the homogeneous EQ,

y'+y —6y=0

but we learned that we must solve the characteristic polynomial 724+r—6 = (r + 3) (r — 2) =
0 and get r = —3,2 so that the solution is

yn(t) = cre 3t + coe®

e Step2:
e 1st Guess:(based on RHS) y, = Ae® + (B cos 3t + C'sin 3t)
— Since there no repeats with y; then this is the final guess.
(e) y//+y/ 72y:t6t+t2
e Solution:
e Stepl: Find y;(t) , which is simply the general solution to the homogeneous EQ,

y'+y —2y=0

but we learned that we must solve the characteristic polynomial 7% +7r —2 = (r +2)(r —
1) = 0 and get 7 = —2,1 so that the solution is

yn(t) = cre” 2t + coet.
e Step2:
e 1st Guess:(based on RHS) y, = (At + B) ' + (Ct*> + Dt + E)
e 2nd Guess: (based on if there are repeats with y3) y, = (At? + Bt) e’ + (Ct* + Dt + E)
— Since there no repeats with y;, then this is the final guess.
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3.7. Problems

(1) A mass weighing 8 Ib stretches a spring # feet. The mass is pulled down an additional 1 feet. and
then set in motion with an upward velocity of 2 ft/sec. Assume that there is no damping force
and that the downward direction is the positive direction. The gravity constant g is 32 % . The
function u(t) describing the displacement of the mass from the equilibrium position as a function
of time t satisfies what initial value problem?

e Solution:
e Find m: w = mg which implies
~w _ 8lb 1 Ibs?

g 32ft/s"2 4 ft

Find v: v = 0 since there is no damping.

Find k: (Hooke’s Law)

g 8l _161b

=7 = (1/2)f &
e There is no external force so F'(¢) = 0.
e Thus i
ZUN +0u' 4+ 16u=0
hence

v +64u =0, u(0)=1, v (0)=-2.
(2) A mass of 5 kg stretches spring 10 cm. The mass is acted on by an external force of 10sin(¢/2) N
(newtons) and moves in a medium that imparts a viscous force of 2 N when the speed of the mass
is 4 cm/sec. If the mass is set in motion from its equilibrium position with an initial velocity of 3
cm/sec, formulate the initial value problem describing the motion of the mass.
e Solution:
e Find m: We are given that

m =5 kg
e Find v: Using yu’ = 2N when v’ =4 cm/sec we have
2N N-sec
T .04 m/sec =90 m
e Find k: (Hooke’s Law)
L_mg _5-(98) _ 490N
L dm m
e The external force is given by so F'(t) = 10sin(¢/2).
e Thus
5u” + 50u’ + 490u = 10sin(t/2)
hence

5u” + 50u’ 4+ 490u = 10sin(t/2), u(0) =0, «'(0) = .03—.
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3.8. Problems
(1) A 64 1b mass stretches a spring 4 feet. The mass is displaced an additional 5 feet. and then released;

and is in a medium with a damping coefficients v = 7“'}%. Suppose there is no external forcing.
Formulate the IVP that governs the motion of this mass:
e Solution:
— Find m: w = mg which implies

W 64 1b lbs?

T g 32fts 2 ft
— Find ~: Given

_ . 1b sec
TR
— Find &: 64 1b b
mg
k = — = — = 16*.
L 4ft ft

— Thus the IVP is given by
2u” + Tu' + 16u =0, u(0) =5, v/ (0) =0

(2) A 321b mass stretches a spring 4 feet. The mass is displaced an additional 6 feet. and then released
with an initial velocity of 3 Sfe—tc; and is in a medium with a damping coefficients v = 2”%%. Suppose
there is an external forcing due to wind given by F'(t) = 3 cos (3t). Formulate the IVP that governs
the motion of this mass:
e Solution:
— Find m: w = mg which implies

L w 32 1b 1bs?

Ty 32ft/s 2 ft
— Find ~: Given

Ib sec
=2
i f,
— Find &:
k_@_Sle_ &
L 4Aft O ft

— Thus the IVP is given by
u’ +2u 4+ 8u = 3cos (3t), u(0)=26, v (0)=3.
(3) Consider the following undamped harmonic oscillator with external forcing:
v’ +5u =sin(3t), u(0)=1, «'(0) = —1.

What is the natural frequency? What is the frequency for the external force? Will you get
resonance? What is your guess for u,? Solve the IVP.

e Solution:

e Recall that 724+ 5=0so r = :I:\/gi, so that

up(t) = c1 cos (\/515) + ¢y sin (\/575) .

e Thus the Natural Frequency is wy = v/5.
e The External Frequency from sin (3t) is w = 3. Since they don’t match, then we will not
get resonance.
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e Thus our guess for u, is
up = Acos (3t) + Bsin (3t) .
e Taking derivatives and plugging into the LHS we obtain
1

A=0,B=—-
7 4

so that
u(t) = ¢1 cos (\/St) + ¢ sin (\/&) - isin (3t) .
using the initial conditions we get that
c1=1,c0= N
45
so that the solution to IVP is
u(t) = cos (\/515) - ﬁ sin (\/&) - isin (3t).
(4) Consider the following undamped harmonic oscillator with external forcing:
v’ 4+ 16u = Tcos (4t), u(0) =0, u'(0) = 0.

What is the natural frequency? What is the frequency for the external force? Will you get
resonance? What is your guess for u,? Solve the IVP.

e Solution:

e Recall that 2 4+ 16 = 0 so r = 44, so that

up(t) = ¢1 cos (4t) + co sin (4t) .

e Thus the Natural Frequency is wy = 4.
e The External Frequency from 7cos(4t) is w = 4. Since they match, then we will get
resonance!
e Thus our guess for u, is
u, = At cos (4t) + Btsin (4t) .
e Taking derivatives and plugging into the LHS we obtain
7

A=0,B=—
’ 8

so that .
u(t) = ¢y cos (4t) + co sin (4t) + gt sin (4t) .

using the initial conditions we get that c¢; = co = 0 so that the solution to IVP is

u(t) = %t sin (4t) .
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3.9. Problems
(1) Consider the following ODE

"+ 16y = .
v+ iy sin (4t)

(a) Find a particular solution to the ODE above using the method of variation of parameters.
e Solution:

e Stepl: First find y;, is possible. In this case y;, will be given by solving the characteristic
equation 72 4+ 16 = 0 so that r = +4¢ hence
yn(t) = c1 cos(4t) + co sin (4¢) .
Thus y1(t) = cos (4¢) and yo(t) = sin (4t).
e Step2: Find the Wronskian:
Wiy p)(t) = —ilossi(fat) 45213)5(?2)
= 4dcos?(4t) + 4sin?(4t)
= 4 [cos?(4t) + sin®(4t)]
=4-1=4.

o Step3: Use our formula with g(t) = gy and get

ore nore
y”(“:‘yl“)[ W(yhyz)(wdt%”(”{ W(yl,m)(t)‘“]

— _ cosat /lsin (4t) dt} + sin (48) [/ cos(4t) 1 dt}

4 sin (4t) 4 sin(4t)
= — cos(4t) / idt] + sin (4¢) Lll/ ;Onsiig dt}

—  cos(dt) ﬂ n isin (4t) [ / S:Eig dt}

now since [ 23:83 dt = [ cot (4t)dt you can remember the antiderivative of [ cot (u)dt =

In (sinwu) + C
e Or use can use u-substitution with v = sin(4¢) and get du = 4 cos(4t)dt so that

cos(4t) . [ldu 1
/sin(4t)dt’/u R LR

1
=1 In [sin(4t)| + C

hence taking C' = 0,
t 1. 1 .
yp(t) = — cos(4t) {4] + 7o (4t) {4 In |sm(4t)|}

t 1
=—- 4t) + — si i
cos(4t) 6 sin (4¢) In |sin(4¢)|

(b) What is the general solution to the ODE above.
e Solution:
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e Then general solution is given by

y(t) = yn +yp
= ¢1 cos(4t) + co sin (4t)
t 1
1 cos(4t) + IT: sin (4t) In |sin(4t)] .
(2) Find the general solution to

2y — Aty +6y =13, t>0

given that
yi(t) =, pa(t) =7
forms a fundamental set of solution for the corresponding homogeneous differential equation.
e Solution:
e Stepl: Since y;(t) = t2, y(t) = 3 forms a fundamental set of solution, this means that the
general solution for the homogeneous equation is

Yp = clt2 + 02153.
e Step2: Find the Wronskian:

23
Wm0 = | 5y g

=3t — 2t =1+ £ 0,
e Step3: Rewrite the equation in the form y” + p(t)y’ + q(¢)y = g(¢) and hence
4 6
" /
Yy ty + 2
Use our formula with g(¢t) = ¢ and get

B y2(t)g(t) y1(t)g(t)
v(H) = =0 () { W (y1,92) (t) dt] o) { W (y1,92) (1) dt}

e[t
e[ o]t

= —t*[t] + 3 [Int]
=—t3+t3Int

y=t,

hence the general solution is
y(t) = yn + yp
= cit + cot® — 3 + 3 Int.
(3) Find the general solution to
2y — 3ty +3y =8>, t>0
given that

yi(t) =t ya(t) =1
forms a fundamental set of solution for the corresponding homogeneous differential equation.
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Solution:
Stepl: Since y;(t) =t, y2(t) = 3 forms a fundamental set of solution, this means that the
general solution for the homogeneous equation is

yp = 1t + 02t3.

e Step2: Find the Wronskian:

t 3
W(yla y?) (t) = 1 3t2

=3t3 13 =213 £0,

Step3: Rewrite the equation in the form y” + p(t)y’ + ¢(t)y = g(t) and hence

3 3
no__ 2. 2y =8t..
vy Y ;

Use our formula with ¢(¢) = 8¢ and get

Yp(t) = —u1(t) { Mmdt] + 92 (1) {

STES T
<[] o[ ]

= —t [2t*] +¢* [4Int]
= —2t3 4+ 43 Int

w0y
W (y1,y2) (t)

hence the general solution is

y(t) = yn + yp
= cit + cot® — 263 + 4¢3 Int.
(4) Find the general solution to
2%y +ty — 3y =2t>%, t>0
given that
yi(t) =t yo(t) =132

forms a fundamental set of solution for the corresponding homogeneous differential equation.
e Solution:
e Stepl: Since y;(t) =t, yo(t) =t~ 2 forms a fundamental set of solution, this means that the
general solution for the homogeneous equation is

Yh = cltfl + czt?’/z.
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e Step2: Find the Wronskian:

t71 t3/2

W(yhyz)(t):‘ 42 341/
2

2

_ t—lgt1/2 _43/2 (—t_Q)

3 71 —
_ 2412 4 412
5 +

5

_ 24-1/2
2
e Step3: Rewrite the equation in the form y” + p(t)y’ + q(t)y = g(t) and hence
1 3 2t5/2
17 [l A _ 1/2
Vo TapY T aop '
Use our formula with g(t) = t'/2 and get
y2(t)g(t) yi(t)g(t)
ytyt{dtert LR g
(1) () W (y1,92) (t) () W (y1,y2) (1)
AN 1/2 3/2 ! 1/2
S_— /gt—l/Qt dt]+t [/ %t_l/gt dt}

=—t! /§t2t1/2dt] + 3/2 [/ gt_l/Ztl/th}

2 2
= /7t5/2dt + 1372 /fdt
) 5 5

(22 270 |2
— L | 2E2| 2 | 2y
57 * 5

_ 7%155/2 n §t5/2
_ 1052

35

2 -
_ *tO/Q

7

hence the general solution is

y(t) = yn +yp

2
=it eot?/? + 5755/2.
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CHAPTER 4

Higher Order Linear Equations

4.1. Problems

(1) What is the largest interval for which there exists a unique solution by the Existence and Uniqueness
Theorem for the following IVP:

(t—5)y® — 2Dy ety = (tfff)
y(2) = -1
y'(2) =1
y"(2) =2
y"(2) =5.
e Solution:
e First rewrite
@ W(t+7) , et 2 +1
Ttt-5Y Te-5Y'T t-1 -5
e The function p;(t) = —lf((ttj;)) is continuous when t # 0,5 and t +7 > 0, or t > —7

The function py(t) is continuous when ¢ # 5.

=9
The function g(t) = (t_tf)ﬁ is continuous when ¢ # 1,5

All functions are simultaneously continuous (draw number lines to help you find out when
P1,D2, g2 are all continuous) when
—t#0,1,5and t > -7
(~7,0)U(0,1) U (1,5) U (5, 00)

since to = 2 falls inside (1, 5) then the solution to this IVP must have a domain as large
as
I=(1,5),
by the theorem.
(2) Find general solution of
y" +10y" + 7y — 18y = 0.
(Hint: 73 + 1072 +7r — 18 = (r — 1) (r +2) (r +9))
e Solution:
e The characteristic equation is given by

3 4+ 102 +7r — 18 =0
and by the hint
Z(r)y=(r-1)(r+2)(r+9 =0
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which gives
r=1-2,-9

hence

y(t) = cre’ + coe™ 4 cze™

(3) Find general solution of
y™ —10y" + 36y" — 54y’ + 27y = 0.
(Hint: r* — 10r® + 3612 — 5dr + 27 = (r — 1) (r — 3)%)
e Solution:
e The characteristic equation is given by
rt —10r° + 367 — 54r +27=0
and by the hint
Z(r)y=(r—1)(r—3)°=0
which gives
r=1,3,3,3
hence
y(t) = cre’ + coe®t + eatedt 4 cqt?e™
(4) Find general solution of
y®) —4y® £ 13y" — 36y" + 36y = 0.

(Hint: 75 — 47* + 1313 — 3612 4+ 367 = r (r — 2)° (r2 +9))
e Solution:
e The characteristic equation is given by
r® —dr* + 13r% — 36r° + 36r = 0
and by the hint
Z(r)=r(r=2)" (* +9) =0
which gives
r=20,2,2,+3i
hence
y(t) = c1 + coe?t + cste® + ¢y cos (3t) + cssin (3t) .
(5) Find general solution of
y@® +11y" + 18y = 0.
(Hint: 74 4+ 1172 + 18 = (r? + 2) (12 4 9))
e Solution:
e The characteristic equation is given by
rt+11r* + 18r = 0
and by the hint
Z(r)=(r*+2) (r*+9)=0
which gives
r=+v2i,+3i
hence

y(t) = c1 cos (\/515) + ¢ sin (\/it) + ¢4 cos (3t) + cqasin (3t) .
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(6) Find general solution of
y© + 32y 4 256y = 0.
(Hint: 76 + 3274 4 256r2 = 2 (12 + 16)°)
e Solution:
e The characteristic equation is given by

r® +32r* +256r* = 0

and by the hint
Z(r)y=r*(r*+ 16)2 =0
which gives
r=0,0,+44, £4i
hence
y(t) = c1 + cat
+ ¢ cos (4t) + ¢4 sin (4t)

+ cst cos (4t) + cotsin (4¢) .
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4.2. Problems
(1) Consider
y" — 4y — 11y + 30y = 473" + cost.
Find the general form of y,. (Hint: r® — 472 — 117 +30 = (r + 3) (r — 2) (r — 5))

e Solution:
e Stepl: We find yj: Solve the characteristic equation
r®—4r® —11r+30=0
(r+3)(r=2)(r—5)=0

so that r = —3,2,5 hence

yn = cre=3t 4 coe?t 4 cge®

e Step2: Find y,:
— First Guess: y, = Ae 3" + Bcost + Csint.
— Second Guess: y, = Ate 3" 4+ Bcost + C'sint. And this is the final correct guess.
(2) Consider

"

Yy 4+ 8y +16y" =t + €.
Find the general form of y,(Hint: r* 4 873 4 1612 = r? (r + 4)%)
e Solution:
e Stepl: We find y,,: Solve the characteristic equation
rt+8r% +16r* =0
r? (r + 4)2 =0
so that » = 0,0, —4, —4 hence
Yyp = €1 + cot + 0367475 + C4t674t
e Step2: Find y,:
— First Guess: y, = (At + B) + Ce'.
— Second Guess: y, = (At? + Bt) + Ce.

— Third Guess: y, = (At3 + Btz) + Cet. And this is the final correct guess.
(3) Consider

y @ — 10y + 36" — 54y’ + 2Ty = 2te! + cos(3t),
and suppose you know that y, = cie’ + coe ™3 + c3te 3! + ¢4t?e 73!, Find the general form of y,
e Solution:
e Stepl: We find yj: This is given to us
Yp = clet + 0267315 + c;;te*?’t + C4t2€73t
e Step2: Find y,:
— First Guess: y, = (At + B) e’ 4+ C cos(3t) + Dsin (3t).
— Second Guess: y, = (At? + Bt) '+ C cos(3t) + D sin (3t). And this is the final correct
guess.
(4) Consider
y W — 2 =2t 4+ 1.
Find the general form of y,. (Hint: 74 — 213 = 3 (r — 2))
e Solution:
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e Stepl: We find y,: Solve the characteristic equation
rf—2r3 =0

3 (r—2)=0

so that » = 0,0,0,2 hence
Yp = c1 + cot + C3t2 + C4€2t

e Step2: Find y,:
— First Guess: y, = At + B.
— Second Guess: y, = At? + Bt.
— Third Guess: y, = At> + Bt
— Fourth Guess: y, = At* + Bt3. And this is the final correct guess since there is no
repeats with yy,.




CHAPTER 5

Systems of First Order Linear Equations

5.1. Problems
(1) Show that the functions

2

xz1(t) = 3et + gefzt
1 4

xo(t) = get - ge*%

solve the following system of first order differential equations IVP

rh=2r — 1y x2(0)=—-1

{xi:xg z1(0) =1

e Solution:
e First let’s check the initial conditions hold,

| &l

B
S~

:

Wi Wi
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and now we plug into the RHS,

Il I
—NN— —— —/

Wl Wl W W=
D
~+~

mco-
+

since
3 e+ 3

1.t 4 -2t
LHS:{i’e 3¢ —RHS
36

then these functions solve the IVP.
(2) Show that the functions

x1(t) = sin (2t)
xo(t) = cos (2t)

solve the following system of first order differential equations IVP

e Solution:
e First let’s check the initial conditions hold,

21(0) =sin0 =0
22(0) =cos0 =1

e Now we plug z; and x5 into the LHS,

LHS = {m}
T

~

—2sin (2¢)
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and now we plug into the RHS,

RHS — {2””2

—2$1

_ )2 (cos (2t))
—2 (cos (2t))

) 2cos(2t)
| —2cos (2t)

since

LHS = QCOS,(%) — RHS
—2sin (2t)

then these functions solve the IVP.
(3) Turn the following second order ODE

y"+y’+2y=t2

into a system of first differential equations.
e Solution:

e Goal: Welet x1 =y , xo = ¢ and set up the following system:
xy =7
xh =7

e To do so, we start with what we defined and take derivatives:

n=y = ) =y =z
ro=y = ah=-—y —2y+t
hence
zh = —y — 2y +
= —x9 — 221 + t2, by definition
thus

) =x
xh = —x9 — 2771 + 12
(4) Turn the following second order ODE

Yy’ — 2y + 10y = 0.

into a system of first differential equations.
e Solution:

e Goal: We let 1 =y , 2o = ¢’ and set up the following system:
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e To do so, we start with what we defined and take derivatives:

=y = ) =y =
xo=y = zb=-10y+ 2y
hence
xh = —10y + 2y’
= —10x1 + 2z2, by definition

xh = a9
xh = —10x1 + 29

thus
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5.2. Problems

(1) LetA—(é ;),m—(_f)andy—(g),ﬁndAm,élw,anda:—i-y.

e Solution:

e We have
1 2 -2
ae= (55 ) (1)
_ —2+2
—\ —-10+3
_ 0
={ ;)
and
-2 -8
e (1)(7)
and finally,

(2) Turn the following system of first order equations into matrix-product form:

(a) Given by:
x) = 3o
xh =91 — 39

(%)
v (9 3)s

) = —x1 4+ 224
xh =Ty + by

e Solution:
o Letting

8

then

(b) Given by:

e Solution:
e Letting

then

' = -1 2 x
- 7 5

(3) Turn the following vector valued ODE into a system of first order equations.
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(a) Given by:

where a(t) = ( z1(t) )

e Solution:

5.2. PROBLEMS

e Since a(f) = ( z1(?) ) then &'(t) = ( m;g )

e By multiplying
3
3

thus

) (3 -2

17 )*= 3 17
. 3r1 — 229
o 3x1 + 1725

, (3 -2
=13 17 )"

Z1
X2

)

zi(t) \ _ [ 31— 229
— ( xh(t) > o ( 3x1 + 17x9

which means that

(b) Given by:

where Y (£) = ( 58 )

e Solution:
e Since Y (t) = ( xE
e By multiplying

<

thus

which means that

4
t

x) =3z — 29
xh = 3z + 1729

I 04
v (0 0y

; ) then Y’ (t) = ( 58

)

)
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(4) Find the equilibrium solutions of the following system:

, (1 2
X'=|, 5 )x
e Solution:

e The equilibrium solutions is the solution of the following equation:

< i ; ) x=0
hence involves solving the following system of algebraic equations:

$1+2$2:0
$1+3.’E2:0

and it turn out that the only solution is
x(t) = (0,0).

(5) Find the equilibrium solutions of the following system:

N R
o 9 -3 ’
e Solution:

e The equilibrium solutions are the solution of the following equation:

( g ::1,) ) x=0
hence involves solving the following system of algebraic equations:
{le —x9=0
9r1 — 322 =0
since these equations are multiple of each other than there is a whole line of solutions:

T = 3561

and it turn out that the solution are of then form:

X(t):(?f;ll)
(1)

(6) Check if the following vector functions satisfy the following differential equations.

(a) Where
(3 -2 [ 4e*
w(2 _2>a;, m(t)<262t )

e Solution:
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e First we plug « into the LHS and obtain,
LHS = 2’

d [ 4e*
~i (2 )
Re2t

- )

and now we plug « into the RHS and obtain
3 -2
RHS = ( 9 _9 >m
(3 -2 4e2t
L2 =2 2e2t
12e% — 4¢2t
= 86215 _ 46215
862t
-G )

since the LHS equals the RHS, then this vector function satisfies the ODE.

(b) Where
, (1 3 (1 3¢
w—(2 2>w, a:(t)—(2>e .
e Solution:

e First we plug x into the LHS and obtain,
LHS =z’

()7
()
3€3t

~( &)

and now we plug « into the RHS and obtain

_ (1 3 1Y s
s (1) (1)
(146 3
_<2+4)€
T 3
-(5 )¢
7

o3t
()
since the LHS DOES NOT equal to the RHS, then this vector function satisfies is NOT
a solution to the given ODE.
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(7) Consider the following differential equation

o0 PR S A A N P . A A A AP A A A & B |
e S S P N A |
T A P S A A A A A A
NS . PP
o ' VN e = - A A A A A AN
L Ny P A
D N PN A A
00:::'7._'." A 4 A A 4 4 4 4 4 4
A Ny,
A A A ~.““‘“‘
,m//1"/’//////;“‘4‘“‘ Yot
S A A A A A A N
P A A R e NN
R PAPAFarAraFarar e " e et o o
PV A A A A A A AT A A A e e
o KKK X AKX W K s s e a e a4
—-1 -3 -2 -1 0 1 2 3 4

with corresponding direction field:
(a) Using the direction field draw a Phase portrait. (A Phase portrait is graph a several possible

different solutions of the ODE)
e Solution:

3.0
'7""""%

IR S i 3 3

% A a A e e

1 2 3 4

draw the unique soluton to this IVP and use it to predict long term behavior of lim;_, o 21 (t)

and limy_, o0 22(t).
e Solution:
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()

5.2. PROBLEMS
) z, x(0)

—4
-2

1
1

draw the unique soluton to this IVP and use it to predict long term behavior of lim;_, x1(t)

and limy_, o0 22(2).

!

(b) Consider the following IVP:
e Solution

PrrEETEE SE OSSR
PP RS S AR LR RN
PFEEL SN ANSSSNN RN
et NS SRR NN [
LN LRSS NS SR RNY

R e A e
Vol e OO R RO R R )X
AP B R
SRS RN

(0,0).
Q

2(t)

lim z1(t) =0,
(¢) Try to draw what the graphs of x;(t) and xz5(¢) are individually as functions of ¢, for the same

t—o0
lim z
t—o0

lim x(t)

t—o0

GV P Ve e
PR N

W et b e

LN A K A
A A

>

SO NS
R Y \ \

SO Y
OO O O
OO
R S Y
PR N Y
R )
PR R,

T e S
R eI W

Ry
R
Ry

- T T XX
.
.

R T A

0
5
0
5
0

so that

-2

3
e Hence we have
e Solution

IVP above.
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5.3. Problems

(1) Consider the linear system

are solutions to the system above.
e Solution:

e We plug these functions into the LHS and RHS and check that their the same.
e Now we check x(V)(¢) and

and

2 0

_ (1)
RHS—(1 1)x

(20 0
“\l1 1 et
. 0+0
“\L0+¢€

since LHS=RHS then x(®) is a solution.
e First we check x(?(¢) and

dx?)
dt

LHS =
t
)

=
2¢%t
- (e )

101
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and

since LHS=RHS that x()(¢) is a solution.
(b) Solve the initial value problem

dx 2 0 —2
dt(l 1>x, X(O)(_l).
e Solution:

e Using the general solution thereom we must check the solutions x")(¢) and x(?(t) are
linearly independent. That is, we check that

0 €2t
et €2t

W [X(l)(t)7x(2) (t)} = = &% £0

and since its not equal to zero then these are linearly independent solutions so that the
general solution is given by

x(t) = erx () + eox@ (1)

0 6215
o(2)en(2)

using the initial conditions we have

() -0
o (D)en(2)

_ C2
o c1+ co

hence we have to solve the system of equations

62:—2
c1+c=-—1

and get ¢; = 1 and ¢y = —2 so that

X(t)=(2)+2<izi>.
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dx (-2 -1
a2 -5)%

(a) Check that the two functions are solutions to the system. If they are not solutions, then stop
and do not do parts (b) and (c).

—3t —3t
x(1)(t) = ( ) and x(2) (1) = ( s )
e Solution:

o We plug these functions into the LHS and RHS and check that their the same.
e Now we check x(1)(¢) and

(2) Consider the linear system

dx)

LHS =
5 dt

and

_26731‘/ _ 673t
26_3t _ 56_3t

7367&
- )
since LHS=RHS then x") is a solution.

e Similarly you’ll see that x(?) is also a solution.

(b) Are x(V(¢) and x( () linearly independent? If they are not, then stop and do not move on
to part (c).
e Solution:
e By a theorem from the book, it is enough to check that x(Y)(0) and x()(0) are linearly

independent. Since
0= (1)

(1)

e There is two ways of checking if these are linearly independent vectors. For one, we can
compute the Wronskian (determinant) and note that

1 4
1 4

and

wx®(0),x1(0)] = ’ =0

hence it’s not linearly independent.
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e Or, we can see that these vectors DO lie in the same line, hence they are NOT linearly
independent.

e We do not proceeed into the next question.
(¢) Find the general solution of

dx (-2 -1
a -\ 2 -5)%

dx -2 -1
dat ( 2 -5 )X
(a) Check that the two functions are solutions to the system. If they are not solutions, then stop
and do not do parts (b) and (c).

o3t _ 94t 2e73t + et
x(l)(t) - ( e 3t _ 4 and X(Q)(t> T\ 2e73t 4 2%
e Solution:

e By plugging both functions into the LHS and RHS, you’ll see that they are both solutions.
(b) Are x(V(¢) and x( () linearly independent? If they are not, then stop and do not move on
to part (c).
e Solution:
e By a theorem from the book, it is enough to check that x(Y)(0) and x()(0) are linearly

independent. Since
on-()

- (3)

e There is two ways of checking if these are linearly independent vectors. For one, we can
compute the Wronskian (determinant) and check its not zero. Or, we can see that these
vectors do not lie in the same line, hence they are linearly independent.

(¢) Find the general solution of
dx -2 -1
dat ( 2 -5 >X'
e Solution:

e By general solution theorem, since these we found two linearly independent solutions
then the general solution is

x(t) = erxM () + eox@ (¢)

6—315 _ 26_4t 26_3t + e—4t
= ( o3t _ fo—4t > + e ( 9e—3t 4 9e—dt > .

(3) Consider the linear system

and
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5.4. Problems
(1) Find the general solution of the given system of differential equations:
(a) x' = ( L2 )x
3 —4
e Solution:
e Step 1: Find the eigenvalues:

det(A—N) =0 <= det<1_ 4 A)
— (1-XN(-4—-X)—-(-2)-3=0
— A2+3>\74+6:0
= M43 +2=0
— W+ +2)=0
— A=-1,-2.

e Step2: Find the eigenvectors.
e For A\ = —1 we have

_ 1 -2 I _ I
e = () ()= (3)
1’1721‘2 _ X1
= <3x1—4x2>_ (IEQ)

{xl —2x9 = —11 — X9 = I

3371 — 45(12 = —X2

. 1
hence the eigenvectors are of them form v = ( ;1 ) = ( il ) =x ( 1 ) for any
2 1

x1. So choose x1 = 1 and we pick the eigenvector

a-(1).

(note that there are infinitely many possibilities for eigenvectors) for example we could
. 2 . S .
have chosen the eigenvector ( 9 ) since any multiple is also an eigenvector.

e For \y = —2we have

Av =-2v = =2 L) o ™
3 —4 T2 T2
{xl - 2.%2 = —21’1

21‘2

3xy — 4y = 225 = 31 =3%

2
hence the eigenvectors are of them form v = < Zl ) = ( 3;2 ) for any z2. So choose
2 2

x1 = 3 and we pick the eigenvector

we(2).
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e Hence we have the following eigenvalues with their corresponding eigenvectors:

>\1 = _17 vy =

W N = =

A2 = =2, vy =

At

e Hence the general solution is given by x = c¢;vieM? + coe*?fvy so that the general

solution is

(b) X/:<111 12)"

e Solution:
e Step 1: Find the eigenvalues:

1—2X 1
det(A—A)=0 <— det( 4 2)\>:0
— (1-N(-2-)N)—-1-4=0.
= MN4+A-2-4=0
= M+A-6=0
— A=2)A+3)=0
— A=2-3.

e Step2: Find the eigenvectors.
e For \; = 2 we have

[t

Av=—-v <— ( 1 >(x1>:2(x1>

-2 ) i)
T+ o = 221 — T = I
41 — 229 = 219

S

hence the eigenvectors are of them form v = ( ;1 ) = < il > =x ( 1 ) for any
2 1

x1. So choose z; = 1 and we pick the eigenvector

(1
V] = 1 .
e For \y = —3we have

we = (3 L) (8) ()

T+ To = =311 — x99 = —41q
{
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hence the eigenvectors are of them form v = ( 1 ) = ( 1 ) for any x;.

) —4.’E1

choose 1 = 1 and we pick the eigenvector

v (1),

e Hence we have the following eigenvalues with their corresponding eigenvectors:

1
)\1:2, Vl:(l)

1
/\22—3, V2:(_4>

107

So

e Hence the general solution is given by x = c;vieM? + coe*?fvy so that the general

solution is

1 1 _
chl< 1 >€2t+02< 4 )e 3¢,
@ &= (32
Lo —2)%
e Solution:
e Step 1: Find the eigenvalues:

3—A 2
det(A—A)=0 <= det( 0 _2_)\>:0
= (B-AN)(-2-))-2-0=0.
= AN -A-6=0
— A\+2)(A-3)=0
— A=-2,3.

e Step2: Find the eigenvectors.
e For A\ = —2 we have

hence the eigenvectors are of them form v = ( 1 ) = ( 5, ) for any x;.

choose ;1 = 2 and we pick the eigenvector

w(2)

(note that there are infinitely many possibilities for eigenvectors)

So



5.4. PROBLEMS 108

e For Ay = 3we have

e (32)() ()

3x1 + 229 = 321 — 29 =0
—2x9 = 319 = 25 =0

hence the eigenvectors are of them form v = < il ) = ( %1 ) for any x;. So choose
2

x1 = 1 and we pick the eigenvector

(1),

e Hence we have the following eigenvalues with their corresponding eigenvectors:

/\1 = —2, V1 = _25
1
)\2 = 3, Vo = _4

At

e Hence the general solution is given by x = ¢yvie™’ + coe*?tvy so that the general

solution is
2 _ 1
X=C1< _5 )e 2t+02< 0 >e3t.

x] = 3wy + 4o

(d) The system

/
1‘221’1

e Solution:
e Converting this system into matrix-vector notation we have

dx_34
@ \1 0 )%

e Step 1: Find the eigenvalues:

3—A 4
det(A—A)=0 <— det( 1 0)\>=0
— (B-N(=N—-4-1=0.
— AN -3\-4=0
= A-4)A+1)=0
— A=4,-1.

e Step2: Find the eigenvectors.
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e For A\ = 4 we have

Av =—-v — 34 S N
1 0 T2 T2
31‘1 + 4172 = 4:61
x1 = 4z, = 11 = 439

. 4
hence the eigenvectors are of them form v = ( il > = < ;2 ) for any z2. So choose
2 2

x9 = 1 and we pick the eigenvector

as(1).

(note that there are infinitely many possibilities for eigenvectors)
e For A\ = —1 we have

Av = —v — 3 4 L I
1 0 To T2
3r1 +4x9 = —x1
xr1 = —T9 —— T1 = —X9

hence the eigenvectors are of them form v = ( 1 ) = <

) for any x5. So choose
T2

x2 = 1 and we pick the eigenvector

w:(f).

e Hence we have the following eigenvalues with their corresponding eigenvectors:

4
)\1:4, v1:(1)

-1
)\2:—1, V2_< 1 )

e Hence the general solution is given by x = c;vieM? + coe*?fvy so that the general

solution is
4 _ -1
x:cle‘“(l)—i-czet( 1 )

e Simplifying we have
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hence

t
)

xz1(t) = dere*t — coe”
zo(t) = cre™ 4 coe .

(2) Solve the following initial value problems and find z1(¢) and x2(?).
(a) Where the IVP is given by

;o —4 (1
x—(2 _3>x ,X(O)—<O>.
e Solution:

e Step 1: Find the eigenvalues:

—_

—4—-A 1
det (A—A)=0 det< 9 _3_)\>0

(—4—=XN)(=3—-X\)—1-2=0.
N4+TA4+12-2=0

AN 4+7A4+10=0
A+2)(A+5)=0
A= —2 —5.

rreee e

e Step2: Find the eigenvectors.
e For A\ = —2 we have

e = () (5)-2(2)

—4x 4+ 9 = 211 = I9 = 217
21’1 - 31’2 = —2%2

hence the eigenvectors are of them form v = ( f:l ) = ( 23;1 ) for any x1. So choose
2 1

x2 = 1 and we pick the eigenvector

(1
V] = 9 .
e For A\ = —5 we have

we e (B () ()

—4x1+ 10 = —bxr1 = T9=-I
2.131 — 31‘2 = —51‘2

hence the eigenvectors are of them form v = ( il > = < 33; ) for any x5. So choose
2 1

xo = 1 and we pick the eigenvector

w4,
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e Hence we have the following eigenvalues with their corresponding eigenvectors:

1
)\1:—2, V1_(2)

1
)\2:—5, ng(l)

e Hence the general solution is given by x = c;vieM? + cpe*?fvy so that the general

solution is
_ 1 _ 1
X = c1e 2t< 9 >—|—cze 5t< 1 >

e Step 3: Find the c;, ¢y using the initial condition x(0) = (

( (1) ) :x(O)zcle()( % >—|—02@0( 31 )
=)+ %)
_< c1+c2 >
2c1 — ¢
this means we must solve
{cl +co=1
2c1 —cp =0

which means ¢; = § and ¢; = 2 so that

1 (1 2 of 1
x(t):ge 2t(2)+3e t<_1>.

e Now simplifying so that we can extract x; and x5 separately we have

L a1 2 s 1
x(t)—ge (2>—|—3e 1
o2t 2,5t

3
o2t ) + ( —2e-0t

1
3
3
lo=2t 4 2,5t
3
3

1
0 ), so that

=2t _ 2 -5t
so that ) )
z1(t) = e 2 4 S0t
1( ) 3 + 3
and 5 5
2o(t) = o2t _ 56_5t

(b) Where the IVP is given by

(3 e o

e Solution:
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e Recall from the previous example, that the general solution is

_ 1 _ 1
X = cie 2t< 5 )—1—026 5t< 5 >
e Find the ¢y, ¢3 using the initial condition x(0) = ( ; ), so that
1 . . of 1 0 1
< 9 > =x(0) = cre < 9 >+026 ( 1 >
_ C1 C2
() (2)
_ C1 =+ C2
- 261 — C2
this means we must solve
c1+co = 1
2c1 —cp =2
which means ¢; = 1 and ¢, = 0 so that

x(t):e_2t< ;)+0-e‘5t( _11 > =e—2t< é)

e Now simplifying so that we can extract x; and x5 separately we have

x(t) = e ( ; )

so that

and

112
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5.5. Problems

(1) Sketch the Phase portrait for the following systems and classify the equilibrium solution for the
following systems.

1 -2 . . .
(a) X' = ( 3 _4 ) x and assume you know that the associated eigenvalues and eigenvector are

)\1 = —1, V] =

W N = =

)\2 = —2, Vo =

e Solution:

e The equilibrium solution (the dot in the origin is the equilibrium solution) is classified
as a assymtotically stable (sink) since both eigenvalues are negative.

e The Phase portrait is given here:

v
[ ]

e Note that since Ay has the biggest magnitude, then all other solution come from the
general direction related to the straight line solution related to Ay

1 1 . . .
(b) x' = ( ) xand assume you know that the associated eigenvalues and eigenvector are

4 =2
1
)\1 = 2, V] = ( 1 )
1
Ay = =3, V2=<4)
e Solution:

e The equilibrium solution (the dot in the origin is the only equilibrium solution) is clas-
sified as a saddle since the eigenvalues have different signs.
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e The Phase portrait is given here:

] i% .

dx
(¢) — = Ax and assume you know that the associated eigenvalues and eigenvector are

dt

e Solution:

e The equilibrium solution (the dot in the origin is the only equilibrium solution) is clas-
sified as a assymtotically unstable (source) since both eigenvalues are positive.

e The Phase portrait is given here:
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o \

e Note that since A5 has the biggest magnitude, then all other solutions are goiung in the

general direction related to the straight line solution related to Ag
(d) The system

Ty = 3z1 + 4a

/
1‘221‘1

and assume you know that the associated eigenvalues and eigenvector are

e Solution:

e The equilibrium solution (the dot in the origin is the equilibrium solution) is classified
as a saddle since the eigenvalues have different signs.
e The Phase portrait is given here:
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A4
[

(2) Suppose A is a matrix and consider the following system
x = Ax.

(a) Suppose the matrix A has the following associated eigenvalues with corresponding eigenvectors

1
A= —4, V1=(1>

-9 :
)\2:—2, V2:( 1 )

Draw the Phase portrait for x’ = Ax.
e Solution:
e The Phase portrait is given here:
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3o

’} 6
’1/ 5
Ny p
3

2 /

v /

— T i »

6 -5 - -2-_1 3456

4
=5
-6

[ ]
e Note that since A; has the biggest magnitude, then all other solution come from the
general direction related to the straight line solution related to Ay
(b) Consider the same matrix as in Part (a). Draw the trajectory curve for ¢ > 0 of the solution
of the following IVP:

X = ax x(0) = (

N O
N—

e Solution:
e The solution to the IVP x is drawn in blue the following graph. The straight-line
solutions are there just for reference. The blue curve is the actual solution of the IVP.
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v
[}
(¢) Consider the same matrix as in Part (a). Draw the trajectory curve of the solution of the
following IVP:

X = Ax x(O):<j)

e Solution:
e The solution to the IVP x is drawn in RED the following graph. Note that since the

initial point (—4,—4) is located where the straight-line solution is locarted, then its
simply the straight-line solution.
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. v

(d) Consider the same matrix as in Part (a). Draw the trajectory curve of the solution of the
following IVP:

x = Ax x(0) = (

(20
"

e Solution:
e The solution to the IVP x is drawn in blue the following graph. The straight-line
solutions are there just for reference. The blue curve is the actual solution of the IVP.



5.5. PROBLEMS 120

° A 4
(e) Consider the same matrix as in Part (a). Draw the trajectory curve of the solution of the
following IVP:

X = ax x(0) = (

o O
N—

e Solution:
e The solution to the IVP x IS the equilibrium solution. Since it’s the equilibrium solution,
the point is graphed as a dot, because it stays constant over time..
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(1) Consider the following system

5.6. Problems
x' = 0 9 x
-9 0
(a) Find the general solution
e Solution:

e Stepl: Find the eigenvalues:

-2 9
det (A—A) =0 < ‘ 9 ‘—O
— A 4+81=0
— A= =49

e Step2: Pick the eigenvalue A = 9¢ and find a corresponding eigenvector:

Av = \v — 09 TL) g ™
-9 0 X9 X2

925 = iz = Ty = 1T
—9:L‘1 = 9i$2

hence the eigenvectors are of the form v = < 1 ) = < ; > for any z;1. By choosing

Z2
x1 = 1 we can pick the eigenvector

( ; )

v = ..

)

e Step3: Find the complex solution x. = X, + iX;;, for this eigenvalue and eigenvector

X, =¢€e"v

— (o0 ( 1 )
1
1

= (cos (9t) + isin (9t)) ; ) , by Euler’s Formula

_ cos (9t) + isin (9t)

o ( i cos (9t) + 2 sin (9¢) )
_ < cos (9t) + i sin (9¢t) >
“\dcos (9t) — sin (9t)

B < cos (9t) + i sin (9t) >
| —sin (9¢) + i cos (9¢t)

= ( Saion ) +i( e )

= Xpe T Xim

e Taking the real and imaginary parts, we obtain the general solution

x=a( “nion )+ (mion )
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(b) Solve the IVP:

and find x4 (¢) and z5(t).
e Solution:
e We use the initial condition and get

(1)

_(a
=
hence ¢; =1 and ¢y = 2.
e Thus the particular solution is

<= ( ey ) +2( e )
( cos (9t) + 25sin (9¢) )
—sin (9¢) + 2 cos (9¢)

hence

x1(t) = cos (9t) + 2sin (9¢) ,
2o(t) = —sin (9t) + 2 cos (9¢) .
(c) Determine the direction of the oscillations in the phase plane (do solutions go clockwise or

counterclockwise)
e Solution:

e By testing at x = é and x = ( (1) ) we get that the vector field at those points

would have the following directions:

1 0
(0)=(5)
1 9
(- (2)
hence the spirals clockwise.
e See here:
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[ ]

(d) Classify the Equilibrium solution
e Solution:
e The eigenvalues are

A= 19i.

since a = 0, then this is called an center.
(e) Draw the Phase Portrait
e Solution:
e Plotting the Phase portrait, we draw elliptical shapes going counterclockwise:
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2) Consider the following system
( g
, (-1 -4
x = 1 1 )X
(a) Find the general solution
e Solution:
e Stepl: Find the eigenvalues:
1= —4
det(A—AI)_O<:>‘ 1 _1_>\‘—0
= (-1-X>44=0
— (-1-)N)°’=—-4
= —1-A==£%
= A=-1£2.

o Step2: Pick the eigenvalue A

Av = v

-1 -4 T . . T

= (3 ) () ()
9501 — 4272 = (71 —+ 22) I
x1 —x2 = (—1+2i) xo = x1 = (20) 29

—1 + 2¢ and find a corresponding eigenvector:

125
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hence the eigenvectors are of the form v = < 1 ) = (

choosing x5 = 1 we can pick the eigenvector

v 2i
=7 )
e Step3: Find the complex solution x. = X, + iX;,, for this eigenvalue and eigenvector

x. = ey

— o(—142i)t ( 217’ >
— o te2)i ( 211 )

= e~ " (cos (2t) + isin (2t)) ( 2i

1
ot ( 2i cos (2t) + 2i? sin (2t) )
a cos (2t) + isin (2t)
R ( 2i cos (2t) — 2sin (2t) )
- cos (2t) + isin (2t)

¢ —2sin(2t) + 2icos (2t)
-° ( cos (2t) + isin (2t) )

- (Tt ) (i)

= Xpe T 1 Xim

) , by Euler’s Formula

e Taking the real and imaginary parts, we obtain the general solution

o =eet (Tt ) v (b )

(b) Determine the direction of the oscillations in the phase plane (do solutions go clockwise or
counterclockwise)
e Solution:

e By testing at x = ( é ) and x = ( (1) ) we get that the vector field at those points

would have the following directions:
1 -1
o))
1 —4
o))

hence the spirals go counter-clockwise.
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(c) Classify the Equilibrium solution
e Solution:
e Recall that the eigenvalues are

A=—-1+2:.

since o < 0, then this is called an asymptotically stable spiral.
(d) Draw the Phase Portrait
e Solution:
e Plotting the Phase portrait, we draw spirals going counter-clockwise going towards the
origin:
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(3) Consider the following system
=2 72 )«
R
(a) Find the general solution
e Solution:
e Stepl: Find the eigenvalues:
2—X -5
det(A—)J)_0<:>‘ 1 _2_/\'—0

= (2-N(=2-N)+5=0
= N —4+5=0

= N =-1

<~ A==+

e Step2: Pick the eigenvalue A =i and find a corresponding eigenvector:

Av = dv

— 2 -5 T\ _ . T1
1 -2 Zo = xro
25171 - 5252 = ixl
T, — 2T = 1o — 1‘1:(2+i)$2
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hence the eigenvectors are of the form v = ( il ) = ( (2 21) T2 ) for any z5. By
2 2

choosing x5 = 1 we can pick the eigenvector

= (7).

e Step3: Find the complex solution x. = X, + iX;,, for this eigenvalue and eigenvector

x. = eMv

eit< 2‘1|'Z>
2+

= (cos (t) +isin (¢)) < 1 ) , by Euler’s Formula

cos ( —|— z sin ( 2 +1)
cos + 7 sm

2cos (t —l—QZsm()—i—zcos(t
cos (t) + isin (t)
(

(
(
E 2cos (t) 4 2isin () + 4 cos (t) — sin (¢) )
(

+ 4% sin (t) )

cos (t) + i sin (¢)

2cos (t) — sin (t) + 7 (2sin (t) + cos (t)) )
cos (t) + isin ()

2cos (t —sm(t) >+z( cos (t) + 2sin (t) )

sin (t)

= Xpe + 1Xim

e Taking the real and imaginary parts, we obtain the general solution

() :C1< 2 cos (t) — sin (t) >+c2< cos(t)'—i-ZSin(t) >

cos (t) sin (t)

(b) Determine the direction of the oscillations in the phase plane (do solutions go clockwise or
counterclockwise)
e Solution:

e By testing at x = ( é ) and x = ( (1) ) we get that the vector field at those points

would have the following directions:
1 2
o)=(1),
1 -5
o)-(3)

hence the oscillations are going counter-clockwise.
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(c) Classify the Equilibrium solution
e Solution:
e Recall that the eigenvalues are

o

N

) -

since a = 0, then this is called an center.

(d) Draw the Phase Portrait
e Solution:

e Plotting the Phase portrait, we draw elliptical shapes going counter-clockwise:

oo

U -

fo
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A

61

(4) Consider the following system

(a) Find the general solution
e Solution:
e Stepl: Find the eigenvalues:

-1

1-A
det(A—)\I)_O<:>’ 5 _3_)

0

— 1-XN)(-3=-XN)+5=0
= N +20-3+5=0
= N+22+2=0
= M42X+1+1=0
— A+1)?%=-1
= A=-1+1
e Step2: Pick the eigenvalue A = —1 44 and find a corresponding eigenvector:

Av = v

= (s 3)(n)-csa( D)

1 —xo = (—14+1)x1 pick this equation
5r1 — 310 = (—1 + ’L) To
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then

1 —2a= (148 <= ax2=21—(-14+4)z
l‘1+(1—i)l‘1
< I2:(27Z)1’1

< I9

hence the eigenvectors are of the form v = ( 1 ) = ( e ) for any z;. By
Z9 (2—1i)a

choosing x2 = 1 we can pick the eigenvector

(0.

e Step3: Find the complex solution x. = X, + iX;,, for this eigenvalue and eigenvector

x. = eMv

(140t 1
= ()
ot ()i 1
- (2—1)
1

=e " (cos(t) +isin(t)) ( 9_; ) by Euler’s Formula

cos ) + isin (¢ )
(cos ( +zs1n( ) (2—1)

cos (t) + isin (t)
t o)

2 cos (t) + i2sin (t) — i cos (t) — i? sin

cos (t) + isin (t) )

2cos (t) +sin (t) + i (2sin () — cos (t))

2 cos CO: sin (¢) ) +ie™ ( 2sin (S;)nftios (t) )

1Xim

“(
( (
_ (m o D e )
(5
(
3

e Taking the real and imaginary parts, we obtain the general solution

0= (yeanrsting) ) T (sl eon() )

(b) Determine the direction of the oscillations in the phase plane (do solutions go clockwise or
counterclockwise)
e Solution:
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e By testing at x = ( é ) and x = ( (1) ) we get that the vector field at those points

would have the following directions:

1 1
o)=(5).
1 -1
o)=(5)
hence the oscillations are going counter-clockwise.
A
61
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(c) Classify the Equilibrium solution

e Solution:

e Recall that the eigenvalues are

A=—-1%1.

since o < 0, then this is called an asymptotically stable spiral.
(d) Draw the Phase Portrait
e Solution:
e Plotting the Phase portrait, we draw spirals going counter-clockwise going towards the
origin:
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and classify the equilibrium solution.
e Solution:
e First we find the eigenvalues and get

since o > 0, then this is called an asymptotically unstable spiral.
e By testing at x = (1) ) and x = ( (1) ) we get that the vector field at those points would

have the following directions:

hence the spirals clockwise.
e Plotting the Phase portrait, we draw spirals going clockwise coming from the origin:
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e Solution:
e First we find the eigenvalues and get

o[

1
A=—-4 20
2

since a < 0, then this is called an asymptotically stable spiral.
. 1 1 .
e By testing at x = 0 > and x = ( 0 ) we get that the vector field at those points would

have the following directions:

hence the spirals clockwise.
e Plotting the Phase portrait, we draw spirals going clockwise going towards the origin:



............
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5.7. Problems
(1) Consider the following system

(a) Find the general solution
e Solution:
e The characterisctic equation is

(—2—=X1)*=0
hence A = -2, -2
e Then

ZTo e e oy

Vo = ( ) = initial condition
Yo

V] = (A — )\I) Vo

= (A + 2]) Vo

(Y 0) ()
()

e The general solution is given by

x(t) = eMvy + teMv,

:e—2t<$0)+te—2t< 0 )
Yo Zo

, (-2 0 (1
x—( 1 _2))(, X(O)—(2)
e Solution:

e Plugging in the intial condition we have

a-er () (2)
(1) (2)

(¢) Determine the direction of the oscillations in the phase plane (do solutions go clockwise or
counterclockwise)
e Solution:

(b) Solve the IVP
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e By testing at x = (1) and x = ( (1) ) we get that the vector field at those points

would have the following directions:
o)=(7)
o)=(%)
La)-(5)

hence the oscilattions will be counter-clockwise.
(d) Classify the Equilibrium solution
e Solution:
— Since this is a real repeates case with eigenvalues

A=-2 -2

then this is called an asymptotically stable improper node, or an almost
spiral.
(e) Draw the Phase Portrait
e Solution:

e We know v; = :S is an eigenvector, say we choose xg = 1 then v; = ( (1) . Then
0

drawing this straight-line solution, and drawing counter-clockwise almost spirals going
towards the origin we get:




(2) Consider the following system
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x' = -2 -1 x
a 1 —4
(a) Find the general solution
e Solution:

e The characterisctic equation is

(=2=N)(=4-N)+1=(A+37=0

hence A = —3, —3. This gives real repeated eigenvalues
e Then
Zo o ey .y
Vo = ( ) = initial condition
Yo
Vi = (A — )\I) Vo
= (A + 3]) Vo

e The general solution is given by

x(t) = eMvy + terv,

:e—3t< Zo )+t6—3t< Lo — Yo )
Yo Lo — Yo

-2 -1 -1
e Solution:

e Plugging in the intial condition we have
x(t) = e 3 ( 0 ) +te3t ( Lo — Yo )
Yo Zo — Yo
:e—3t< —31 >+t6—3t< :1:2 >
=3 ( _31 ) +te 3t < :i )

(¢) Determine the direction of the oscillations in the phase plane (do solutions go clockwise or
counterclockwise)
e Solution:

(b) Solve the IVP

8
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e By testing at x = ( (1) ) and x = ( (1) ) we get that the vector field at those points

would have the following directions:
1 -2
o)=(7)
1 -1
o)=(5),

hence the oscilattions will be counter-clockwise.
(d) Classify the Equilibrium solution
e Solution:

e Since this is a real repeates case with eigenvalues
A=-3,-3.

then this is called an asymptotically stable improper node, or an almost spiral.
(e) Draw the Phase Portrait
e Solution:

e Weknow vy = 4 is an eigenvector. Then drawing this straight-line solution, and

also drawing counter-clockwise almost spirals going towards the origin we get:

N3

[ ]
(3) Consider the following system

(a) Find the general solution
e Solution:
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e The characteristic equation is
M4+A=0

hence A =0, 1.
e We find the the corresponding eigenvectors are

1
)\110 V1<0)

2
)\2:—1 VQZ(_1>

hence

(b) Draw the Phase Portrait
e Solution:
e Note that since det A = 0 (which always happens when one of the eigenvalues are zero)

0
are straight-line solutions going into the equilibrium solutions in the direction of vo:

A

then the vector ( 1 > corresponds to a whole line of equilibrium solutions. The rest

6

(4) Consider the following system

x\
Il
/N
N
— N
"
»
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(a) Find the general solution
e Solution:
e The characteristic equation is

A2 —50=0

hence A =0, 5.
o We find the the corresponding eigenvectors are

/\120 V1:(12>

hence

x(t) = cre" ( 32 ) + coe™ (
2
1

(b) Draw the Phase Portrait
e Solution:
e Note that since det A = 0 (which always happens when one of the eigenvalues are zero)

-2
are straight-line solutions going into the equilibrium solutions in the direction of v:

617"
A
; ///

R EE P SHEEREE

1 . T .
then the vector ( > corresponds to a whole line of equilibrium solutions. The rest

A

|

L2 3 4
1 3] /
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CHAPTER 6

The Laplace Transform

6.1. Problems
(1) Use the definition of Laplace transform to find the Laplace transform of f(¢) = 1. That is, find

L{1}.
e Solution:

o We compute £ {f(t)} with f(t) =1

L{ = /0 F(t)e="dt
= /OO e *tdt
0
|: e—st:|t_°°
t=0

as long as s > 0.
(2) Use the definition of Laplace transform to find the Laplace transform of f(¢f) = ¢. That is, find

LAt}.
e Solution:

e We compute £ {f(t)} with f(t) =t

L) = /OOO F(t)e—tdt

o0
= / te=stdt,
0

thus we use integration by parts on
u=t,dv=e"dt

1 _.
du=dt,v=—=¢" %t
s

143



and get that

hence

C{t}

as long as s > 0.

(3) Use the definition of Laplace transform to find the Laplace transform of f(t) =t

L£{t*}.

e Solution:

6.1. PROBLEMS

s
oty 1
= Se 526
o0
:/ te Stdt
0
t 1
= lim (—e_“ - €
t—o0 S S
_ 0
=(0-0)— <0—26>

e We compute £ {f(t)} with f(¢) = t>

and get that

LA{t} = /OOO f(t)e stat

u
t2

2t

o0
= / t2e5tdt,
0

thus we use integration by parts, or tabular integration,

dv
(Jr\‘) —st
e

Q=
\J 52
e—st
—£3

—st e—st

— 2t 32 —2 s

2

144
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hence

£{t2}:/ tetdt
0

—st —st —st 0
— lim (—t2e —otS -2 )—(—026—2-0
t—o0 S S S S
—st —st —st
o ¢ 5,6 € (. l
s (w0 ()
1
2
873.

as long as s > 0.
(4) Use the properties of Laplace transform and the following facts

1
E{l}: ;,S>O
1

Ss—a

E{eat}: ,$ > a,
L{ty = 5%,5>O,

L{ry= 2550,

L {sin(at)} = ﬁ,s >0,
L{cos(at)} = ﬁ,s > 0,

to compute the Laplace transforms of the following functions.
(a) L£{2e + Tcos(3t) + 2t} =
e Solution:
e Using Linearity and the formulas we above

= L {2e” + Tcos(3t) + 2t}
=2L{e"} + 7L {cos(3t)} + 2L {t}
LY SR
s—5 s24+32  s2

2 7s 2
5-5 19 s

(b) £{-7e% — 5t — 5sin(3t)} =

e Solution:
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e Using Linearity and the formulas we above
=L{-Te % —5t> — 5sin(3t) }
=—7L{e "} —5L{t*} — 5L {sin(3t)}
T S R
s—(-9) s3 s2 4 32
SN
(c) L{-5sin(\/Tt) +2+ 5t} =
e Solution:
e Using Linearity and the formulas we above

_yy {—5 sin(V7t) + 2+ 5t}
— 5 {sin(ﬁt)} 2L {1} +5L{t}

7 2 1

s VT 2.1

32+(\ﬁ) S S
—57 2 5

st ot 3
52 4 (\ﬁ) S S
(d) L£{4e™" —6e> + cos(3t)} =
e Using Linearity and the formulas we above
=L {4e™" — 6e®" + cos(3t) }
=4r{e"} —6L{e*} + L {cos(3t)}
1 1 s
=4 -6
s—(-1) S—3+82+32
4 s 1 S
s+l s—=3 $2+9
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6.2. Problems

(1) Use the table of Laplace Transforms to help you compute the following inverse Laplace transforms.

() £ {25}

e Solution:
e We use £ {e*} = —L so that

() £ {72 + s}
e Solution:
e We use £{e*} = —L- so that

—a

e} (i) e )

_ _5e7t + e—3t

() £ {585 - ¥}
e Solution:

e We use £{e®} = 2 and £ {t"} = -2+ with n = 1 so that

e A e TR &)

=3¢ — 10t.
- 3 2
(d) £~ {TH + (5—5)3}
e Solution:
o We use L {sin(bt)} = ﬁ with b = /7 and L {t"e} = W with n = 2,a =5 so
that £{t?e™} =

1 3 2 _i -1 \ﬁ -1 2
£ {52+7+(5—5)3}_\ﬁ£ {52+(\ﬁ)2}+£ {(5—5)3}

3
= " sin(V7t) + 2.
7 (V7t)
-1 s—3
© £ {5t }
e Solution:
e We use L {e cos(bt)} = o With a=3,b =6 so that

U= Bl e
(s —3)* +36 (s —3)% + 62

= % cos(6t).

-1 2 -1
(f) £ {5219 5 (sfsl)2+25}



g

52+9+g
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e Solution:
o We use £ {cos(bt)} = x5z with b =3 and £ {e* cos(bt)} = =

so that
2 s—1

148

—mwithazl,bzf)

‘Mu%}:“{m}}“‘l{i}“”{@—i}iv}

= cos (3t) + 2 — e’ cos (5t) .

(2) Solve the following IVP using Laplace Transforms:

Y +4y=e"t, y0)=0

Solution:
Step 1: Find the Laplace Transform of both sides (The going forwards to the s world part):
— We have
Cly}+4c{y} =L{e"}
1
— 4 - -
= sLiy} —y(0) +4L{y} = — =)
1
L —0+4L = —
= sL{y} - 0+4L{y} = —+
Step 2: Solve for £ {y} using algebra: and get
1
L 4) = ——
s+ = —
1
= L{y}=———
W= ey
Step 3: Do partial fractions
— We have that
1 A N B
(s+1)(s+4) (s+1) (s+4)
so that
1=A(s+4)+B(s+1)
taking s = —4 we have
—1
and taking s = —1 we have
1=A43, = A= %
so that
1 o 1/3 1/3
(s+1)(s+4) (s+1) (s+4)

e Step 4: Take the inverse Laplace (The going back to ¢ world part)
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— Thus
y=L"{L{y}}

- { SR }

s et )

(3) Solve the following IVP using Laplace Transforms:
y ry=e*, y0)=2

Solution:
Step 1: Find the Laplace Transform of both sides (The going forwards to the s world part):
— We have

LY+ L{yy = L{e™}

= sL{y} —y(0) + L{y} = 5—71—2)

1

Step 2: Solve for £ {y} using algebra: and get

sﬁ{y}+£{y}:2+L

s+ 2
1
2 1
— L{y} = +

s+1 (s+1)(s+2)

Step 3: Do partial fractions
— We have that
1 A B

GIDG+2)  G+D (512

so that
1=A(s+2)+B(s+1)
taking s = —2 we have
1=B(-1) = B=-1
and taking s = —1 we have
1=4, = A=1

so that
1 1 1

(s+1)(s+2) (s+1) (s+2)
e Step 4: Take the inverse Laplace (The going back to ¢ world part)
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— Thus
y=L""{L{y}}
:£1{3+1 3—|—1)1(s—|—2)}
El{s+1 s+1) (lerQ)}

(4) Solve the following IVP using Laplace Transforms:
y +7y=1, y(0)=3.

e Solution:
e Step 1: Find the Laplace Transform of both sides (The going forwards to the s world part):
— We have

Ly} +7L{y} = L{1}
= Ly —yO) +TL k=
— sﬁ{y}—3+7£{y}:§

e Step 2: Solve for £ {y} using algebra: and get
1
sC{yt+7L{y} =3+ 5

1
= £{y}(8+7):3+g
3 1

— E{y}:s+7+(s+7)s

e Step 3: Do partial fractions

— We have that
1 A B

(s+7)s (s+7)+7

so that
1=As+B(s+7)

taking s = 0 we have
1=B7T = B:%

and taking s = —7 we have
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so that
1 T ﬂ
(s+7)s (s+7) s
e Step 4: Take the inverse Laplace (The going back to ¢ world part)
— Thus

y=L"{L{y}}

L 3 1
£ {s+7+ (s—|—7)s}

£ {si7+ (s_l+/;) *127}

e @) e )

1 1

=3¢ Tt _ ?e—n 4=
20 1
="+

7 7
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6.3. Problems

(1) What is the correct form of the partial fractions?
(a) 95 —1 _
(s —3)(s2+2s+5)

e Solution:

e We have

55 — 1 A Bs+C

(s—1)(s2+25+5) s—1+52—|—23—|—5

s—2
p) — > 2
() (5—2)2(s+5)

e Solution:

e We have
5s—2 A n B . C
(-2 (s+5) (-2 (s-27 s+5
(¢) s+l
(s24+9)(s3+2)
e Solution:
o We have
s+1 _As+B  Cs*+Ds+E
(s249)(s3+2)  s2+9 342
s
d =
(d) (s+1)(s2+10)s3
e Solution:
e We have
s _A +Bs+0+2+£+
(s+1)(s2+10)s2 s+1  s24+10 s s

(2) Take the inverse Laplace Transforms of the following:
(a) F(s) = m
e Solution:
e We first try to factor: and we get
1 1
2—-8s+7 (s—1)(s—7)

amd then we use partial fraction

1 A N B
(s—1)(s=7) s—1 s-—7

so that
1=A(s—7)+B(s—1)

and taking s = Twe have 1 = B6 so that B = %

F
53
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e And using s = 1 we have 1 = A(—6) so that A = —1 so that

L*l 1 :[’71 _% 4 %
52 —8s4+7 s—1 s—7

1 1
s S

6 6

7
(b) F(s) = 2565713
e Solution:
e We first try to factor! and we can’t factor s? + 6s + 7. Thus whenever we can’t factor
the denominator, we complete the square.

%)2, so that (g)2 =32 =9 hence

e Recall the special number for s + bs + c is (
82 +6s+13 =35> +6s+9+ (-9 + 13)
= (52+63+9) +4
= (s+3)" +2

e Hence
s+ 7 B s+ 7
52 +6s4+13  (s+3)% 422

e Now we try to use Formula #9 and #10

s —a

at _: _
£{€ Sll’lbt} = m

—— and £{e* cosbt} =
(S _ a)2 + b2 { }

and get

L1 L =1 L{S +£—1 $
(s +3)% +22 (s+3)° +22 (s +3)% +22

+3 2
BPSY SEEES B GPYSY ST
{(s+3)2+22} (s+3)° +22

= e % cos 2t + 2e 3 sin 2t.

(©) F(s) = w2

e Solution:
e We first try to factor! and we can’t factor s> + 8s + 11. Thus whenever we can’t factor
the denominator, we complete the square.
2

e Recall the special number for s + bs + ¢ is (3)2, so that (_78) =42 = 16 hence
s +65+13 =5 —8s+ 16 + (18 — 16)
= (32—85—1—16) + 2
2
%

e Hence
2s — 1 2s — 1

s2_8s+18 (3—4)2+(ﬂ)27
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e Now we try to use Formula #9 and #10

L{e%sinbty = — > and £{ecoshtl = — 2L
{ J (s —a)® + b2 { ) (s —a)® + b2
and note that we need a 2 (s — 4) = 2s — 8 in the numerator, and thus since —8 +8 = 0
then
25— 1=25—8+8—1=2(s—4) +8—1
so that

5—1{ 25 — 1 2}:£_1{ 2(s—4) 2}+£_1{ +8—1 2}
(s =4+ (v2) (s =4+ (v2) (s =4+ (V2)

ot} e st
(s —4)° + (V2) V2 (s—4)>+ (v2)

= 2¢* cos (\@t) + %e“ sin (ﬁt) .

(3) Solve the following IVP using Laplace Transforms:
y'+4y =8, y(0)=11,5'(0) =5.

e Solution:
e Step 1: Find the Laplace Transform of both sides (The going forwards to the s world part):
— We have

LA{y"} +4L{y} = L {8}
= SL{yY - sy(0) 5/ (0) +AL fy) =
o L0y} —1ls— 5440 {y} = 2
e Step 2: Solve for £ {y} using algebra: and get
PL{) +AL ) = 11545+

8
= (32+4)£{y}:113+5+g
11s+5 8

= Liyt= s2+4 + s(s?2+4)
e Step 3: Do partial fractions
— On the term
8 A Bs+C
s(s2+4) ng 244
so that

8=A(s>+4)+(Bs+C)s
and multiplying the RHS out we get
8 = As®> 4+ 4A + Bs*> + Cs
and combining we get
05> +0s+8=(A+ B)s* +Cs +4A
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so that we have

0=A+B
0=C
8 =4A
hence
A=2,B=-2=C=0
so that

8 2 —2s

s(s2+4) s+52+4

e Step 4: Take the inverse Laplace (The going back to ¢t world part)

— Thus
y =L {L{y}}
11s+5 2 —2s
_ -1 = 2
=L {S2+4+8+82+4}

L f9s+5 2
£ {52+4+s
_gp-1 s i 2 1)2
= 9L {82+22}+2£{S2+22}+£ {s}

5
= 9cos(2t) + 3 sin(2t) + 2.

(4) Solve the following IVP using Laplace Transforms:
y" — 4y’ +5y=2¢", y(0)=3,y(0) =1L

e Solution:
e Step 1: Find the Laplace Transform of both sides (The going forwards to the s world part):
— We have

L{y"} —4L{y'} +5L{y} = L {2}
= [*L{y} - sy(0) —y'(0)]

— 4 [sL {y} - y(0)] + 5L {y} = ——

s—1
— [$*L{y} —3s—1]
2

ALy}~ 3+ 50 {y} =
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e Step 2: Solve for £ {y} using algebra: and get

s2L{y} —3s — 1 —4sL{y} +12+5L{y} = 2

s—1
2
2
= E{y}(52—4s+5):3s—11+—1
S —
3s —11 2

—= L =
t} 82—4S+5+(S—1)(82—48+5)
e Step 3: Do partial fractions
— On the term
2 A Bs+C

G- (2—45+5) (-1  (:*—4s+5)

so that
2=A(s>—4s+5)+ (Bs+C)(s—1).

— Using s = 1 give us that
2=A(1-4+45) = 2=42 = A=1
— and multiplying the RHS out we get
2=As> —4As+5A+ Bs? —Bs+Cs—C
and combining we get
0s* +0s+2=(A+B)s*+ (-4A-B+C)s+ (54— O)

so that we have

0=A+B
0=—4A-B+C
2=5A-C
but we already know that A = 1 hence B = —1 and hence
C=5A-2=3.
— Thus
2 1 -s5+3

G- (?—4545) (5—1)  (2—4s+5)
e Step 4: Take the inverse Laplace (The going back to ¢ world part)
— Thus

y =L {L{y}}

YO TE N S R
N s2—4s4+5 (s—1) (s2—4s+5)

25— 38
_ -1 -1
=L {3245+5}+£ {31

25 -8
:£_1 _— t
{52—4s+5}+6

—_
—
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We just need to figure out £~! { 522_84_53_5 } and to do this, we try to factor the denomina-

tor. But we can’t, thus we complete the square using the magic number (g)2 = (_74)2 =
4
s —4s+5=(s°—4s+4) +1= (s—2)°+1

hence
2s — 8 25 — 8

2 —ds+5  (s—2° 11

thus

2s — 2(s—2 4
L*l S 28 :,671 (S - ) _‘cfl 2
(s—2)"+1 (s—2)"+1 (s—2)"+1
= 2¢?! cost — 4e*! sint,

2s — 8
_ 1) as—8 ¢
y(t) = £ {524s+5}+e

= 2e% cost — 4e?t sint + €.

hence
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6.4. Problems

(1) Take the Laplace transforms of the following functions
(a) £(t) = wr(£)eS=D
e Solution:
e We use the formula £ {u.(t)f (t —c)} = e “*F(s), where ¢ = 7 and f (t — 7) = 5(¢-7)
hence f(t) = €5 so that F(s) = £{e%} = -1 hence

L {u7(t)e6(t_7)} =e “F(s)

(b) f(t) = ua(t)e =2
e Solution:
e We use the formula £ {u.(t)f (t — c)} = e **F(s), where ¢ = 2 and f (t —2) = e~ ?(t=2)
hence f(t) = e~ so that F(s) = L {e"?"} = 5 hence

L {uz(t)efg(tfz)} =e “F(s)

() f(t) =ua(t) (t—2)°
e Solution:
e We use the formula £ {u.(t)f (t — ¢)
hence f(t) =13 so that F(s) = £ {t®

} = e ¢ F(s), where c =2 and f (t —2) = (t —2)°
} = & hence

c {UQ(t) (t— 2)3} = e~ F(s)
5, 6

(d) f(t) ZSUGI(t) sin (3 (¢ — 6))
e Solution:
e We use the formula £ {u.(t)f (t — ¢)} = e **F(s), where c = 6 and f (t{ — 6) = sin (3 (¢t — 6))
hence f(t) = sin(3t) so that F(s) = £ {sin(3t)} = ﬁ hence
LA{ug(t)sin(3(t—6))} =e “F(s)
—6s 3
s2+9

=€

(e) f(t) :Sml(t) cos (7 (¢ —1))
e Solution:
e We use the formula £ {u.(t)f (t — ¢)} = e “*F(s), wherec = land f (¢t — 1) = cos (7 (t — 1))
hence f(t) = cos (7t) so that F(s) = L{cos(Tt)} = hence

Luq(t)cos(T(t—1)) = e “F(s)

5 __
s2+72

= 675
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e Solution:
e We first write f(¢) into a Heaviside function.
— Note that

f(t) =547 ur(t)

— But since for t > 7 we

then
which means

hence
F(t) =5+3-uz(t).
e We use the formula £ {u.(t)} = e;cs,

LLFB)} = L£45} +3L{ur (D)}

where ¢ = 7 and get

5 —7s
=2 435,
s s
(2) Take the inverse Laplace transforms of the following functions
(a) F(s) =

e Solution:

e We use the formula £ {u.(t)f (t — ¢)} = e"**F(s), and note that e‘:l = e 3%F(s) hence
F(s) = ;11 now
1
ty=L{F =L
)= F o) = - |
= 67t
so that with ¢ =3
— —3s 1 — —3s
L 1{6 3 S-i—l}[: 1{6 BF(S)}
=ug(t)f (t—3)
= ug(t)e” %),
(b) F(s) = 5=
e Solution: .
e We use the formula £ {u.(t)f (t — ¢)} = e “*F(s), and note that 55775 = e % F(s) hence
F(s) = - now

)= £ r ey = £ {25 |

Tt
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so that with ¢ =5

£—1 {6—558 i 7} _ ﬁ_l {6_5SF(S)}
=us(t)f (t—5)
= ug(t)e™ ),

(c) F(s) = 2%

e Solution: B
e We use the formula £ {u.(t)f (t — ¢)} = e"“*F(s), and note that 252+£ = e~ 2 F(s) hence
F(s) = now

1= Fe) = g |

2+ 22
= sin (2t)

so that with ¢ = 2

- {14} =L e F(s)}

—wa()f (t—2)
= us(t)sin (2 (t — 2)).
(d) F(s) = %=
e Solution:

e We use the formula £ {u.(t)f (t — ¢)} = e “*F(s), and note that 5862;97 = e 9 F(s) hence
F(s)= now

S
s24+7

t)=L Y {F(s)} =L} S
£ = £7 (F ()} {82+(ﬁ)2}

= cos (\ﬁt)

so that with ¢ =9

£t {698 - i_ 4} =Lc! {6795F(5)}
= ug(t)f (t —9)
= ug(t) cos (\f? (t— 9)) .

_ (e
(&) F(s) = (i

e Solution:
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e We use the formula £ {u.(¢)f (t — ¢)} = e °*F(s), and note that (o+2e > e 35F(s)

(s+2)%2+16
hence F(s) = (H(Z)% now
e p o)
£ = L {F(s)) = £ {@_04f+@}

= e " cos (4t)

so that with ¢ =3

£_1 {e—3s< (S + 2) } — £_1 {6_3SF(S)}

s+2)° +16
= ug(t)f (t —3)
= ug(t)e 2% cos (4 (t — 3)).

(3) Take the inverse Laplace transforms of

6—35

F(s)= ————.
() s2—3s5+2
e Solution:

o We first try to factor the denominator and get

6—35 6—35

2-35+2 (s—1)(s—2)
and then we do partial fractions on

1 A N B
(s—1)(s—2) s—1 s5—2

so that
1=A(s—2)+B(s—1)
so that A = —1, B =1 and hence
—3s —3s
LTYF(s)y =L -2 °
Foy =t -t

= —ug(t)et™ 4 uz (1)),

(4) Take the inverse Laplace transforms of

86795

F(s) = ——F7—.
)= e

e Solution:
e We first try to factor the denominator but we can’t!

e Thus we will try to complete the square with the special number (%)2 = (2)2 =32 =9 hence
s?+6s+11=(s>+6s+9)+2
2
= (s+3)°+ (ﬁ)
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And get

—9s
se —os 5

_c .
52+ 65+ 11 (5—1—3)24—(\/5)2

e Then we need to separate, so that we can use formulas £ {e® cos (bt)} =

L{e*sin (bt)} = b

G(S) _ 28 s = 82+3 . + 2—3 .
(s+3)7+(V2)"  (s+3)7+(v2) (s+3)°+(V2)
543 3 V2

(s+3)°+(vV2)" VZ(s+3)%+

So that

g(t) =L {G(s)}

_£1{ s —(=3) 2}_3£1{ 5
(5 = (=3))* + (\@) 2 (s — (=3))" + (vV2)

= t cos (ft) — —e ! sin (\ft)
e And to finish off, remeber we actualy want to

—1 36_98 —1 —9s
L T remany L el

hence we use the formula £ {u.(t)g (t — c¢)} = e~ **G(s) so that

o {} — ug(t)g (t—9)

s2 4+ 6s+ 11

s—a

(s—a)?+b2

— ug(t)e =39 cos (\/i(t - 9)) - UQ<t)%e—3(t—9) sin (\/i(t _ 9)) .

162

and



6.5. PROBLEMS

6.5. Problems
(1) Find the solution to the following IVP using Laplace Transforms
v+ =us(t), y(0)=-2.

e Solution:
e Stepl: Take L of both sides and solve for £

L{y'}+9L{y} = L{us(t)}

so that s
e— S
sC{y} —y(0) +9L{y} =
hence
e—5s
sL{y}+2+9L{y} =
e Step2: Solve for £ {y}, we have
6—55
LAy} (s+9)=-2+
2 e 5
£ =
v s+9  s(s+9)
e Step3: We do partial fractions on
119 1/9
s(s+9) s s+9
so we have
6—55 _ 16_5S 1 6—53

s(s+9) 9 s 9s+9
e Step4: Take the inverse Laplace transform: Using L [u,(t)f(t — a)] =

—2 1 1e
A e 55Z _
Y { s 9s+9}

e
9 9°
_ —1 1 —1 7051 71 —1 6758
=% { } 9 s 9£ s+9

+9 +
e e ) e

1 1
=279 4 §U5(t) - §U5(t)€79(t75).

(2) Find the solution to the following IVP using Laplace Transforms
Yy =ur(t)e 270, y(0) = 1.

e Solution:
e Stepl: Take L of both sides and solve for £

Ly} + £y} = £ {ur (e}

so that
—T7s

sC{y} —y(0) + L{y} = ﬂ

e~ F(s), and get

163
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hence
6775
L -1+ L = .
sCiyt =1+ L{y} =
e Step2: Solve for £ {y}, we have
E 6775
1)=1
W+ =1+
1 e~ s
L = +
) s+1 (s+1)(s+2)
e Step3: We do partial fractions on
1 1 n -1
(s+1)(s+2) s+1 s+2
so we have
6—73 6—73 _6—73

(s+1)(s+2) s+1+s+2
e Step4: Take the inverse Laplace transform: Using £ [u.(¢)f(t — ¢)] = e “*F(s), and get

1 6_78 _e—7s
=1
Y {5+1+5+1+s+2}

—r! {5_1(_1)} + L7 {6_785—1(—1)} e {6_783—1—2)}

=t ur(t)e” D —up(t)e 2D,

(3) Find the solution to the following IVP using Laplace Transforms
y"'+9y =us(t)sin(2(t - 3)), y(0)=0,4'(0)=0

e Solution:
e Stepl: Take L of both sides and solve for £

Ly} +9L{y} = L{us(t)sin (2(t - 3))},y(0) = 0,4'(0) = 0.

and recall L [u.(t)f(t—c)] = e **F(s), hence a = 3, f(t —5) = sin (2 (¢t — 5)) hence f(t) =
sin 2t and £ {sin 2t} = % hence

26735
s2+4

LAus(t)sin (2(t - 3))}

so that

26733

52 +4’
26—33
52+ 4’
26733
(1 9) (2 +4)

$2L {y} — sy(0) —4/(0) + 9L {y} =
(s*+9) L{y} =

L{y} =
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e Step2: We do partial fractions on
2 _As+B Cs+D

(s249)(s24+4) s249 s?2+4

hence
2=(As+B)(s*+4) + (Cs+ D) (s*+9), =
0-5°+0-s°+0-5+2=(A+0C)s’+ (B+D)s*+ (4A+9C) s + (4B +9D)

hence

A+C =0
B+D=0
4A4+9C =0
4B+4+9D =2
and get
2 2
A=0 B=——, C=0, D=-
5’ ’ 5
hence
2 2 1 2 1

(s2+9)(s2+4) T 552409 Jr352—1—4
e Step3: Take the inverse Laplace transform: Using £ [u.(¢) f(t — ¢)] = e “*F(s), and L {sin(at)} =
127 and L{cos(at)} = {5 we have

_C—l _g 6—33 +g 6—35
v= 552+9 ' 5s2+4

21 w3 1 2
— ***,671 —3s 7‘671 —3s
53 {6 32+32}+5 ¢ et

= 713511,3@) sin (3 (t —3)) + %U:;(t) sin (2 (t — 3)).
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