
Di�erential Equations Lecture Notes

Phanuel Mariano





CHAPTER 1

Introduction

1.1. Modeling via Di� Eqs, some solutions and de�nitions

• What is a di�erential equation? What is a solution to a di�erential equation? (This is hard concept
to understand at �rst) Let's compare and contrast concepts that we already know in Algebra with
that of Di�erential Equations:
� Algebraic equation:

∗ x2 − 1 = 0 or x2 + 1 = 0
∗ What are solutions? Are there even any solution? If so how many?

· Solutions are numbers in Algebra.
· We can always check if a number is a solution: Note that x = 1 a solution of
x2 − 1 = 0 since 11 − 1 = 0.
· But notice that there is another solutions, x = −1 too! So solutions are not unique
in this case.

� Di�erential equations: Are equation that have derivatives of functions in them.

∗ dy
dt = 2y or dy

dt = 4y + et

∗ What are solutions to di�erential equations?
· They are functions! Tricky because functions are more complicated than num-
bers. Functions have domains, ranges, etc.
· Solutions to di�erential equations are not equations!

∗ Is there even a solution? (Existence?) If so, how many? (Uniqueness?)
· These two questions are the two main questions one asks in the subject of di�erential
equations!

∗ Check: We can always check if a function is a solution to a di�erential equation:

∗ Example: Show y(t) = 9e2t is a solution to dy
dt = 2y.

· Solution: Plug y(t) into the Left Hand Side (LHS), and then plug y(t) into the
Right Hand Side (RHS), and then check if they are equal!

LHS
?
= RHS

d

dt

(
9e2t

) ?
= 2 ·

(
9e2t

)
18e2t

�
= 18e2t

· What about y = 9e2t + 1? Is this a solution? Take a pencil and paper and try this
yourself by hand. You will see that y = 9e2t + 1 is actually NOT a solution to the
example above.
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∗ Check that y(t) = 1 + t is a solution to

dy

dt
=
y2 − 1

t2 + 2t
.

· Take a pencil and paper and try this yourself by hand! The answer will be yes!

Studying �rst order di�erential equations.

• What are di� eqs used for? This is class is about modeling/predicting the future.
� Example: Meteorologists try to do it all the time with the weather, and they get it wrong
all the time. This means modeling is hard.

� Example: For example the solution to the equation

dP

dt
= k · P,

models the population P (t) of a species at time t.
• The standard form of a �rst order di�erent equation (meaning it has only �rst derivatives in
the equation) is

dy

dt
= f(t, y).

Recall that y is really a FUNCTION. Like y = y(t).
� t is the independent variable.

• An initial value problem (IVP) is a di�. eq., with an initial condition:

dy

dt
= f(t, y). y(t0) = y0

� Example:

dy

dt
= 2y y(0) = 9

∗ Question: Is y(t) = 9e2t a solution to this IVP?
· Yes. remember we already checked earlier that y(t) = 9e2t is a solution to the ODE
and clearly y(0) = 9e2·0 = 9.

• A particular solution to an ODE is simply one of the functions y = y(t) that satisfy a di�. eq.
y′(t) = f(t, y(t)) for all t.

• A General Solution is one that includes all possible solutions to any IVP involving a speci�c
ODE parametrized by parameters.
� Example:

∗ To �nd the general solution to dy
dt = 2y, we can separate the y's and t's to one side and

then integrate

dy

dt
= 2y ⇐⇒ dy

y
= 2dt

⇐⇒
∫
dy

y
=

∫
2dt

⇐⇒ ln |y| = 2t+ C

⇐⇒ |y| = e2t+C = Ke2t, where K = eC

⇐⇒ y = ce2t, where c = ±K.
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∗ Thus the general solution must be of the form

y = ce2t.

∗ There will be a whole section on this technique!
• An equilibrium solution y(t) = y0 are the constant solutions of an ODE. That is

dy(t)

dt
= 0 for all t.

Example: Find the equilibrium solutions of the following equation
Suppose we have

y′ = y3 + y2 − 6y

for what values of y is y(t) in equilibrium, increasing, decreasing? Get

y′ = y(y − 2)(y + 3),

and create a sign chart as we used to do in calculus. Equilibrium solutions are y = −3, 0, 2. and get
decreasing for (−∞,−3) ∪ (0, 2) and increasing for (−3, 0) ∪ (2,∞).

Solutions to some di�erential Equations.

• A Linear Di� Eq.: Pick your favorite real numbers a, b, y0 and consider the IVP

dy

dt
= ay − b, y(0) = y0

� The general solution to this di� eq is

y(t) =
b

a
+

(
y0 −

b

a

)
eat

� I will show you how one can get this very soon!
• Example: Find the solution to

dy

dt
= −2y + 8, y(0) = 5,

� Solution: The mysterious formula I gave you says that a = −2, b = −8 and y0 = 9 so the
solution is

y(t) = 4 +

(
5− 8

2

)
e−2t = 4 + e−2t.

Studying general di�erential equations.

• In this class, we will only study ordinary di�erential equations (ODE): contains only ordinary
derivatives:
� Ex: d2y

dt2 + dy
dt = −1

• There is a whole separate course where one can study partial di�erential equations(PDE):

� Ex: ∂2u(x,y)
∂x2 + ∂2u(x,y)

∂y2 = −1

• System of equations:

dx

dt
= x− xy

dv

dt
= y − 3x
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• The order of the equation speaks to the highest derivative in the equation

y′ + 3y = 0 1st order

y′′ + 3y′ = 2t 2nd order

d5y

dt
+
dy

dt
= y 5th order

uxx + uyy = 0 2nd order

• An ODE is called linear if it is linear in y, i.e. it is of the form

an(t)y(n) + an−1(t)y(n−1) + · · ·+ a0(t)y = g(t)

� Linear:
∗ y′ + 4y = 0,
∗ t2y′′ + cos ty = 1,

∗ and y′

t − y = t2.
� Nonlinear:

∗
(
du
dt

)2
+ y = 1,

∗ yy′ + y = 1,
∗ y′′ + 3eyy,
∗ and 1

y − y
′ = 1.

• Nonlinear ODEs are of the hardest equations to solve! In fact, most of the time, one won't be able
to �nd an exact formula for the solution of a di�erential equations.
� But one nice this thing about studying ODEs is that we can always check if a function is really
a solution to a di�eretial equation or not.

1.2. Slope Fields/Direction Fields

In this subsection we learn a qualitative technique.
Often there are three main ways to study ODES

(1) Analytically: This mean, one actually �nds a formula for the solutions of a di�erential equations.
(2) Numerically: But often, it is very di�cult to �nd an actual formula for the solution, even though

there may be a solution. Thus one can use computers and algorithms to numericall approximate
the solution.

(3) Qualitatively: Maybe we don't need the full solution of a di�erential equation. Maybe you just
need some qualitative information about the solution. We can use our knowledge of ODEs to have
an idea of how the solution behaves. For example, maybe the only thing you want to answer about
the solution is what the following limit is: limt→∞ y(t)?

When we have an equation of the form dy
dt = f(t, y). We can always make a direction �eld/slope �eld.

A slope �eld contains minitangets at several points of a graph.
Example1: We want to make a 9 point slope �eld for dy

dt = y − t.
Make a table:
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t y f(t, y) = y − t
-1 1 2
-1 0 1
-1 -1 0
0 1 1
0 0 0
0 -1 -1
1 1 0
1 0 -1
1 -1 -2

A bigger slope �eld with more points would look like this:

• What does a slope �eld tell us?
� What it says is that, if a solution were to go through a particular point, then the slope at the
point must be the one given in the slope �eld.

� This means, slope �elds allows us to sketch what the solution might look like. This is a
qualitative technique.

• D�eld: This is an applet you can �nd on the main course webpage.
� Here is a link: https://math.rice.edu/~dfield/dfpp.html
� This is an applet that makes slope �elds/direction �elds for you.

Two important cases:
They are of the form

dy

dt
= f(t) or

dy

dt
= f(y).

Type1: dy
dt = f(t)

• The slopes are always the same in each vertical line. Draw picture!



8 1. INTRODUCTION

• Draw slope �eld of dydt = 2t and get

• The explicit solutions are of the form y(t) = ce2t, which makes sense.

Type2: dy
dt = f(y)

• These are called autonomous equations.
• The slopes are always the same in each horizontal line. Draw picture!
• Draw a slope �eld of dydt = 4y(1− y).

� Always begin with the equilibrium solutions, y = 0, 1.
� Then check slopes between there equilibrium solutions. Like:

y′(2) = (−)

y′(.5) = (+)

y′(−1) = (−).
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and sketch something like this:
� Try to sketch a curve!

Matching slope �elds:
When trying to match slope �elds you should always follow these steps:

(1) Factor!
(2) Find the equilibrium solutions
(3) Test points between equilibrium solutions.

Do Worksheet given in class!
Draw behavior given di�erent initial conditions on the worksheet.
Look at Long term behavior!





CHAPTER 2

First Order Di�erential Equations

2.1. Linear Equations/Integrating Factors

Integrating Factors Method:
Lets start with the linear di� eq:

dy

dt
= a(t)y + b(t)

and rewrite it as
dy

dt
+ p(t)y = g(t)

where I let g(t) = b(t) and p(t) = −a(t). Then notice that dy
dt + p(t)y looks awefully like a product rule

of some sort. In the product rule, there are two functions. Clearly one function will be y(t), but what will
the second function be. We call µ(t) the integrating factor that makes the LHS into a product rule. Let's
multiply both sides by µ(t) and get

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)g(t),

then if we want the LHS to be a product rule then

LHS =
d [µ(t)y(t)]

dt
= µ(t)

dy

dt
+ µ(t)p(t)y.

Let's just assume this works for now and then �nd out what the µ(t) needs to be later. Setting the LHS to
RHS we get

d [µ(t)y(t)]

dt
= µ(t)g(t).

Then integrating we get ∫
d [µ(t)y(t)]

dt
dt =

∫
µ(t)g(t)dt.

But we know integrating cancels di�erentiation thus the LHS equals µ(t)y(t) so that

µ(t)y(t) =

∫
µ(t)g(t)dt.+ C

and dividing by µ(t) we get that

y(t) =
1

µ(t)

[∫
µ(t)g(t)dt+ C

]
.

This

is our general solution.
Find the integrating factor:

11
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So recall that for the product rule to work we have

d [µ(t)y(t)]

dt
= µ(t)

dy

dt
+ µ(t)p(t)y

but then this only happens if the derivative of µ(t) is µ(t)g(t) (by product rule!!!!) thus

d [µ(t)]

dt
= µ(t)p(t).

Rewrite this as
dµ

dt
= µp

which is a separable equation and thus∫
dµ

µ
=

∫
p(t)dt ⇐⇒ ln |µ| =

∫
p(t)dt

⇐⇒ µ = e
∫
p(t)dt.

Thus µ = e
∫
p(t)dt and we don't need a constant here because we only need ONE integrating factor.

Summarize:
So basically if we know how to integrate

∫
µ(t)g(t)dt then the general solution of

dy

dt
+ p(t)y = g(t)

will be

y(t) =
1

µ(t)

[∫
µ(t)g(t)dt+ C

]
where µ(t) = e

∫
p(t)dt.

Example1(without formula): Find general solution of dydt = 3
t y + t5.

• Step 1: Rewrite as
dy

dt
− 3

t
y = t5

so that p(t) = − 3
t and g(t) = t5.

• Step 2: Find an integrating factor:

µ(t) = e
∫
− 3

t dt = e−3 ln t = t−3 =
1

t3
.

Note we only need an integrating factor, not a general integratin factor. So we never need to have
a +C in this step !!!!!! In the next step we will that we also don't need the asbolute value inside
the ln.

• Step3: Multiply BOTH SIDES of the equation by µ(t) and get

1

t3
dy

dt
− 3

t4
y = t2

and notice that

1

t3
dy

dt
− 3

t4
y = t2

n

d
[
1
t3 y
]

dt
= t2



2.1. LINEAR EQUATIONS/INTEGRATING FACTORS 13

• Step4: Integrate and solve for y(t) (don't forget the constant C in this step, very important)∫
d
[
1
t3 y
]

dt
=

∫
t2dt+ C ⇐⇒ 1

t3
y =

t3

3
+ C

⇐⇒ y(t) =
t6

3
+ Ct3.

Example1(with formula): Solve the IVP: dydt = 3
t y + t5 with y(1) = 4

3 . In this eaxmple we'll skip the
previous steps and go straight to using the formula.

• Step 1: Rewrite as

dy

dt
− 3

t
y = t5

so that p(t) = − 3
t and g(t) = t5.

• Step 2: Find an integrating factor:

µ(t) = e
∫
− 3

t dt = e−3 ln t = t−3 =
1

t3
.

• Step3: I can just plug in the formula and get

y(t) =
1

µ(t)

[∫
µ(t)g(t)dt.+ C

]
= t3

[∫
1

t3
t5dt+ C

]
= t3

[
t3

3
+ C

]
=

1

3
t6 + Ct3.

• Step4: Since y(1) = 4
3 then

4

3
=

1

3
+ C

so C = 1 so that

y(t) =
1

3
t6 + t3.

Example2 (using formula): Find general solution dy
dt = y + 9 cos t2.

• Step 1: Rewrite as

dy

dt
− y = 9 cos t2

so that p(t) = −1 and g(t) = 9 cos t2.
• Step 2: Find an integrating factor:

µ(t) = e
∫
−1dt = e−t.

Note we only need an integrating factor, not a general integratin factor. So we never need to have
a +C in this step !!!!!!
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• Step3: I can go through the process again, or I can just plug in the formula and get

y(t) =
1

µ(t)

[∫
µ(t)g(t)dt.+ C

]
=

1

e−t

[∫
e−t9 cos t2dt+ C

]
= et

[∫
e−t9 cos t2dt+ C

]
Can't integrate, so we write the answer this way.

Example3: Find general solution of t3y′ + 4t2y = e−t

• Step 1: Rewrite as

y′ +
4

t
y =

e−t

t3

so that p(t) = 4
t and g(t) = e−t

t3 .
• Step 2: Find an integrating factor:

µ(t) = e
∫

4
t dt = e4 ln|t| = t4.

Note we only need an integrating factor, not a general integratin factor. So we never need to have
a +C in this step !!!!!!

• Step3: I can go through the process again, or I can just plug in the formula and get

y(t) =
1

µ(t)

[∫
µ(t)g(t)dt.+ C

]
=

1

t4

[∫
t4
e−t

t3
dt+ C

]
=

1

t4

[∫
te−tdt+ C

]
=

1

t4
[
−te−t − e−t + C

]
= − 1

t3
e−t − 1

t4
e−t +

C

t4
.

where I used integration by parts.
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2.2. Separable Equations

One of the easiest method to solve a �rst order ODE is called separation of variables. In the previous
section, we focused on Linear equations, which cover a good deal of �rst order ODEs. But we want to be
able to solve at least some nonlinear equation.

The technique we'll use in this section will only work if the �rst order ODE is separable. We say a �rst
order ODE is separable if you can write it in the following form:

dy

dt
= g(t)h(y). (1)

If you can write it this way, then separate the variables to get (put all the y's on one side and all t's on the
other side)

dy

h(y)
= g(t)dt,

and then integrate both side with respect to their respective variable. This is legal by a u-substitution
argument. (This is informal algebra!)

Sometimes you'll see it written in the following form

M(x)dy +N(y)dy = 0.

Example1: Notice that dy
dt = y + t is not separable

• But we can solve this using the methods of the previous section.

Example2: Find the genera; solution of dy
dt = t

y2 .

Separate variables the equation, integrate and then solve for y:

dy

dt
=

t

y2
⇐⇒ y2dy = tdt

⇐⇒
∫
y2dy =

∫
tdt

⇐⇒ y3

3
=
t2

2
+ c1

⇐⇒ y =
3

√
3t2

2
+ 3c1.

We can then rename C = 3c1 and get

General Solution: y(t) =
3

√
3t2

2
+ C.

If you are able to solve for y exactly, then this is called an explicit solution, because we can solve exactly
with a formula.

Example 3: Find the general soltuon for dy
dt = y2 (Missing solution)

• First let's �nd the equilibrium solutions: y(t) = 0 is the only one.
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• Then use the general separation of variables procedure

dy

dt
= y2 ⇐⇒ 1

y2
dy = dt

⇐⇒
∫

1

y2
dy =

∫
dt

⇐⇒ −1

y
= t+ C.

But notice that

y = − 1

t+ C

does NOT solve the IVP with y(0) = 0. Thus we have to include the equilibrium solution y(t) = 0,
to get the complete General Solution. In this case we say the general solution is:

General Solution:

{
y(t) = 0

y(t) = − 1
t+C

Moral of the story: Always �nd the equilibrium solutions �rst in case there are any missing solutions from
separating variables. !!!!!!!!

Example 4: Solve the IVP (Clever quadratic formula trick)

dy

dx
=

2x+ 1

y + 1
y(0) = 1

• Note there are no equilibrium solutions
• Then do use the general separation of variables procedure

dy

dt
=

2x+ 1

y + 1
⇐⇒

∫
(y + 1) dy =

∫
(2x+ 1) dx

⇐⇒ y2

2
+ y = x2 + x+ C

⇐⇒ y2

2
+ y − x2 − x+ c = 0

⇐⇒ y2 + 2y − 2x2 − 2x+ C = 0

Then we can use the quadratic formula on

ay2 + by + c = 0

where

a = 1

b = 2

c = −2x2 − 2x+ C
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hence an explicit solution is given by

y =
−b±

√
b2 − 4ac

2a

=
−2±

√
4− 4 (−2x2 − 2x+ C)

2

= −1±
√

1 + 2x2 + 2x+ C

= −1±
√

2x2 + 2x+ C.

Thus
General solution: y(x) = −1±

√
2x2 + 2x+ C

• Now to solve the IVP use the initial condition: y(0) = 1

1 = y(0) = −1±
√
C

so that
2 = ±

√
c

since the LHS is Positive we choose the positive sign in the ± so that

2 =
√
c

hence
c = 4

so that
Particular solution ro IVP: y(x) = −1 +

√
2x2 + 2x+ 4.

Example 5: Find the general solution for dy
dt = y

1+y2 (Implicit Solutions (when we get stuck))

In this example, we would get

ln |y|+ y2

2
= t+ C

and leave it that way as there is no nice way to solve this. But any function y(t) that satis�es the equation
above is a solution to our ODE. Thus when we write solutions this way, we call this an implicit solution.

Some more examples:

• Example 5:Solve the IVP
dy

dt
= t4y y(0) = 1.

� Solution:
� Start with equilibrium solutions y = 0.

� Get |y| = Cet
5/5 but notice that by choise of C this shortens to y = Cet

5/5.
� .Note that this includes the equilibrum solution y = 0 by setting C = 0, thus

General Solution: y(t) = Cet
5/5.

� To solve the IVP we use the initial condition

1 = y(0) = Ce0 = C

thus C = 1, hence the particular solution to the IVP is

Particular solution to IVP :y(t) = et
5/5.

• dy
dt = (y + 1) (y + 5)



18 2. FIRST ORDER DIFFERENTIAL EQUATIONS

� Solution:
� Start with equilibrium solutions y = −1,−5 .

� Use Partial fractions to get 1
(y+1)(y+5) = 1/4

y+1 −
1/4
y+5

� Solution is

1

4
ln |y + 1| − 1

4
ln |y + 5| = t+ C ⇐⇒ ln

∣∣∣∣y + 1

y + 5

∣∣∣∣ = 4t+ C1

⇐⇒
∣∣∣∣y + 1

y + 5

∣∣∣∣ = C2e
4t

⇐⇒ y + 1

y + 5
= C3e

4t

⇐⇒ y =
5ke4t − 1

1− ke4t
.

� This yields all solutions but the equilibrium solution y = −5. Note that y = −1 can be found
by taking k = −1. Thus

General Solution:

{
y(t) = 5ke4t−1

1−ke4t

y(t) = −5.
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2.3. Separable Homogeneous Equations and the Substitution Method

• Consider an ODE
dy

dx
= f (x, y)

and suppose we can rewrite it in the form

dy

dx
= F

(y
x

)
. (?)

• An equation fo the form (?) is called homogeneous.
� To solve this equation. We will de�ne a new variable

v =
y

x
(Important)

and write everything in terms of only v and x!
� Solve for y: And get

y = xv.

� Implicit di�erentiate both sides:

dy

dx
= x

dv

dx
+ 1 · v. (Important)

• The two important equations we come up with are:

Homogeneous Equation substitution:

{
v = y

x
dy
dx = x dvdx + v

• Example1: Consider

dy

dx
=
x2 + xy + y2

x2
.

� Part(a): Show that this ODE is homogeneous and rewrite the entire equation by only v and
x.
∗ To see this we divide the numerator and denominator by x2 and get

dy

dx
=

1 + y
x +

(
y
x

)2
1

and replacing dy
dx = x dvdx + v and v = y

x we get a new equation

x
dv

dx
+ v = 1 + v + v2.

� Part(b): Solve the ODE in terms of v and then return everything into terms of y, x.
∗ We rewrite

x
dv

dx
= 1 + v2 ⇐⇒

∫
dv

1 + v2
=

∫
1

x
dx

⇐⇒ tan−1 (v) = ln |x|+ c

⇐⇒ tan−1
(y
x

)
= ln |x|+ c.

then
y

x
= tan (ln |x|+ C)
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and
General Solution:y(x) = x tan (ln |x|+ C)

• Example2: Find the solution to

y′ =
y

x
+
x

y
, x > 0.

� Step1: First check if you can apply any of the method of the previous sections (linear?
separable?). The equation is neither linear, or separable. But notice that this is homogeneous
for if I let v = y

x then
dy

dx
=
y

x
+

1

y/x
= v +

1

v
.

� Step2: Recall that dy
dx = x dvdx + v , so plug this into the LHS, and get

x
dv

dx
+ v = v +

1

v
⇐⇒

∫
vdv =

∫
1

x
dx

⇐⇒ v2

2
= ln |x|+ C

⇐⇒ y2 = 2x2 ln |x|+ kx2.

and we get

General Solution: y(x) = ±
√

2x2 ln |x|+ Cx2

• Example3: (not always the same substitution) Rewrite the equation

dy

dx
= e9y−x

in terms of only v, x by letting v = 9y − x.
� Solution: Using v = 9y − x, then solve for y and get

y =
1

9
v +

1

9
x

then using implicit di�erentiation,

dy

dx
=

1

9

dv

dx
+

1

9
hence

dy

dx
= e9y−x ⇐⇒ 1

9

dv

dx
+

1

9
= ev

⇐⇒ dv

dx
= 9ev − 1.

and this can be easily solved by separating variables.
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2.4. Modeling with Di�erential Equations

• What are Di�erential Equations used for?
• This is class is about predicting the future. Meteorologists try to do it all the time with the weather,
and they get it wrong all the time. This means modeling is hard.

• Three aproaches
� Analytic: explicit solutions
� Qualitative: Use geometry to see long term behaviour. For example, to check ifthe population
is increasing or decreasing.

� Numerical: Approximations to actual solutions.
• Model Building:

� 1. State Assumptions (science step, Newton's law of motions, etc, ...)
∗ 2. Describe variables, parameters: Independent variables (t, x), depedent variables (y, u),
parameters (k, α) (do not change with time)
∗ 3. Create Equations:

· Rate of change=slope= Derivative.
· the word �is� means equal.
· A is proportional to B means A = kB.

Example: Population growth
� Goal: Want to write a di�eretial equation that models population growth of say Zebras.
� Assumption: The rate of growth of the population is proportional to the size of the popula-
tion.

� Problem: Write a di�erential equation that governs this
∗ Let P (t) be the population of zebras at time t.

So for now we have
dP

dt
= k · P.

∗ Note here that k is a parameter that can be changes once we know more information.
∗ For example if we know the proportion is k = 2, then

dP

dt
= k · P

and we already saw earlier that P (t) = Ce2t is a solution to this.

Mixing Problem1:

Problem. A vat contains 60L of water with 5 kg of salt water dissolved in it. A salt water solution
that contains 2 kg of salt per liter enters the vat at a rate of 3 L/min. Pure water is also �owing into the
vat at a rate of 2 L/min. The solution in the vat is kept well mixed and is drained at a rate of 5 L/min,
so that the rate in is the same as the rate out. Thus there is always 60L of salt water at any given time.
How much still remains after 30 minutes? What is the long term behavior?

Solution:
Step1: De�ne variables
Let y(t) =amount of salt at time t. Let y(0) = 5 kg.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always �nd the Rate In as

Rate in =

(
concentrarion

of stu� coming in

)
× Rate.
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Similarly you can always �nd the Rate out as

Rate out =

(
concentrarion

of stu� going out

)
× Rate.

Using the information from the problem we have

Rate in =

(
2
kg

L

)(
3

L

min

)
-salt water solution

+

(
0
kg

L

)(
2

L

min

)
−pure water

= 6
kg

min
.

and

Rate out =

(
concentrarion

of stu� going out

)
× Rate

=

(
y(t)

60
kg
L

)
× 5

L

min
.

=
y(t)

12
kg
min .

Step 3: Write the IVP
Always recall that for mixing problems we have

dy

dt
= Rate in− Rate out

= 6− y

12
.

and the initial condition is

y(0) = 5.

Step 4: Find the common denominator and solve using separation of variables.
Write

dy

dt
= 6− y

12
=

72− y
12

and using separation of variables we get

dy

dt
=

72− y
12

⇐⇒ dy

72− y
=
dt

12

⇐⇒ − ln |72− y| = t

12
+ C1

⇐⇒ ln |72− y| = −t
12

+ C2

⇐⇒ |72− y| = C3e
− t

12

⇐⇒ 72− y = ke−
t
12

⇐⇒ y = 72− ke− t
12 .

Solving the IVP by using y(0) = 5 to get

y(0) = 5 ⇐⇒ 72− ke0 = 5

⇐⇒ k = 72− 5 = 67
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so the �nal solution is
y(t) = 72− 67e−

t
12 .

Step5:
After 30 minutes there is

y(30) = 72− 67e−
30
12 = 66.5 kg.

The long term behavior is simply the limit:

lim
t→∞

y(t) = lim
t→∞

72− 67e−
30
12 = 72− 0 = 72.
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Mixing Problem #2:

• The di�erence here is that now we allow the total volume of �uid to vary, when before it was kept
�xed.

Problem. A 400-gallon tank initially contains 200 gallons of water containing 3 pounds of sugar
per gallon. Suppose water containing 5 pounds per gallon �ows into the the top of the tank at a rate of
6 gallons per minute. The water in the tank is kept well mixed, and 4 gallons per minute are removed
from the bottom of the tank. How much sugar is in the tank when the tank is full?

Solution:
Step1: De�ne variables
Let y(t) = amount of sugar at time t, which is in minutes. Let y(0) = 3× 200 = 600 pounds.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always �nd the Rate In as

Rate in =

(
concentration

of sugar coming in

)
× Rate.

Similarly you can always �nd the Rate out as

Rate out =

(
concentrartion

of sugar coming out

)
× Rate.

We have

Rate in =

(
5
pounds

gallon

)(
6
gallons

min

)
-sugar water solution

= 30
pounds

gallon
.

To �nd the concentration of sugar coming out we have know that the amount of water at time t.

Water at time t = 200 gallons +

(
6
gallons

min
− 4

gallons

min

)
t

= 200 + 2t,

So

Rate out =

(
concentrarion

of stu� going out

)
× Rate

=

(
y(t)

200 + 2t
pounds
gallon

)
× 4

gallons

min
.

= 4
y(t)

200 + 2t
pound
min .

Step 3: Write the IVP
Always recall that for mixing problems we have

dy

dt
= Rate in− Rate out

= 30− 4

200 + 2t
y.
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and the initial condition
y(0) = 600.

Step 4: Solve using the Method of integrating factors:
Write

dy

dt
+

4

200 + 2t
y = 30

so that g(t) = 4
200+2t and b(t) = 30. Thus the integrating factor is

µ(t) = e4
∫

dt
200+2t = e2

∫
dt

100+t = e2 ln(100+t) = (100 + t)
2
.

Thus using the formula I have that

y(t) =
1

µ(t)

[∫
µ(t)b(t)dt.+ C

]
=

1

(100 + t)
2

[
30

∫
(100 + t)

2
dt.+ C

]
=

1

(100 + t)
2

[
30

(100 + t)
3

3
.+ C

]

=
1

(100 + t)
2

[
10 (100 + t)

3
+ C

]
using y(0) = 600 we get that

600 =
1

1002
[
10 · 1003 + C

]
so that

C = −4, 000, 000

thus

y(t) =
10 (100 + t)

3 − 4, 000, 000

(100 + t)
2 .

Step5: Answer the question
Since the amount of water in the tank is 200 + 2t then it �lls up when

200 + 2t = 400

so that t = 100. Thus the amount of sugar is

y(100) =
10 (200)

3 − 4, 000, 000

(200)
2

= 1, 900 pounds.
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2.5. Modeling with di�erential equations - More Problems

• Newton's Law of Cooling:
� Newton's Law of Cooling states that the temperature of an object changes at a rate
proportional to the di�erence between its temperature and its surroundings.

� That is, let T (t) be the temperature of the object, while Ts is the surrounding temperature.
Then by Newton's Law of cooling there is some constant k, such that

dT

dt
= k (T − Ts) .

• Example1: Suppose there was a murder in a room that is 70° F. Assume the victim had a
temperature of 98.6° when murdered. Let tc be the time it took for someone to �nally discover the
corpse since its death. As a detective, your goal is to �nd out how long ago the body died. Here is
the given information
� Fact 1: At the time time someone discovered the body, the temperature of the corpse was

72.5.
� Fact 2: One hour after the body was discovered, the temperature of the corpse was 72.
� Find the critical value of tc ?
� Solution: One needs to solve the following IVP: Let T (t) be the temperature of the victim,
then

dT

dt
= k (T − 70) , T (0) = 98.6

and need to use the information

T (tc) = 72.5,

T (tc + 1) = 72.

to solve for k.
� First solving for T (t) we get

T (t) = 70 + (98.6− 70) ekt

= 70 + 28.6ekt.

� Then using

72.5 = 70 + 28.6ektc ,

72 = 70 + 28.6ek(tc+1)

� Solving the �rst equation for k we get

k =
1

tc
ln

2.5

28.6

and plugging this into second equation we get

72 = 70 + 28.6e
1
tc

ln 2.5
28.6 (tc+1)

and hence
tc ≈ 10.92 hours.

and k = −0.223.
• Physics Problem:
• We will consider problems involving either

� free-fall or
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� throwing up an object straight up in the air
• We will also consider when there is some �air resistance of magnitude R(v) directed opposite
to the velocity v�.

• Setting our equation
� Since we know that F = mass× accelaration = mdv

dt . This will always be our LHS=left hand
side of our equation.

� The RHS depends on the problem given (e.g. free fall, throwing object up? is there resistance?)
� Thus our Equations will be in the form

m
dv

dt
= ±R(v)±mg

∗ Suppose positive direction is up
· We'll have −R(v): If object is going up, i.e. v > 0. (Since air resistance R(v) is
directed opposite to the velocity v)
· We'll have +R(v): If object is going down, i.e. v < 0 (Since air resistance R(v) is
directed opposite to the velocity v)
· We'll have −mg: If the object was thown up. (Which means the force is going
opposite the natural free fall state)

∗ We'll have +mg: If the object was released in free fall. (Because we'll assume the positive
direction is down)

• Example2: Suppose a rocket with mass 10 kg is launched upward with initial velocity 20 m/s from
a platform that is 3 meters high. Suppose there is a force due to air resistance of magnitude |v|
directed opposite to the velocity, where the velocity v is measured in m/s. We neglect the variation
of the earth's gravitational �elds with distance. (Since it's not going very high anyways)
� Part (a): Find the maximum height above the ground that the rocket reaches.

∗ Solution: Suppose we consider when the rocket is going up in the air before it has
reached the maximum height. Let R(v) = |v| be the resistance, then using what've
discussed above we have

m
dv

dt
= −R(v)−mg,

and we have −R(v) since the rocket is still going up, and −mg since the rocket was
launched upwards (the negative because the force is going againsts its natural gravita-
tional pull). Thus since the rocket is going up then v > 0. Recall that

|v| =

{
v v > 0

−v v < 0

then

m
dv

dt
= − |v| −mg = −v −mg.

Hence

m
dv

dt
= −v −mg.
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∗ Solving this we have that∫
dv

v +mg
=

∫
−dt
m

⇐⇒ ln |v +mg| = − t

m
+ C

⇐⇒ |v +mg| = Ce−t/m

⇐⇒ v +mg = Ce−t/m

⇐⇒ v = Ce−t/m −mg.

∗ Since v(0) = 20 Then we can solve for C and obtain (using g = 9.8 m/s^2)

v(t) = (20 +mg) e−t/m −mg,

= 118e−t/10 − 98.

and this equation is valid only when the rocket is going up.
∗ The maximum happens when velocity is equal to zero. Thus set v(t1) = 0 and we get
that

0 = 118e−t/10 − 98 ⇐⇒ t1 = −10 ln

(
98

118

)
⇐⇒ t1 ≈ 1.86.

∗ Solve for position: We get

x(t) =

∫
v(t)dt+ C

= −1180e−t/10 − 98t+ C.

Since x(0) = 3, then

3 = −1180e0 − 98 · 0 + C ⇐⇒ 3 = −1180 + C

⇐⇒ C = 1183.

∗ Thus

x(t) = −1180e−t/10 − 98t+ 1183.

Then

maximum height = x(1.86)

≈ 21.

� Part (b): Find the time that the rocket hits the ground. Assuming it missed the platform.
∗ Solution: We need to �nd the equation of when the rocket is falling down.When the
rocket is falling down we thus have the following equation:

m
dv

dt
= R(v)−mg,

and we have R(v) since the rocket is going down, and −mg since the rocket was launched
upwards (againsts its natural gravitational pull). Thus since the rocket is going down
then v < 0. Recall that

|v| =

{
v v > 0

−v v < 0
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then |v| = −v so that

m
dv

dt
= |v| −mg = −v −mg.

hence

m
dv

dt
= −v −mg.

∗ Solving this we have that v2(t) = Ce−t/m −mg with initial condition v2(0) = 0. Thus

v2(t) = mge−t/m −mg

= 98e−t/10 − 98.

∗ Then

x2(t) =

∫
v2(t)dt+ C

= −980e−t/10 − 98t+ C

since

x2(0) = maximum height = 21

then solving for C we have

x2(t) = −980e−t/10 − 98t+ 1001.

∗ To �nd out when x2(t) hits the ground we need to �nd t2 such that x2(t2) = 0 thus
(using a calculator)

0 = −980e−t2/10 − 98t2 + 1001 ⇐⇒ t2 ≈ 2.14.

∗ Thus the ball hits the ground by adding the time it takes to reach its maximum plus
the time after that:

t0 = t1 + t2 = 1.86 + 2.14 = 4 seconds.

• Example3: Consider the same scenario as before. A rocket with mass 10 kg is launched upward
with initial velocity 20 m/s from a platform that is 3 meters high. Except, there is a force due to
air resistance of magnitude v2/5 directed opposite to the velocity, where the velocity v is measured
in m/s.
� Part(a): Write the di�erential equation for velocity, when the rocket is still going up:

∗ Solution: Let R(v) = v2/5 be the resistance, then

m
dv

dt
= −R(v)−mg,

and we have −R(v) since the rocket is still going up, and −mg since the rocket was
launched upwards (againsts its natural graviational pull). Thus

m
dv

dt
= −v

2

5
−mg ⇐⇒ m

dv

dt
= −v

2

5
− 98

� Part(b): Write the di�erential equation for velocity, when the rocket has already reched
maximum and is already going down.
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∗ Solution: Let R(v) = v2/5 be the resistance, then using the above we have

m
dv

dt
= R(v)−mg,

and we have R(v) since the rocket is going down, and −mg since the rocket was launched
upwards (againsts its natural graviational pull). Thus

m
dv

dt
=
v2

5
− 98.

• Example4: Suppose we �y a plane at an altitude of 5000 ft and drop a watermelon that weighs
64 pounds vertically downward. Assume that the force of air resistance, which is directed opposite
to the velocity, is of magnitude |v| /128. (Use g = 32 ft/sec^2)
� Question: Find how long it takes for the watermelon to hit the ground?
� Solution: Here we assume the positive direction is down. Thus v > 0 as the object falls,
hence

m
dv

dt
= −R(v) +mg,

and we have −R(v) since the watermellon is going down (which is in the positive direction),
and +mg since the rocket is being dropped by freefall. Now recall that

weight = mg

then m = 64
32 = 2.

� Then since the watermelon is going down then v > 0, so that R(v) = |v| /128 = v/128,

m
dv

dt
=
−v
128

+mg ⇐⇒ 2
dv

dt
= − v

128
+ 64

⇐⇒ dv

dt
= − v

256
+ 32

⇐⇒
∫

dv

v − 256 · 32
= −

∫
1

256
dt

⇐⇒ v(t) = Ce−t/256 + 256 · 32.

and since v(0) = 0 then

v(t) = −256 · 32e−t/256 + 256 · 32.

� Solving for the distance traveled x(t) from the ground we have

x(t) = (256)
2 · 32e−t/256 + 32 · (256) t+ C

and letting x(0) = 0, then

x(t) = (256)
2 · 32e−t/256 + 32 · (256) t− (256)

2 · 32

Then

x(t0) = 5000 ⇐⇒ t0 ≈ 17.88 seconds.
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2.6. Existence and Uniqueness of Solutions

We want to know if solutions even exists to an ODE.

• If this models a physical phenomona and no solutions exists, then there is something seriously
wrong about your model.
� Why spend time trying to �nd a solution, and doing all the things in previous sections if no
solutions exist.

• Example: Suppose we have

2x5 − 10x+ 3 = 0.

Plugging x = ±1 into f(x) = 2x5 − 10x+ 5 we get f(1) = −5 and f(−1) = 11.
� We draw a continuous sketch of this graph, and show it must cross the x−axis.
� By the intermediate value theorem we know that at least one solution exists.Since somewhere
in between it must have x = −1 and x = 1 the function f(x) must have crossed the x− axis.

� There could be more than one, we'd like to know if we should stop searching for more solutions.
� No �quadratic formula� for 5th degree polynomials.

• Example: No solutions for x2 + 1 = 0.

Theorem. 1 (Linear 1st order ODE Existence and Uniqueness Theorem) If the function p and g are
continuous on an open interval I = (a, b) containing the point t = t0, then there exists a unique function
y = φ(t) that satisties the IVP

y′ + p(t)y = g(t), y(t0) = y0

for each t in I and where y0 is an arbitrary initial value.

• This theorem guarantees the existence and uniqueness of solutions under the assumption of the
theorem.

• This is only for IVP, nothing to do with separate solutions to ODE's. (which we already know
there are many)

• Important: This theorem allows you to know the domain before even solving for the solution

• Example1:
� Part (a): Without solving the problem, what is the largest interval in which the solution of
the given IVP is certain to exist by the Existence and Uniqueness Theorem?

(t− 1)y′ + cos ty =
et

t− 6
y(3) = −4

� Solution: We rewrite as

y′ +
cos t

(t− 1)
y =

et

(t− 6) (t− 1)

Since cos t
(t−1) and

et

(t−6)(t−1) are only both continuous for every t 6= 1, 6. The intervals are:

(−∞, 1) ∪ (1, 6) ∪ (6,∞) .

� But since the interval I = (1, 6) is the only one that contains the initial point t0 = 03 is in I.
Then we know there exists a unique solution y = φ(t) on the interval (1, 6).

� Part(b): What if I change the initial condition to

y(8) = 7,

then what is I?
∗ Solution: Then I = (6,∞).
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• Example2:
� Part (a): Without solving the problem, what is the largest interval in which the solution of
the given IVP is certain to exist by the Existence and Uniqueness Theorem?

t2y′ +
ln (t− 1)

et−2
y =

t− 5

sin(t− 4)
y(3) = π

� Solution: We rewrite as

y′ +
ln (t− 1)

t2et−2
y =

t− 5

t2 sin(t− 4)

� The function ln|t−1|
t2et−2 is continuous when t 6= 0 and t− 1 > 0. So continuous on (1,∞)

� The function t−5
t2 sin(t−4) is continuous when t 6= 0 and when t − 4 6= nπ =⇒ t 6= 4 + nπ. So

the problem points are t = 0 and t = . . . , 4− 2π, 4− π, 4, 4 + π, 4 + 2π
∗ Note that 4 + π ≈ 7.14 hence

� Both functions are simultaneously continuous on

(1, 4) ∪ (4, 4 + π) ∪ (4 + π, 4 + 2π) ∪ · · ·
since t0 = 3 falls inside (1, 4) then the solution to this IVP must have domain

I = (1, 4).

� Part(b): What if I change the initial condition to

y(8) = 10,

then what is I?
∗ Solution: Then I = (4 + π, 4 + 2π).

Theorem. 2 (General 1st Order ODE) Suppose f(t, y) and ∂f
∂y are continuous functions in a rectangle

of the form

{(t, y) | a < t < b, c < y < d} (draw pic)

in the ty−plane.. If (t0, y0) is a point inside the rectangle. then there exists a unique ε > 0 and a unique
function y(t) = φ(t) de�ned for (t0 − ε, t0 + ε) that solves the initial value problem

dy

dt
= f(t, y), y(t0) = y0.

• Warning: Unlike Theorem 1, Theorem 2 does not tell you what domain the solution will be valid
for. In this case, you really do have to solve for the solution to �gure out the domain of the function.

Corollary. Moreover assuming the same conditions as Theorem 1, if (t0, y0) is a point in this rectangle
and if y1(t) and y2(t) are two functions that solve the IVP

dy

dt
= f(t, y), y(t0) = y0,

for all t ∈ (t0 − ε, t0 + ε), then

y1(t) = y2(t)

for t ∈ (t0 − ε, t0 + ε).

• Restatement of Uniqueness Theorem: If two solutions y1, y2 to an ODE that satis�es the
condition of the uniqueness theorem, then if they are in the same place at the same time, then they
must be the same function!
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� Important: The uniqueness condition says that if y1, y2 are two solutions to some ODE and
y1 and y2 are equal at some point t0. Then y1(t) = y2(t) for all t in some interval.

� Its either all or nothing.
� Rephrase as this: �If two solutions to a 1st order ODE (satisfying assumptions) are ever in
the same place at the same time, then they are the same function�!

• Example3: Consider
dy

dt
= (y − 1)1/2 y(0) = 1.

� Part (a): Is this a Linear or nonlinear equation? Can you use Theorem 1 from Section 2.7?
∗ Solution:
∗ This is a nonlinear equation, due to the (y − 1)1/2

∗ Theorem 1 from section 2.7 only applies to Linear equations, thus we can't use Theorem
1 for this IVP.

� Part (b): Using Theorem 2 from Section 2.7 (the general theorem), can you guarantee that
there is a unique solution to this IVP? Why?
∗ Solution:
∗ To apply Theorem 2, we need the right hand side equation

f(t, y) = (y − 1)1/2

to be continuous and we need

∂f

∂y
=

1

2
√
y − 1

to be continous around the point (t0, y0) = (0, 1). But since 1
2
√
y−1 is not conintuous

when y0 = 1, then we cannot guarantee uniqueness of the solution.
• Moral: There could be multiple solutions to this IVP. Solution may not be unique!

Summary at this points:

• Theorem 1: Allows to check if there exists a unique solution for Linear Equations. Also tells us
what the possible domains is.

• Theorem 2: Allows to check if there exists a unique solution for general �rst order equations. Does
not tell us about possible domains.

2.6.1. More Examples. The Domain of solutions:

• Remember what a partial derivative means? For example, take the partials of y2 + t2, yt and y2t .
• Notice that the Theorem only gives you a function y(t) de�ned for some interval (t0 − ε, t0 + ε).

� the ε > 0 may be super small,
� so it may not be valid for big t. So e�ects how we can apply this real world solutions.

• Example4: Consider
dy

dt
= 1 + y2 y(0) = 0.

� Part (a): Find where in the t-y plane the hypothesis of Theorem 2 is satis�ed:

∗ Solution: Note that f(t, y) = 1 + y2 and ∂f
∂y = 2y are always continuous, thus satis�ed

in all of R2.
� Part (b): Find the actual interval in which the IVP exists uniquely:
� What if the solution blows up? Solve using separable equations and get y(t) = tan(t+ c) but
with initial condition you get y(t) = tan(t). But this solution is only valid for t ∈

(
−π2 ,

π
2

)
.
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� Graph: :
� Moral: Unlike Theorem1, Theorem 2 does not says it needs to exits in the entire rectangle,
it just says that there exists some interval in which it exists.

Example5: (Lack of uniqueness)

• Take dy
dt = 3y2/3 and y(0) = 0.

� Question1: Show that y1(t) = 0 and y2(t) = t3 are two solutions to this IVP. Why does this
not contradict Theorem 2?
∗ Solution:We know the equilibrium y1(t) = 0 which solves the IVP is one solution.. Use
separation of variables to get y(t) = (t+ c)3 so that y2(t) = t3.

∗ NOT UNIQUE!
∗ The reason being that if we compute ∂f

∂y = 2y−
1
3 = 2

y1/3
. Not continuous at (t0, y0) =

(0, 0)! Can't use Exitence/Uniqueness theorem.

� Question2: Take dy
dt = 3y2/3 and y(1) = 1. Find where in the t-y plane solutions exist

uniquely.
∗ Solution: Unique solution exist uniquely in any rectangle not containing (0, 0).

Applications of Uniqueness

• Important: The uniqueness condition says that if y1, y2 are two solutions to some ODE and y1
and y2 are equal at some point t0. Then y1(t) = y2(t) for all t in some interval.

• Its either all or nothing.
• Rephrase as this: �If two solutions to a 1st order ODE are ever in the same place at the same time,
then they are the same function�!

Example6: (Comparing solutions)(if time permits)
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• Take dy
dt = (1+t)2

(1+y)2 .

� Easily check that y1(t) = t is solution.
� Then if y2(t) is the unique solutions to the IVP

dy

dt
=

(1 + t)2

(1 + y)2
y(0) = −.1.

∗ Really hard to solve
∗ But then y2(t) can't cross the other solution y1(t) = t.
∗ So we can say that y2(t) < t for all t!!!!!!!! Draw a graph!

Summary:

• We must check continuity conditions to have uniqueness and existence.
• Uniqueness implies, that solutions can't cross each other.
• Uniqueness implies, that solutions can't cross equilibrium solutions.
• We can use uniquess, to say that solutions are between other solutions.

� Say y1(t) = t+ 5 and y2(t) = −t2 then uniquess shows
∗ An IVP with y(0) = 1 must have −t2 < y(t) < t+ 5
∗ limt→−∞ y(t) = −∞
∗ Draw a graph.
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2.7. Autonomous Equations and Population dynamics

• An autonomous di�erential equation is of the form

dy

dt
= f(y).

� We will only deal with autonomous for this section.
� Autonomous are preferable for some physical models are autonomous (self-govering), For ex-
ample a compressed spring the same amount has the same force at 4:00am and at 10:00pm.

• Here are some examples of autonomous equations:

Population growth/decay

• Assumption: The rate of growth of the population is proportional to the size of the population.

Thus if k = proportionality constant (growth rate) we have

dP

dt
= kP.

But here P= dependent variable, t =time=independent variable. Thus P = P (t) is actually a function! This

is a ODE. We can also write it P ′ = kP , or the physics way, Ṗ = kP .

• Logistic Growth:
• Assumption:

� If population is small, then rate of growth is proportional to its size.
� If population is to large to be supported by its resources and environment. Then the population
will decrease, that dP

dt < 0.
We can restate the assumptions as
(1) dP

dt ≈ kP if P is small.

(2) If P > N then dP
dt < 0.

• In this case,

dP

dt
= k

(
1− P

N
,

)
P

• Another Example: Suppose dy
dt = y(1− y):
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•
� Since the slopes is the same at each horizontal direction we can compact this information to
something easier to draw.
∗ This will be called the phase line:

� Rope Metaphor:
∗ Start with IVP dy

dt = f(y) and y(0) = y0.
∗ Draw a rope at start at y0.
∗ At each y write f(y) on this rope to indicate the slope at that y.

· Directions: If f(y) = 0 stay put, If f(y) > 0 then climb up the rope, if f(y) < 0
then climb down the rope
· Bigger values for f(y) means climb faster as t moves through time.

∗ If you let y(t) your location on the rope, then y(t) is a solution to the IVP.

Phase Line:

• This rope is the Phase line, but instead of numbers we use arrows to represent the slope.
� Draw Phase Line (2.equilibirium points, 3. arrows)

∗
� Use phase line to show that as t is close to y = 1 from below, then the function keeps increasing,
and thus must approach assymtptically to the equilobrium solution.

� Sketch a graph:
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�

Sketching curves: (skip in class)
From our �rst sketch we can always notice the following things about sketching curves:

(1) If f(y(0)) = 0 then y(0) is an equilibirum solution and y(t) = y(0) for all t.
(2) If f(y(0)) > 0 then y(t) is increasing for all t and either y(y)→∞ as t→∞ or y(t) tends to �rst

equilibirum point larger than y(0).
(3) If f(y(0)) < 0 then then y(t) is decreasing for all t and either y(y)→ −∞ as t→∞ or y(t) tends

to �rst equilibirum point smaller than y(0).

Example1 (Curve Sketching)

• We let

dy

dt
= (2− y) sin y.

• Find equilirium points y = 2 and y = nπ (so in�nite amount)
• Plug points and get that the phase line is :

•
• Talk about what happens when things are getting close to the equilibrium solutions.
• Sketch curve (with more equilibriums though)
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•

Example (We don't know how quickly things jump)

• Show that the graph dP
dt = (1− P

20 )3(P5 − 1)P 7 has Phase line [	20⊕ 5	 0⊕]

∨
20
∧
5
∨
0
∧

but 5 jumps to

20 very quikly
� like 0.00001 quick.

Example (Not all solutions exists for all t, (asymptotes could exist))

• Take dy
dt = (1 + y)2

� Phase Line: [	− 1⊕]
∧
−1
∧

Sketch a curve:

� These increasing/decreasing behavioe could be assymptotes. (Phase LINE DOES NOT TELL
US THIS INFO)

� ACTUAL SOL: y(t) = −1− 1
t+c . Asymptote at t = c.

∗ If y(0) > −1 then draw possible curve.

Example (Cusps)

• Take dy
dt = 1

1−y
� Phase Line would be:
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∗
� Sketch cusp like curves:
� It has fallen into a hole once it reaches the dotted line.

Role of Equilibrium points:

• Solutions to Autonomous equations either
� (1) Tend to ±∞
� (2) Tend to the equilibrium solutions.
� (3) stay the inreasing/decreasing within equil soltuion

Classi�cation of Equilibrium Solutions

• Recall what asymptotic means.

(1) Asymptotically Stable
(a) y0 is a Assymptotically stable if any solution with initial condition su�cintely close to y0

is asymptotic to y0 as t incresase

(b) Phase Line looks like this: [	y0⊕]
∨
y0
∧

(c) Graph looks like: ( reminds you that it is faling into something)
(d) In f(y) vs. y graph we have f ′(y0) < 0.

(2) Asymptotically Unstable:
(a) y0 is a Asymptotically unstable if any solution with initial condition su�cintely close to

y0 tend torward y0 as t decreases

(b) Phase Line looks like this: [⊕y0	]
∧
y0
∨

(c) Graph looks like: ( reminds you that it is coming from one place)
(d) In f(y) vs. y graph we have f ′(y0) > 0.

(3) Semistable:
(a) y0 is a semiIs thstable if it doesn't �t the category of a sink or source

(b) Phase Line looks like this: [⊕y0⊕]
∧
y0
∧

or [	y0	]
∨
y0
∨

(c) Graph looks like:

Example1: (Drawing solution from the f(y) vs. y graph)

• dy
dt = y2 + y − 6 = (y + 3)(y − 2)
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� Phase Line [⊕2	−3⊕]

∧
2
∨
−3
∧

� Classify them!

Example2: (Using f(y))

• We can �gure out classi�cation from just the graph of f(y).

•
� Here Node means semistable, Sink means stable, Source means unstable.
� These are just di�erent names for the same thing.

• Example3: Suppose we only know the graph of f(y) not the actual formula.

�

• Then draw Phase line : [	c⊕ b	 a⊕]

∨
c
∧
b
∨
a
∧

• from this information and sketch curve.
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2.8. Exact Equations

• Consider an equation

M(x, y)dx+N(x, y)dy = 0,

we say this equation is exact if
∂M

∂y
=
∂N

∂x
.

� Example: Suppose

dy

dx
=
−2x− y2

2xy
.

We can rewrite this as (
2x+ y2

)
dx+ 2xydy = 0

then M = 2x+ y2 and N = 2xy. Computing the partial derivatives,

My = 2y

Nx = 2y

are My = Nx! Thus this equation is exact.

Theorem. If M,N,My, Nx are all continuous and Mdx+Ndy = 0 is exact then there exists a function
ψ such that

ψx(x, y) = M(x, y) and ψy(x, y) = N(x, y)

and such that

ψ(x, y) = C,

gives an implicit solution to the ODE.

Proof. We only show if ψ satis�es ψx = M and ψy = N such that ψ(x, y) = C de�nes a function
y = φ(x) implicitely. Then we show φ(x) solves the ODE. Note that if

0 = M(x, y) +N(x, y)y′ =
∂ψ

∂x
+
∂ψ

∂y

dy

dx
=

d

dx
(ψ (x, φ(x)))

by the multivariable chain rule. Thus if we integrate both sides

0 =
d

dx
(ψ (x, φ(x))) ⇐⇒

∫
0dx =

∫
d

dx
(ψ (x, φ(x))) dx

⇐⇒ c = ψ (x, φ(x)) ,

as needed. �

• Solving exact equations: If Mdx+Ndy = 0 is exact then
ψx = M(x, y) =⇒ ψ =

∫
M(x, y)dx+ h(y)

⇓
ψy = N(x, y) = ψy = ∂

∂y

(∫
M(x, y)dx

)
+ h′(y)

and then solve for h(y).
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� Another way: One may also solve it by starting with the second equation:
ψx = M(x, y) ψx = ∂

∂x

(∫
N(x, y)dx

)
+ g′(x)

⇑
ψy = N(x, y) =⇒ = ψ =

∫
N(x, y)dy + g(x).

• Example1: We know (
2x+ y2

)
dx+ 2xydy = 0

is exact.
� Step1: Show it's exact(done earlier) and and complete the follow the arrows until you close
the diagram:

Start here: ψx = 2x+ y2 =⇒ ψ =
∫ (

2x+ y2
)
dx+ h(y)

ψ = x2 + y2x+ h(y)
⇓

ψy = 2xy ⇐= ψy = 2xy + h′(y)

� Step2: Solve for h(y) by noting that since

2xy = 2xy + h′(y) =⇒ h′(y) = 0

=⇒ h(y) = C.

� Step3: Put it all together and get

ψ(x, y) = x2 + y2x+ C

and hence the implicit solution is

x2 + y2x = C.

• Example2: Solve

(y cosx+ 2xey) +
(
sinx+ x2ey − y2

)
y′ = 0.

� Step1: To show it's exact note that

(y cosx+ 2xey) dx+
(
sinx+ x2ey − y2

)
dy = 0,

and not hard to see that

My = cosx+ 2xey

Nx = cosx+ 2xey

and they are equal, thus this ODE is exact. Follow the arrows until close the diagram:

Start here: ψx = y cosx+ 2xey =⇒ ψ =
∫

(y cosx+ 2xey) dx+ h(y)
ψ = y sinx+ x2ey + h(y)

⇓
ψy = sinx+ x2ey − y2 ⇐= ψy = sinx+ x2ey + h′(y)

� Step2: Solve for h(y) by noting that since

sinx+ x2ey − y2 = sinx+ x2ey + h′(y) =⇒ h′(y) = −y2

=⇒ h(y) = −y
3

3
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� Step3: Put it all together and get

ψ(x, y) = y sinx+ x2ey − y

and hence the implicit solution is

y sinx+ x2ey − y3

3
= C.

• Example3: Find the value of b for which the given equation is exact, and then solve it using that
b: (

xy2 + bx2y
)
dx+ (x+ y)x2dy

� Step1: If this equation is exact then My = Nx, but

My = 2xy + bx2

Nx = 3x2 + 2yx

and are only equal when b = 3. Follow the arrows until close the diagram:

Start here: ψx = xy2 + 3x2y =⇒ ψ =
∫ (
xy2 + 3x2y

)
dx+ h(y)

ψ = 1
2
x2y2 + x3y + h(y)

⇓
ψy = x3 + x2y ⇐= ψy = x2y + x3 + h′(y)

� Step2: Solve for h(y) by noting that since

x3 + x2y = x2y + x3 + h′(y) =⇒ h′(y) = 0

=⇒ h(y) = C

� Step3: Put it all together and get

ψ(x, y) =
1

2
x2y2 + x3y + C

and hence the implicit solution is

1

2
x2y2 + x3y = C.

• Example4 (advanced, if time permits): Solve

(x cosx+ ey) dx+ xeydy

� Step1: If this equation is exact then My = Nx, and

My = ey

Nx = ey

Now note that it is eactualy easier to integrate N with respect to y: Thus we can start the
diagram in the other direction

ψx = x cosx+ ey ⇐= = ψx = ey + g′(x)
ψ = xey + g(x)

⇑
Start here: ψy = xey =⇒ ψy =

∫
(xey) dy + g(x)
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� Step2: Solve for g(x) by noting that since

x cosx+ ey = ey + g′(x) =⇒ g′(x) = x cosx

but at the end of the day we can't avoid the harder integration, as we still need to integration
by parts to

g(x) = x sinx+ cosx

� Step3: Put it all together and get

ψ(x, y) = xey + x sinx+ cosx

and hence the implicit solution is

xey + x sinx+ cosx = C.
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2.9. Euler's Method

• We explore a numerical technique to solving a di�erential equation.
• Suppose we are given an Initial Value problem

dy

dt
= f(t, y) y(t0) = y0.

• The idea is to plot a slope �eld on top of it and use the slope �eld to take tiny steps dictated by
the tangents on te slope �eld. Draw a picture (Start at initial point and drawing a line until we
approach the next t0, then pretend you already a slope at that point and continue. Do it the way
they do it on DEtools) (Use Document camera)

• De�ne: h=step size. These are our t−axis increments.
• De�ne: t0 = is our starting point, then our next point will be t1 = t0 + h, then t2 = t1 + h.

� For example suppose t0 = 1 and h = .5, then t0 = 1, t1 = 1.5, t2 = 2, . . . .
• Draw a picture showing what the y−values would be.

How do we �nd the explicit values for yk other than just guessing. Plot the points (tkyk) and (tk+1, yk+1)
on a graph and show that the secant must equal f(tk, yk).

We know that

yk+1 − yk
tk+1 − tk

= f(tk, yk)

so solve for yk+1 using the fact that h = tk+1 − tk and get

yk+1 = yk + f (tk, yk)h.

Euler's Method:
Given an initial condition y(t0) = y0 and step size h, compute (tk+1, yk+1) from the preceding point

(tk, yk) as follows:

tk+1 = tk + h

yk+1 = yk + f (tk, yk)h.

Example:
Suppose we have the autonomous equation

dy

dt
= 2y − 1 , y(0) = 1,

with h = 0.1 and 0 ≤ t ≤ 1. Then

• Our �rst point is (t0, y0) = (0, 1).
• We can compute the formula for this and get tk+1 = tk + .1 and notice that f (t, y) = 2y − 1.

yk+1 = yk + f (tk, yk)h = yk + (2yk − 1) (.1).

• Make a table:
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k tk yk = yk−1 + f (tk−1, yk−1)h f (tk, yk) = 2yk − 1

0 0 1 1
1 0.1 y1 = 1 + 1 · (.1) = 1.1 f (t1, y1) = 2(1.1)− 1 = 1.20
2 0.2 y2 = 1.1 + (1.20) · (.1) = 1.22 f (t2, y2) = 2(1.22)− 1 = 1.44
3 0.3 y3 = 1.22 + (1.20) · (.1) = 1.364 f (t3, y3) = 2(1.22)− 1 = 1.73
4 0.4 1.537 2.07

.5 1.744 2.49

.6 1.993 2.98

.7 2.292 3.58

.8 2.65 4.3
0.9 3.080 5.16
1.0 3.596 3.596

• Notice that actual value is y(1) = e2+1
2 = 4.195 and our approximation is y(1) ≈ 3.596, which is a

little short, but it makes sense all the slopes are always below the graph.

Example2:
Our previous example didn't have any t′s which requires more inputing of information. So suppose we

have
dy

dt
= −2ty2, y(0) = 1, h =

1

2
• Our �rst point is (t0, y0) = (0, 1).
• We can compute the formula for this and get tk+1 = tk + .5 and notice that f (t, y) = −2ty2.

yk+1 = yk + f (tk, yk)h = yk +
(
−2tky

2
k

)
(
1

2
).

• Make a table:
k tk yk = yk−1 + f (tk−1, yk−1)h f (tk, yk) = −2tky

2
k

0 0 1 0
1 1

2 y1 = 1 + 0 · ( 1
2 ) = 1 f (t1, y1) = −2 1

211 = −1
2 1 y2 = 1 + (−1) · ( 1

2 ) = 1
2 f (t2, y2) = −2(1)( 1

2 )2 = −1
2

3 1.5 = 3
2 y3 = 1

2 + (− 1
2 ) · ( 1

2 ) = 1
4 f (t3, y3) = −2( 3

2 )( 1
4 )2 = − 3

16

4 2 1
4 +

(
− 3

16

)
·
(
1
2

)
= .15625

• You can easily plot this as
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• If you have extra time, log in the computer and show them DE tools and how it works.



CHAPTER 3

Second Order Linear Equations

3.1. 2nd Order Linear Equations - Homogeneous Eqs with Constant Coe�cients

• A general second order ODE is of the form

d2y

dt2
= f

(
t, y,

dy

dt

)
.

• A 2nd Order Linear ODE is of the form

a(t)y′′ + b(t)y′ + c(t)y = d(t)

which can be rewritten as

y′′ + p(t)y′ + q(t)y = g(t).

• A 2nd Order ODE is called Homogeneous if

a(t)y′′ + b(t)y′ + c(t)y = 0

and Nonhomogeneous if

a(t)y′′ + b(t)y′ + c(t)y = d(t)

for some d(t) that is NOT identically zero.
• An IVP for a second order ODE needs to have two initial conditions:

y(t0) = y0,

y′(t0) = y′0.

• The �rst part of this Chapter we will focus on 2nd Order Linear homogeneous ODEs with
constant coe�cients:

ay′′ + by′ + cy = 0

where a, b, c are real constants.
� Example: Consider y′′ − y = 0 or

y′′ = y.

� Can you think of a solution to this ODE from Calculus 1? A function where its second
derivative is equal to itself?
∗ Two Solutions: y1(t) = et and y2(t) = e−t.
∗ But also not hard to check that c1e

t and c2e
−t are also solutions.

• In General: Consider the ODE

ay′′ + by′ + cy = 0.

49
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� Assume solutions are of the form y(t) = ert. Then

y(t) = ert

y′(t) = rert

y′′(t) = r2ert,

and plugging this into the ODE we have

LHS = ar2ert + brert + cert
?
= 0

ert
(
ar2 + br + c

) ?
= 0.

and since ert 6= 0 then

ar2 + br + c = 0,

solve this EQ and get r = r1, r2.
� This is called the characteristic equation of this ODE.
� Assume the roots are real and distinct, then the general solutions is of the form

y(t) = c1e
r1t + c2e

r2t.

∗ Why though? We will justify this in the next section:

Example1: Let's �nd the general solution of

y′′ + 5y′ + 6y = 0.

• Step1: We'll guess that the solution to a solution is y(t) = ert for some r. Then get(
r2 + 5r + 6

)
ert = 0

so that we must have r2 + 5r + 6 = (r + 2) (r + 3) = 0 so that r = −2,−3.
• Step2: So y1(t) = e−2t and y2(t) = e−3t are solutions and

y(t) = c1e
−2t + c2e

−3t

is the general solution.
• .

Example2: Let's �nd the solution to the following IVP

y′′ + 5y′ + 6y = 0 y(0) = 2, y′(0) = −1.

• Step1: Solving for the particular solution. We have y(0) = 2 and y′(0) = −1. Di�erentiating
y(t) = c1e

−2t + c2e
−3t we get y′(t) = −2c1e

−2t − 3c2e
−3t and set up the following system:

c1 + c2 = 2

−2c1 − 3c2 = −1

and get c1 = 5, c2 = −3. So the particular solution is

y(t) = 5e−2t − 3e−3t.

Example3: Let's �nd the general solution of

2
d2y

dt2
+ 7

dy

dt
− 4y = 0.
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• Step1: We'll guess that the solution to a solution is y(t) = ert for some r. Then get(
2r2 + 7r − 4

)
ert = 0

so that we must have 2r2 + 7r − 4 = (2r − 1) (r + 4) = 0 so that r = 1
2 ,−4.

• Step2: So y1(t) = et/2 and y2(t) = e−4t are solutions and

y(t) = c1e
t/2 + c2e

−4t

is the general solution.
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3.2. Solutions to Linear Equations; the Wronskian

• In this section, we will consider equations of the form

y′′ + p(t)y′ + q(t)y = 0, y(t0) = y0, y′(t0) = y′0.

where a, b, c are constants.
• This is a second order, linear, homegeneous equation.
• Our goal is again to �nd the general solution of these equations.

Theorem. (Existence and Uniqueness for 2nd order linear ODES) Consider the IVP

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′0

where p, q, g are continuous on an open interval I that contains t0. Then there exists a unique solution
y = φ(t), and the solution exists throughout all of I.

• Recall that this theorem implies solutions to this IVP
� 1. exist
� 2. is unique
� 3. the solution φ is de�ned throughout all of I. In fact it says more, φ is at least twice
di�erentiable on I.

• Example1: Find the longest interval in which the solution to the IVP is certain to exist by the
Existence and Uniqueness Theorem:(

t4 − 4t2
)
y′′ + cos ty′ − ety = 0, y(1) = 2, y′(1) = 1.

• Solution: Rewriting as

y′′ +
cos t

t2 (t2 − 4)
y′ − et

t2 (t2 − 4)
y = 0.

so that p(t) = cos t
t2(t2−4) and q(t) = − et

t2(t2−4) which are both continious on (−∞,−2) ∪ (−2, 0) ∪
(0, 2) ∪ (2,∞). Since t0 = 1 ∈ (0, 2) then I = (0, 2) is the longest interval where p(t) and q(t) are
both continuous that contains t0.

• Fact: (Principle of Superposition) If y1 and y2 are two solutions to an ODE

y′′ + p(t)y′ + q(t)y = 0,

then the linear combination y(t) = c1y1(t) + c2y2(t) is also a solution for any values c1, c2.
� Warning: This only works if equation is linear and homoheneous.

• Summarizing the Principle: Combining solutions gives another solution.
� Example1: Suppose y1(t) = e−t and y2(t) = et are two solutions to y′′ − y = 0. Since this is
a linear homogeneous ODE then the principle of superposition says that the function

y(t) = 2e−t + 3et

is also a solution.
� Example2: It is not hard to check that y1(t) = 1 and y2(t) = t

1
2 are solutions to

yy′′ + (y′)
2

= 0, t > 0.

∗ Part (a): Show y(t) = 1 + 2t
1
2 is not a solution to this ODE:
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· Solution: First compute

y(t) = 1 + 2t
1
2

y′(t) = t−
1
2

y′′(t) = −1

2
t−

3
2

To show this simply check if the LHS equal to 0:

LHS = yy′′ + (y′)
2

=
(

1 + 2t
1
2

)(
− 1

2t3/2

)
+

(
1

t
1
2

)2

= − 1

2t3/2
− 1

t
+

1

t
= − 1

2t3/2
6= 0,

thus it isn't a solution.
∗ Part (b): Why does this not contradict the Principle of Superposition?

· Solution: To apply the principle the equation needs to be linear, the term (y′)
2

in the ODE makes this nonlinear, hence we can't even use the principle in the �rst
place.

• Question we want to answer in this section: Suppose y1(t) and y2(t) are two solutions to a
linear homogeneous equation. When do we know that

y(t) = c1y1(t) + c2y2(t)

is the general solution to the ODE? Meaning when do we know that we can obtain every single
solution to an IVP? To answer that we need to de�ne a couple of things.

• De�nition: The determinant of a matrix

(
a b
c d

)
is∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc.

• De�nition: The Wronskian of the solutions y1(t) and y2(t) to a linear homogeneous ODE

W = W (y1, y2) =

∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ .
Theorem. (General Solution Theorem) Suppose y1 and y2 are two solutions to the ODE

y′′ + p(t)y′ + q(t)y = 0

in some interval I, where p, q are continuous. Then the family of solutions

y(t) = c1y1(t) + c2y2(t)

for arbtitrary c1, c2 is the general solution (meaning includes every solution to the ODE) if and only if the
Wronskian W (y1, y2) is not zero for at least one point t0 in I.

• Example1: Find the general solution to

y′′ + 4y′ − 5y = 0.

� Solution: In the last section we showed that to �nd solutions to this ODE we simply need to
solve the characteristic equation

r2 + 4r − 5 = (r − 1) (r + 5) = 0
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and get r = 1,−5 so that

y(t) = c1e
t + c2e

−5t

gives other solutions to the ODE. To show this gives all of them, we simply need to show the
Wronksian is not always zero:

W
(
et, e−5t

)
=

∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ =

∣∣∣∣ et e−5t

et −5e−5t

∣∣∣∣
= −5e−4t − e−4t

= −6e−4t

6= 0.

• Restate the theorem: To �nd the general solution of y′′ + p(t)y′ + q(t)y = g(t), we only need to
�nd two (y1, y2) solutions whose Wronskian is nonzero:
(1) First �nd two solutions y1, y2.
(2) Then check W (y1, y2) 6= 0 for at least one point in the interval.

• De�nition: The solutions y1 and y2 are said to form a Fundamental set of solutions to

y′′ + p(t)y′ + q(t)y = 0

if W (y1, y2) 6= 0.

• Example1: Verify that y1(t) = t
1
2 and y2(t) = t−1 form a fundamental set of solutions of

2t2y′′ + 3ty′ − y = 0, t > 0.

� Solution:
� Part(a): First we verify these are indeed solutions by plugging them into the LHS and checking
that they equal zero. First computer some derivatives

y1(t) = t
1
2 y2(t) = t−1

y′2(t) = 1
2 t
− 1

2 y′2(t) = −t−2
y′3(t) = − 1

4 t
− 3

2 y′′2 (t) = −t−2.
Plugging y1 into LHS we get

LHS = 2t2y′′1 + 3ty′1 − y1

= 2t2
(
−1

4
t−

3
2

)
+ 3t

(
1

2
t−

1
2

)
−
(
t
1
2

)
= −1

2
t
1
2 +

3

2
t
1
2 − t 1

2

= 0.

Thus y1 is a solution. It is very similar to show y2 is a solution.
� Part (b): To show y1y2 form a fundamental set of solutions, we simply need to show that
W (y1, y2) is nonzero:

W (y1, y2) =

∣∣∣∣ t
1
2 t−1

1
2 t
− 1

2 −t−2

∣∣∣∣ = −3

2
t−3/2 6= 0

� which is nonzero for t > 0.
• Question: Given an ODE, when do you know there exists a fundamental set of solutions?
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� Fact: Assume p, q are continuous and �nd a solutions y1, y2 with di�erent values of their
initial conditions. Then they form a fundamental set of solutions.
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3.3. Complex Roots of the Characteristic Equation

Complex numbers:

• Here are some facts. Complex numbers are of the form a+ bi where a, b ∈ R and i =
√
−1.

� i2 = −1. Remenber this.
• Also we'll need to know Euler's Formula: eib = cos b+ i sin b. So

ea+ib = eaeib = ea (cos b+ i sin b) = ea cos b+ iea sin b.

• Complex roots to the Char. Eq.
� Suppose we are solving

ay′′ + by′ + cy = 0

and we solve the characteristic equation

ar2 + br + c = 0

and get that the roots are

r = λ+ iµ and r = λ− iµ.

Remenber that complex roots always come in conjugate pairs.
� Choosing the �rst root r = λ + iµ then (just like the previous section) one solution is of the
form

y(t) = ert = e(λ+iµ)t = eλteiµt

= eλt (cos (µt) + i sin (µt))

= eλt cos (µt) + ieλt sin (µt)

= u(t) + iv(t)

where u(t) = eλt cos (µt) is the real part and v(t) = eλt sin (µt) is the imaginary part.
∗ But this is an imaginary solution! We like real solutions!
∗ The following theorem will help us!

• Theorem: If y(t) = u(t) + iv(t) is a complex solution to an ODE of the form ay′′ + by′ + cy = 0.
Then so are u(t) and v(t)!
� What does this imply? Therefore since u(t) = eλt cos (µt) and v(t) = eλt sin (µt) are
solutions we can compute (after some tedious work) that the Wronskian of u and v are:

W (u, v) (t) = µe2λt 6= 0 as long as µ 6= 0.

Hence by the General Solution Theorem (from last section), because the Wronskian is not
zero then u(t) and v(t) form a fundamental set of solutions. Meaning their linear combination
gives us the general solution!

Summary of Shortcuts:
So if you have

a
d2y

dt2
+ b

dy

dt
+ cy = 0

then �nd the roots of

ar2 + br + c = 0.

The general solutions are the following:
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roots: The general Solution Example

r1, r2 =real, distint y(t) = c1e
r1t + c2e

r2t (r + 1) (r − 1) = r2 − 1 = 0
r = λ± iµ,imaginary y(t) = c1e

λt cosµt+ c2e
λt sinµt r2 + 1 = 0

Example1: Let's �nd the general solution of

d2y

dt
+ 4

dy

dt
+ 13y = 0

• Step1: We can jump straight to the characteristic equation:

r2 + 4r + 13 = 0

� We can solve this using the quadratic formula:

r =
−4±

√
16− 4 · 13

2
= −2± 1

2

√
4(4− 13) = −2±

√
−9 = −2± 3i

� Or you can use completiting the square trick (add/subtract (b/2)2) to get r = −2± 3i.
• Step2: The general solution is

y(t) = c1e
−2t cos 3t+ c2e

−2t sin 3t.

Example2: Let's �nd the particular solution to the IVP:

y′′ + 9y = 0, y(0) = −2, y′(0) = 1

• Step1: We can jump straight to the characteristic equation:

r2 + 9 = 0

and get r = ±3i
• Step2: The general solution is

y(t) = c1e
0t cos 3t+ c2e

0t sin 3t.

= c1 cos 3t+ c2 sin 3t.

• Step3: Using the initial conditions y(0) = −2, y′(0) = 1 we need to �rst take a derivative

y(t) = c1 cos 3t+ c2 sin 3t

y′(t) = −3c1 sin 3t+ 3c2 cos 3t

hence

−2 = y(0) = c1 + 0

1 = y′(0) = 0 + 3c2

so that

c1 = −2, c2 =
1

3
.

hence the solution is

y(t) = −2 cos 3t+
1

3
sin 3t.

• Example3: Suppose we get that the general solution comes out to

y(t) = c1e
3t cos t+ c2e

3t sin t.

Then just remenber that you need to use product rule to �nd the derivative of y(t):

y′(t) = 3c1e
3t cos t− c1e3t sin t+ 3c2e

3t sin t+ c2e
3t cos t.
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3.4. Repeated Roots; reduction of order

3.4.1. Repeated Roots.

• Suppose we have

ay′′ + by′ + cy = 0

and we only have one root r = r1 to the characteristic equation ar2 + br + c = 0. Then we only
have one solution y(t) = c1e

r1t. We need a second di�erent solution to get the general solution.

Final Summary of Shortcuts:
So if you have

ay′′ + by′ + cy = 0

then �nd the roots of

ar2 + br + c = 0.

The general solutions are the following:
roots: The general Solution Example

r1, r2 =real, distint y(t) = c1e
r1t + c2e

r2t (r + 1) (r − 1) = r2 − 1 = 0
r = λ± iµ,imaginary y(t) = c1e

λt cosµt+ c2e
λt sinµt r2 + 1 = 0

r = r1,real, repeasted y(t) = c1e
r1t + c2te

r1t. (r − 2)
2

= 0

• Example1: Consider

y′′ + 6y′ + 9y = 0.

� Then the characteristic equation is r2 + 6r + 9 = (r + 3)2 = 0, gives the repeated root of
r1 = r2 = −3. Hence we only have one solution so far:

y1(t) = e−3t

but we need another solution y2(t) that is not a multiple of y1.
� Solution:
� By the Table, we have that

y(y) = c1e
−3t + c2te

−3t.

• Example2: Find the general solution of

y′′ − 10y′ + 25y = 0.

� Solution: Note that the characteristi equation is r2 − 10r + 25 = (r − 5)
2

= 0 so that we
have a repeated root r = 5. Hence the general solution is

y(t) = c1e
5t + c2te

5t.

3.4.2. The Method of Reduction of Order.

• The Method of Reduction of Order
• In the previous examples, why was it when we had only one solution y1, y2 = ty1! All we needed
to do was to multiply by t.

• This method works in general for repeated roots. We summarize it here:
• The Method of Reduction is suppose you know that y1(t) is already a solution to

a(t)y′′ + b(t)y′ + c(t)y = 0.
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Then if you want to �nd y2 such that y = c1y1 + c2y2 is the general solution. Then the technique
is to guess the solution is of the form

y2(t) = v(t)y1(t).

• Example3: Consider

y′′ + 6y′ + 9y = 0.

� Then the characteristic equation is r2 + 6r + 9 = (r + 3)2 = 0, gives the repeated root of
r1 = r2 = −3. Hence we only have one solution so far:

y1(t) = c1e
−3t

but we need another solution y2(t) that is not a multiple of y1. [We know the answer is, but
we will illustrate the method of how we for to y2]

� The Method of Reduction is to guess the solution is of the form

y2 = v(t)y1(t),

y2 = v(t)e−3t.

� Solution:
� Step1: After making guess. We need to simply put our guess into the ODE and �nd out what
v(t) is! First let's take some derivatives:

y2 = v(t)e−3t

y′2 = v′(t)e−3t − 3v(t)e−3t

y′′2 = v′′(t)e−3t − 3v′(t)e−3t − 3v′(t)e−3t + 9v(t)e−3t

= v′′(t)e−3t − 6v′(t)e−3t + 9v(t)e−3t.

� Step2: Now plug this into the LHS of the ODE: y′′ + 6y′ + 9y = 0, like this

LHS = y′′2 + 6y′2 + 9y2 = v′′(t)e−3t − 6v′(t)e−3t + 9v(t)e−3t

+ 6
(
v′(t)e−3t − 3v(t)e−3t

)
+ 9

(
v(t)e−3t

)
= do simpli�cation

= v′′(t)e−3t

Since e−3t 6= 0, therefore

v′′(t) = 0 =⇒ v′(t) = k1

=⇒ v(t) = k1t+ k2

We got it! Pick the somplest nontrivial v, that is let k1 = 1 and k2 = 0, then

v(t) = t

� Step3: The general solution must be of the form

y2(t) = te−3t.
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� Side note: To check that y1(t) = e−3t and y2(t) = te−3t really do give the General solution
we simply need to check the Wronskian is not zero: Note

W (y1, y2) (t) =

∣∣∣∣ e−3t te−3t

−3e−3t e−3t − 3te−3t

∣∣∣∣ = e−6t 6= 0.

by the general solution theorem we know that y = c1y1 + c2y2 is the general solution!
• Example4:(More on Method of Reduction) Suppose we know that y1(t) = t is a solution to

t2y′′ + 2ty′ − 2y = 0, t > 0.

Find the second solution y2(t) of this ODE.
� Solution:
� Step1: Recall we guess

y2(t) = v(t)y1(t) = v(t)t

and we are going to �gure out what v(t) is supposed to be. Take derivatives:

y2(t) = v(t)t

y′2(t) = v′(t)t+ v(t)

y′′2 (t) = v′′(t)t+ v′(t) + v′(t)

= v′′(t)t+ 2v′(t).

� Step2: Plug y2 and its derivatives into the LHS of the ODE:

LHS = t2y′′2 + 2ty′2 − 2y2 = t2 (v′′(t)t+ 2v′(t))

+ 2t (v′(t)t+ v(t))

− 2 (v(t)t)

= simplify

= t3v′′(t) + 2t2v′(t)

+ 2t2v′(t) + 2tv(t)

− 2tv(t)

= t3v′′ + 4t2v′ = 0

and setting equal to zero means

v′′t+ 4v′ = 0.

Step3: Solving the ODE t3v′′ + 4t2v′ = 0 we do the substitution w = v′ (sub-technique:
when a(t)v′′ + b(t)v′ = 0 use substitution w = v′) and get

w′ +
4

t
w = 0

hence we can use integrating factors to get µ(t) = e
∫

4
t dt = e4 ln t = t4 hence the solution is

w(t) =
1

t4

[∫
t4 · 0dt+ C

]
=
k1
t4
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Thus
v′ = w = k1t

−4

hence
v = k1t

−3 + k2.

� Step4: To �nish we have that y2 = v · t =
(
c1t
−3 + c2

)
t = c1t

−2 + c2t. Since y1(t) = t and
we want a di�erent solution we can make k2 = 0 and k1 = 1. Thus

y2(t) = t−2

is a di�erent solution.
� Hence the general solution is given by

y(t) = c1y1(t) + c2y2(t)

= c1t+ c2t
−2.
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3.5. non-Homogeneous - Method of undetermined Coe�cients

• Consider the nonhomogeneous equation

y′′ + p(t)y′ + q(t)y = g(t), (non-hom)

where p, q, g are (continuous) functions on some open interval I. Consider the corresponding ho-
mogeneous equation

y′′ + p(t)y′ + q(t)y = 0. (hom).

whose general solution we'll call yh.

Theorem 1. (General Solution for non-hom EQs) The general solution of theNon-homogeneous
EQ above is given by

y(t) = c1y1(t) + c2y2(t) + yp(t)

where y1, y2 are a fundamental set of solutions of the corresponding Homogeneous Equation, and yp(t) is
a particular solution to the Non-homogeneous equation.

• Steps to solving y′′ + p(t)y′ + q(t)y = g(t)
� Step1: We already know how to �nd the fundamental set of solutions y1, y2 for the homo-
geneous equation. We have that yh = c1y1 + c2y2 is the gen solution to the corresponding
homogeneous equation.

� Step2: Find a particular solution yp using the method of undertermined coe�cients.
(I'll show this in a minute. It's a bit compliated but we'll work it out step by step)

� Step3: The general solution is when you add them together: y(t) = yh+yp = c1y1+c2y2+yp.

The Method of Undetermined Coe�cients (MOUC):

• Main Idea: The idea of MOUC is to guess what the solution yp based on what g(t) looks like.
� Our guess of yp will always be the general form of g(t).
� The following chart explains that if you see g(t) as in the Left column, then your guess will
be in the right column:

If g(t) looks like Then yp(t) is

Pn(t) = ant
n + an−1t

n−1 + · · ·+ a0 ts
[
Amt

m +Am−1t
m−1 + · · ·+A0

]
eαtPm(t) tseαt

[
Amt

m +Am−1t
m−1 + · · ·+A0

]
Pm(t)eαt cosβt or Pm(t)eαt sinβt

ts [(Amt
m + · · ·+A0) eαt cosβt

+ (Bmt
m + · · ·+B0) eαt sinβt]

• Here s = the smallest nonnegative integer (s = 0, 1,or 2) such that no term of yp is a solution to
the corresponding homogeneous equation. Meaning we don't want repeats!

Example1: Find the solution to the following IVP:

y′′ + 5y′ + 6y = e−t. y(0) = 1, y′(0) =
1

2

• Step1: Find yh(t) , which is simply the general solution of

y′′ + 5y′ + 6y = 0

but we learned that we must solve the charateristic polynomial r2 + 5r + 6 = (r + 2)(r + 3) = and
get r = −2,−3 so that the solution is

yh(t) = c1e
−2t + c2e

−3t.
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• Step2: We �nd yp(t) by making our guess and to �nd the undertermined coe�cient. So we let
yp(t) = Ae−t and plug yp into the LHS:

y′′p + 5y′p + 6yp = Ae−t − 5Ae−t + 6Ae−t

= 2Ae−t

• Step3: Set the LHS equal to the RHS and solve for A to get

2Ae−t = e−t

so that A = 1
2 .

• Step4: Plug A back in and get yh(t) = 1
2e
−t and a general solution of

y(t) = c1e
−2t + c2e

−3t +
1

2
e−t.

• Final IVP Step: Now we need to �nd c1 and c2 using y(0) = 1 and y′(0) = 1
2 and set up the

following system of equations:

c1 + c2 +
1

2
= 1

−2c1 − 3c2 −
1

2
=

1

2

which comes from y(t) = c1e
−2t + c2e

−3t + 1
2e
−t and y′(t) = −2k1e

−2t − 3k2e
−3t − 1

2e
−t. Solving

this we get c1 = 5
2 and c2 = −2 thus the solution to the IVP is

y(t) =
5

2
e−2t − 2e−3t +

1

2
e−t.

Example2: Find the general solution of

d2y

dt
− 5

dy

dt
+ 4y = e4t.

• Step1: Find yh(t) , which is simply the general solution of

d2y

dt
− 5

dy

dt
+ 4y = 0

but we solve r2 − 5r + 4 = (r − 1)(r − 4) = 0 and get r = 1, 4 so that the solution is

yh(t) = c1e
t + c2e

4t.

• Step2: Wrong Guess yp(t) = Ae4t because

d2yp
dt
− 5

dyp
dt

+ 4yp = 16Ae4t − 20Ae4t + 4Ae4t = 0.

But we should have known that this wouldn't work. Because he term e4t is part of the homogeneous
solution then plugging it the LHS will of course give us zero. Thus whenever you see this second
guess by multiplying by t.
� Second Guess should ways be yp(t) = Ate4t . Find y′p and y′′p (t) on the side and plug into
LHS and get

d2yp
dt
− 5

dyp
dt

+ 4yp =
(
8Ae4t + 16Ate4t

)
− 5

(
Ae4t + 4Ate4t

)
+ 4Ate4t

= 3Ae4t
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� Set LHS equal to RHS and get 3Ae4t = e4t so that A = 1
3 .

• Step3: Plug A back in and get yp(t) = 1
3e

4t and a general solution of

y(t) = c1e
t + c2e

4t +
1

3
te4t.

Example3: Find the general solution of

d2y

dt2
+ 2

dy

dt
+ 10y = 4 cos 2t

• Step1: Find yh which is the general solution to the unforced equation

d2y

dt2
+ 2

dy

dt
+ 10y = 0

which since r2 + 2r + 10 = 0 gives r = −1± 3i must be

yh(t) = c1e
−t cos 3t+ c2e

−t sin 3t.

• Step2: Now as long as the RHS g(t) is not part of yc then we can use that as our guess. So we let
yp(t) = A cos 2t+B sin 2t.

• Step3: Plug into the LHS and set equal to RHS

d2yp
dt2

+ 2
dyp
dt

+ 10y = [−4A cos 2t− 4B sin 2t]

+2 [−2A sin 2t+ 2B cos 2t] + 10 [A cos 2t+B sin 2t]

which gives us

LHS = [−4A+ 4B + 10A] cos 2t+ [−4B − 4A+ 10B] sin 2t = 4 cos 2t+ 0 · sin 2t = RHS

so that

6A+ 4B = 4

−4A+ 6B = 0

gives us A = 6
13 , B = 4

13 .
• Step4: Plug into general solution of y(t) = yh(t) + yp(t) and get

y(t) = c1e
−t cos 3t+ c2e

−t sin 3t+
6

13
cos 2t+

4

13
sin 2t.

Example4: Find the general form of a particular solution of

y′′ − 2y′ − 3y = 5te−t.

• Step1: Find yh which is yh = c1e
−t + c2e

3t.
• Step2: Using our table our �rst guess will be

yp = (At+B) e−t

since At+ B is the general form of a one degree polynomial. But this doesn't work because Be−t

is included in the yc as c1e
−t

• Second Guess:
yp = t (At+B) e−t

now both At2e−t and Bte−t are di�erent than the terms in yc. Thus this is our correct guess.

Example5: Find the general form of a particular solution of

y′′ + 6y′ + 9y = −7te−3t + t3
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• Step1: Then the characteristic equation is r2 + 6r + 9 = (r + 3)2 = 0, gives the repeated root of
r1 = r2 = −3. Hence

yh(t) = c1e
−3t + c2te

−3t

• Step2: Using our table we make our �rst guess as

yp = (At+B) e−3t + Ct3 +Dt2 + Et+ F

but this is wrong since (At+B) e−3t is included in the yc. So our second guess is to multiply
only that part by t, and get

yp = t (At+B) e−3t + Ct3 +Dt2 + Et+ F

but this still doesn't work since Bte−3t in included in the yc as c2te
−3t.

� Our Third guess is to multiply again only that part by t and get

yp = t2 (At+B) e−3t + Ct3 +Dt2 + Et+ F

this works since none of the terms in the yp are included in the yh.
• Example6 (past exam question): Find the general form of a particular solution of

y′′ + y = t+ t sin t

• Step1: As in Example 3 we know yh(t) = c1 cos t+ c2 sin t.
• Step2: Our �rst guess would normally be yp = At+B+[(Dt+ E) cos t+ (Ft+G) sin t] but notice
that since E cos t and G sin t is included in the yc we need to muiltiply by t and get our �nal guess
of

yp = At+B + t [(Dt+ E) cos t+ (Ft+G) sin t]

Example7: Find the general form of a particular solution of

y′′ + 2y′ + 10y = 4e−t cos 3t+ 17

• Step1: As in Example 3 we know yh(t) = c1e
−t cos 3t+ c2e

−t sin 3t.
• Step2: Since e−t cos 3t is already inside our yc we need to multiply by t .

yp = t
(
Ae−t cos 3t+Be−t sin 3t

)
+ C.

Note that 17 is a zero degree polynomiall , which is why we have the C in the yp.



3.6. VARIATION OF PARAMETERS 67

3.6. Variation of Parameters

• Consider the equation

y′′ + 4y = 3 csc t =
3

sin t
� MOUC doesn't work with quotients, only products.

• We will learn a general formula to solving more general linear non-homoheneous 2nd order ODEs

Theorem. (Variation of Parameters) If p, q, and g are continuous on an open interval I, and if the
functions {y1, y2} form a fundamental set of solutions to the corresponding homogeneous EQ

y′′ + p(t)y′ + q(t)y = 0.

Then a particular solution to

y′′ + p(t)y′ + q(t)y = g(t),

is given by

yp(t) = −y1(t)

∫ t

t0

y2(s)g(s)

W (y1, y2) (s)
ds+ y2(t)

∫ t

t0

y1(s)g(s)

W (y1, y2) (s)
ds

= −y1(t)

[∫
y2(t)g(t)

W (y1, y2) (t)
dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)
dt

]
, if an antiderivative exists

where t0 is any value in I. Then general solution to the non-homogeneous solution is

y(t) = c1y1(t) + c2y2(t) + yp(t).

Proof. See proof in the book. Or see Example 1 in the book for an explaination for this method. But
the idea is this: Suppose

yh(t) = c1y1(t) + c2y1(t)

is the general solution to

y′′ + p(t)y′ + q(t)y = 0.

Then the idea is to use the following guess:

yp(t) = u1(t)y1(t) + u2(t)y2(t)

for non-homogeneous equation. and also make the extra assumption that

u′1(t)y1(t) + u′2(t)y2(t) = 0. (?)

Then take derivatives, simplify and put them back into ODE. Which will always reduce to

LHS = y′′p + p(t)y′p + q(t)yp

= work

= u′1y
′
1(t) + u′2(t)y′2(t)

and set LHS to RHS which is g(t) hence we get equation, that is

u′1(t)y′1(t) + u′2(t)y′2(t) = g(t). (??)

Putting (?) and (??) together we have the two equations:{
u′1(t)y1(t) + u′2(t)y2(t) = 0

u′1y
′
1(t) + u′2(t)y′2(t) = g(t)
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which boils to solving for u′1(t) and u′2(t) and getting{
u′1(t) = − y2(t)g(t)

W (y1,y2)(t)

u′2(t) = y1(t)g(t)
W (y1,y2)(t)

which by integrating we have {
u1(t) = −

∫ y2(t)g(t)
W (y1,y2)(t)

dt

u2(t) =
∫ y1(t)g(t)
W (y1,y2)(t)

dt

�

• Example 1: (previous Exam Q.) Find a particular solution to

y′′ + 4y =
1

cos (2t)
.

� Step1: First �nd yh if possible. In this case yhwill be given by solving r2 + 4 = 0 so that
r = ±2i hence

yh(t) = c1 cos(2t) + c2 sin (2t) .

Thus y1(t) = cos(2t) and y2(t) = sin (2t).
� Step2: Find the Wronskian:

W (y1, y2)(t) =

∣∣∣∣ cos(2t) sin (2t)
−2 sin(2t) 2 cos(2t)

∣∣∣∣
= 2 cos2(2t) + 2 sin2(2t)

= 2
[
cos2(2t) + sin2(2t)

]
= 2 · 1 = 2.

� Step3: Use our formula with g(t) = 1
cos(2t) and get

yp(t) = −y1(t)

[∫
y2(t)g(t)

W (y1, y2) (t)
dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)
dt

]
= − cos(2t)

[∫
1

2

sin(2t)

cos (2t)
dt

]
+ sin(2t)

[∫
cos(2t)

2

1

cos (2t)
dt

]
= − cos(2t)

[
1

2

∫
sin(2t)

cos (2t)
dt

]
+
t

2
sin(2t)

now you can remenber the antiderivative of
∫

tan(2t)dt ot use u-substitution with u = cos(2t)
and get du = −2 sin(2t)dt so that∫

sin(2t)

cos (2t)
dt = −1

2

∫
du

u
= −1

2
ln |u| = −1

2
ln |cos(2t)|

hence

yp(t) =
1

4
cos(2t) ln |cos(2t)|+ t

2
sin(2t).

• Example 2: Find the general solution to

t2y′′ + 2ty′ − 2y = 6t

given that

y1(t) = t, y2(t) = t−2
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forms a fundamental set of solution for the corresponding homogeneous di�erential equation.
� Solution:
� Step1: Since y1(t) = t, y2(t) = t−2 forms a fundamental set of solution, this means that the
general solution for the homogeneous equation is

yh = c1t+ c2t
−2.

� Step2: Find the Wronskian:

W (y1, y2)(t) =

∣∣∣∣ t t−2

1 −2t−3

∣∣∣∣
= −2t−2 − t−2 = −3t−2 6= 0,

� Step3: Rewrite the equation in the form y′′ + p(t)y′ + q(t)y = g(t) and hence

y′′ +
2

t
y′ − 2

t2
y =

6

t
.

Use our formula with g(t) = 6
t and get

yp(t) = −y1(t)

[∫
y2(t)g(t)

W (y1, y2) (t)
dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)
dt

]
= −t

[∫
t−2

−3t−2
6

t
dt

]
+ t−2

[∫
t

−3t−2)

6

t
dt

]
= −t

[∫
2

t
dt

]
+ t−2

[∫
−2t2dt

]
= −t [2 ln t] + t−2

[
−2

3
t3
]

= −2t ln t− 2

3
t.

hence the general solution is

y(t) = yh + yp

= c1t+ c2t
−2 − 2t ln t− 2

3
t.

• Example 3: Find the general solution to

t2y′′ − 3ty′ + 3y = 8t3, t > 0

given that

y1(t) = t, y2(t) = t3

forms a fundamental set of solution for the corresponding homogeneous di�erential equation.
� Solution:
� Step1: Since y1(t) = t, y2(t) = t3 forms a fundamental set of solution, this means that the
general solution for the homogeneous equation is

yh = c1t+ c2t
3.
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� Step2: Find the Wronskian:

W (y1, y2)(t) =

∣∣∣∣ t t3

1 3t2

∣∣∣∣
= 3t3 − t3 = 2t3 6= 0,

� Step3: Rewrite the equation in the form y′′ + p(t)y′ + q(t)y = g(t) and hence

y′′ − 3

t
y′ +

3

t2
y = 8t, .

Use our formula with g(t) = 8t and get

yp(t) = −y1(t)

[∫
y2(t)g(t)

W (y1, y2) (t)
dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)
dt

]
= −t

[∫
t3

2t3
8tdt

]
+ t3

[∫
t

2t3
8tdt

]
= −t

[∫
4tdt

]
+ t3

[∫
4

t
dt

]
= −t

[
2t2
]

+ t3 [4 ln t]

= −2t3 + 4t3 ln t

hence the general solution is

y(t) = yh + yp

= c1t+ c2t
3 − 2t3 + 4t3 ln t.
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3.7. Modeling Harmonic Oscillators

• It turns out that second order ODE model harmonic oscillators. The simplest example of a harmonic
oscillator are the motions of a spring.

Spring-Mass System:

• Suppose a mass m hangs from a vertical spring of original length l.

• Consider a spring
• We will study the motion of a mass when it is acted on by an external force (forcing function)
and/or is initially displaced.
� u(t) =displacement of the mass from its equilibrium position at time t, measure downward as
being positive.

• What kind of motion, do you get?
� Some kind of trig motion, right?

• The motion of u(t) is modeled by the following:

mu′′(t) + γu′(t) + ku(t) = F (t) u(0) = u0, u
′(0) = v0.

where m, γ, k are positive.
� m is found from w = mg
� γ is given in units of weight unit·s

distance unit .
� k is found using Hooke's Law, mg = kL

• Example1: A 4 lb mass stretches a spring 2 inches. The mass is displaced an additional 6 in. and

then released; and is in a medium with a damping coe�cients γ = 2 lb sec
ft . Formulate the IVP that

governs the motion of this mass:
� Solution:

∗ Find m: w = mg which implies

m =
w

g
=

4 lb

32 ft/s^2
=

1

8

lbs2

ft

∗ Find γ: Given

γ = 2
lb sec

ft
.

∗ Find k: (Hooke's Law)

k =
mg

L
=

4 lb

2 in
=

4 lb

(1/6) ft
= 24

lb

ft
.

∗ Thus
1

8
u′′ + 2u′ + 24u = 0
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hence

u′′ + 16u′ + 192u = 0, u(0) =
1

2
, u′(0) = 0

since u(0) = 6in 1ft
12in = 1

2 .
∗ Solving this

u(t) =
1

4
e−8t

(
2 cos

(
8
√

2t
)

+
√

2 sin
(

8
√

2t
))

.

∗
• Natural Frequency:

� When

u(t) = A cosω0t+B sinω0t = R cos (ω0t− δ)
� Then ω0 = natural frequency.

Undamped Mass-Spring:
When the damping coe�cient γ = 0 (nothing stopping it from oscilating forever) we have

mu′′ + ku = 0

so that mr2 + k = 0 gives r = ±i
√

k
m .This is a special number, so we'll denote it ω0 =

√
k
m . We get

u(t) = A cosω0t+B sinω0t

with period 2π
ω .

• ω0 = natural frequency.

Damped Harmonic oscillator:
When damped,

mu′′(t) + γu′(t) + ku(t) = 0.

In general we'll have the following characteristic equation

mr2 + γr + k = 0

solving for the roots we get

r =
−γ ±

√
γ2 − 4km

2m
.

Things change when the b2 − 4mk =, >,< 0. We'll classify in the following way
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• If γ = 0,
� the oscillator is undamped.
� Mass oscillates forever
� The natural period is 2π

√
m
k .

• If γ > 0 and γ2 − 4km < 0 happens when there are r = α± βi.
� The oscillator is underdamped. The mass oscillates back and forth as it tends to its rest
position. Most Important Case.Th Solutions are

u = Re−γt/(2m) cos (µt− δ)

and u is bounded between ±Re−γRe−γt/(2m).

∗
• If γ > 0 and γ2 − 4km > 0 happens when there are two distinct r1, r2.

� The oscillator is overdamped. The mass tends to its rest position but does not oscillate.

u = c1e
r1t + c2e

r2t, r1, r2 < 0

• If γ > 0 and γ2 − 4km = 0 happens when there is one negative r.
� The oscillator is critically damped. The mass tends to its rest position but does not oscillate.
� Solutions tend to the origin tangent unique line of eigenvectors. Graphs looks like

u = c1e
−γt/(2m) + c2te

−γt/(2m)

• Graphs:
� Underdamped: Blue
� Overldamped: Green:
� Critically damped: Red/Black

Electric Circuts:

• The �ow of charge in certain basic electrical circuits is modeled by second order linear ODEs with
constant coe�cients:

LQ′′(t) +RQ′(t) +
1

C
Q(t) = E(t), Q(0) = Q0, Q

′(0) = Q′0

where Q = charge. (coulombs).
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•

Forced Vibrations

• We consider equations of the form

mu′′ + γu′ + ku = F (t)

wherem > 0, γ > 0, k > 0 are mass, damping coe�cients, and spring constant. Here F (t) represents
external force done to the mass-spring system. (e.g wind or cars driving on a bridge)

• Forced Vibrations
• We consider the case when the force is F (t) = F0 cosωt.

mu′′ + γu′ + ku = F (t)

• Recall that we can write the solution as

u(t) = c1u1(t) + c2u2(t) +A cosωt+B sinωt

= uh + up.

and it turns out that limt→∞ uh(t) = 0. (See examples above)
� We call uh(t) the transient solution.
� up(t) = A cosωt+B sinωt is called the steady-state solution.

• Example2: Consider a undamped harmonic oscillator (spring-mass, or bridges)

u′′ + 2u = cos (ωt) , ω 6=
√

2.

Find the general solution u(t). What is the natural Frequency?
� Solution:

� Step1: Recall that r2 + 2 = 0 so r = ±
√

2i, so that

uh(t) = c1 cos
(√

2t
)

+ c2 sin
(√

2t
)
.

� Step2: We make our �rst guess

up(t) = A cos (ωt) +B sin (ωt)

and there are no repeats with uh as long as ω 6= 0, hence we have the correct guess. Thus

u′p(t) = −Aω sin (ωt) +Bω cos (ωt)

u′′p(t) = −Aω2 cos (ωt)−Bω2 sin (ωt)

hence plugging this into the LHS we have

LHS = u′′p + 2up =
[
−Aω2 cos (ωt)−Bω2 sin (ωt)

]
+ 2A cos (ωt) + 2B sin (ωt)

= A
(
2− ω2

)
cos (ωt) +B

(
2− ω2

)
sin (ωt)
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setting LHS = RHS = 1 · cos (ωt) + 0 sin (ωt) we have

A
(
2− ω2

)
= 1, B

(
2− ω2

)
= 0

A =
1

2− ω2
, B = 0

so that

u(t) = c1 cos
(√

2t
)

+ c2 sin
(√

2t
)

+
1

2− ω2
cos (ωt) .

• Possible behaviors:

• Possible Solutions:
� Beating happens when: natural frequency of spring system is approximately equal to
frequency of the force:

ω0

2π
≈ ω

2π
⇐⇒ ω0 ≈ ω.

� The solution looks like this:
∗ This example had zero intial conditions.

� Resonance: happens when they are equal:

ω0 = ω.
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� But we need a new up to solve for when resonance happens, since can't plug ω =
√

2, into
1

2−ω2 cos (ωt).

∗ We will see that solution looks like this:
• Example3: Solve the following undamped harmonic oscillator:

u′′ + 2u = cos
(√

2t
)
, u(0) = 0, u′(0) = 0.

What is the natural frequency? What is the frequency for the external force? What kind of behavior
of the solution will you get get?
� Solution:

� Step1: Recall that r2 + 2 = 0 so r = ±
√

2i, so that

uh(t) = c1 cos
(√

2t
)

+ c2 sin
(√

2t
)
.

� Thus the Natural Frequency is ω0 =
√

2.
� The External Frequency is ω =

√
2. Since they match, then we will get Resonance!

� Step2: We make our �rst guess

up(t) = A cos
(√

2t
)

+B sin
(√

2t
)

but we know there are repeats so we choose instead our second guess (by multiplying old
guess by t)

up(t) = At cos
(√

2t
)

+Bt sin
(√

2t
)

� Thus

u′p(t) = A cos
√

2t−A
√

2t sin
√

2t

+B sin
√

2t+B
√

2t cos
√

2t

u′′p(t) = −
√

2A sin
√

2t−A
√

2 sin
√

2t

−A2t cos
√

2t

B
√

2 cos
√

2t+B
√

2 cos
√

2t

−B2t sin
√

2t
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hence plugging this into the LHS we have

LHS = u′′p + 2up = simplify

= 2
√

2B cos
(√

2t
)
− 2
√

2A sin
(√

2t
)

setting LHS = RHS = 1 · cos
(√

2t
)

+ 0 sin
(√

2t
)
we have

2
√

2B = 1, −2
√

2A = 0

B =
1

2
√

2
, A = 0

so that

u(t) = c1 cos
(√

2t
)

+ c2 sin
(√

2t
)

+
1

2
√

2
t sin

(√
2t
)
,

using initial consition we have c1 = 0, c2 = 0.

u(t) =
1

2
√

2
t sin

(√
2t
)

� Hence we get the picture similar to the one above since

1

2
√

2
t sin

(√
2t
)
≈ ± t

2
√

2
when t is large.
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3.8. Mechanical and Electrical Vibrations

Recall Summary of Shortcuts:
So if you have

au′′ + bu′ + cu = 0

then �nd the roots of

ar2 + br + c = 0.

The general solutions are the following:
roots: The general Solution Example

r1, r2 =real, distint y(t) = c1e
r1t + c2e

r2t (r + 1) (r − 1) = r2 − 1 = 0
r = λ± iµ,imaginary y(t) = c1e

λt cosµt+ c2e
λt sinµt r2 + 1 = 0

r = r1,real, repeasted y(t) = c1e
r1t + c2te

r1t. (r − 2)
2

= 0

• Goal: The equation
ay′′ + by′ + cy = 0

models a Harmonic oscillator: In particular, we will study the motion of a mass attached to a
vibrating spring.

Spring-Mass System:

• Suppose a mass m hangs from a vertical spring of original length l. The mass causes an elongation
L of the spring.

• The force FG of gravity pulls the mass down. This force has magnitude mg, where g is acceleration
due to gravity.

• The force Fs of the spring sti�ness: always acts to pull spring to natural position. Force is upward.
� For small elongations L, this force is proportional to L. That is, Fs = −kL (Hooke's Law).
Thus the mass is in equilibrium when the forces balance out:

mg = kL (?)

� We use this EQ to solve for k = units of (force/length)

• We have the follwing scenario:
• We will study the motion of a mass when it is acted on by an external force (forcing function)
and/or is initially displaced.
� u(t) =displacement of the mass from its equilibrium position at time t, measure downward as
being positive.

• Using Newton's second Law:

mu′′(t) = f(t)

where f is the new force acting on the mass.
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� The forces are:
∗ Weight: w = mg (downward force)
∗ Spring force: Fs = −k (L+ u(t)) (up or down force)
∗ Damping force: Fd(t) = −γu′(t) (up or down): may be due to air resistance, friction,
machanical device:
· It acts in the opposite direction as the motion of the mass

∗ External force: F (t) (up or down)
• Putting it all together

mu′′(t) = mg + Fs(t) + Fd(t) + F (t)

= mg − k (L+ u((t))− γu′(t) + F (t)

which using mg = kL and simplifying we have

mu′′(t) + γu′(t) + ku(t) = F (t) u(0) = u0, u
′(0) = v0.

where m, γ, k are positive.
� m is found from w = mg
� γ is given in units of weight unit·s

distance unit .
� k is found from mg = kL

• Example1: A 4 lb mass stretches a spring 2 inches. The mass is displaced an additional 6 in.
and then released; and is in a medium that exerts a viscous resistance of 6 lb when the mass has a
velocity of 3 ft/sec. Formulate the IVP that governs the motion of this mass:
� Solution:

∗ Find m: w = mg which implies

m =
w

g
=

4 lb

32 ft/s^2
=

1

8

lbs2

ft

∗ Find γ: Using γu′ = 6 lb we have

γ =
6 lb

3 ft/sec
= 2

lb sec

ft
.

∗ Find k:

k =
mg

L
=

4 lb

2 in
=

4 lb

(1/6) ft
= 24

lb

ft
.

∗ Thus
1

8
u′′ + 2u′ + 24u = 0

hence

u′′ + 16u′ + 192u = 0, u(0) =
1

2
, u′(0) = 0

since u(0) = 6in 1ft
12in = 1

2 .
∗ Solving this

u(t) =
1

4
e−8t

(
2 cos

(
8
√

2t
)

+
√

2 sin
(

8
√

2t
))

.
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∗
Undamped Mass-Spring:

When the damping coe�cient γ = 0 (nothing stopping it from oscilating forever) we have

mu′′ + ku = 0

so that mr2 + k = 0 gives u r = ±i
√

k
m .This is a special number, so we'll denote it ω0 =

√
k
m . We get

u(t) = A cosω0t+B sinω0t

with period 2π
ω .

• Phase plane of (u(t), u′(t)) look like ellipses.
• Mass either oscillates forever or stays at rest.
• Using trig:

u(t) = A cosω0t+B sinω0t = R cos (ω0t− δ)
where

A = R cos δ,R =
√
A2 +B2

B = R sin δ, tan δ =
B

A
.

• T = 2π
ω0

= 2π
√

m
k . The Period:

• ω0 = natural frequency.
• R = amplitude of the maximum displacement of mass from equilibrium
• δ = phase angle. measures displacement of the wave from its normal position corresponding to

δ = 0. (note that the �rs extrema happens at t = δ
ω0
)

• Example2(popular exam question): Determine ω0, R and δ and rewrite as a cosine the expres-
sion

u(t) = 3 cos(2t) + 4 sin(2t).

� Solution: We have that

u(t) = R cos (ω0t− δ)
where R =

√
32 + 42 = 5 , ω0 = 2 and tan δ = 4

3 hence δ = tan−1( 4
3 ) and we obtain

u(t) = 5 cos

(
2t− tan−1

(
4

3

))
.
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� Something like this:

� Example:

Damped Harmonic oscillator:
In general we'll have the following characeteristic equation

mr2 + γr + k = 0

solving for the roots we get

r =
−γ ±

√
γ2 − 4km

2m
.

Things change when the b2 − 4mk =, >,< 0. We'll classify in the following way

• If γ = 0,
� the oscillator is undamped.
� The equilbrium point at the origin is a center (i.e. ellipse,circles). Possible Graphs:
� Mass oscillates forever
� The natural period is 2π

√
m
k .

• If γ > 0 and γ2 − 4km < 0 happens when there are r = α± βi.
� The oscillator is underdamped. The mass oscillates back and forth as it tends to its rest
position.

� Possible Graphs:
� The most important case is γ2 − 4km < 0:

∗ Then

u = Re−γt/(2m) cos (µt− δ)

and u is bounded between ±Re−γRe−γt/(2m).

∗
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∗ µ =called the quasi-frequency:

µ =

√
4km− γ2

2m

∗ Td = (2π)/µ is called the quasi period.
∗ Td

T = ω0

µ

• If γ > 0 and γ2 − 4km > 0 happens when there are two distinct r1, r2.
� The oscillator is overdamped. The mass tends to its rest position but does not oscillate.
� The equilbrium point is a real sink Possible Graphs:

u = Aer1t +Ber2t, r1, r2 < 0

• If γ > 0 and γ2 − 4km = 0 happens when there is one negative r.
� The oscillator is critically damped. The mass tends to its rest position but does not oscillate.
� Solutions tend to the origin tangent unique line of eigenvectors. Graphs looks like

u = Ae−γt/(2m) +Bte−γt/(2m)

• Graphs:
� Underdamped: Blue
� Overldamped: Green:
� Critically damped: Red/Black

• Example3: ASuppose the motion of a spring-mass system is governed by

u′′ + .125u′ + u = 0, u(0) = 2, u′(0) = 0.

� Part(a): Find the quasi frequency and quasi period.
∗ We can get

u(t) = e−t/6

(
2 cos

√
255

16
t+

2√
255

sin

√
255

16
t

)

=
32√
255

e−t/6

(√
255

16
t− δ

)

now tan δ = B
A = 1√

255
so that δ = .06254

∗ Quasi Frequency: µ =

√
4km−γ2

2m =
√

255/16 = .998
∗ Quasi Period: Td = 2π/µ = 6.295

� Part(b): Find time at which mass passes through equlibrium position
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∗ We set
32√
255

e−t/6

(√
255

16
t− δ

)
= 0

and get √
255

16
t− δ =

π

2
so that

t ≈ 1.637 sec

� Part(c): Find τ such that |u(t)| < .1 for all t > τ

∗ Use a computer/calculator:
∗ Get τ = 47.515.

Electric Circuts:

• The �ow of charge in certain basic electrical circuits is modeled by second order linear ODEs with
constant coe�cients:

LQ′′(t) +RQ′(t) +
1

C
Q(t) = E(t), Q(0) = Q0, Q

′(0) = Q′0

where Q = charge. (coulombs).

•
• Or
• The �ow of current in certain basic electrical circuits is modeled by second order linear ODEs
with constant coe�cients:

LI ′′(t) +RI ′(t) +
1

C
I(t) = E′(t), I(0) = I0, I

′(0) = I ′0

where I(t) =current (amperes)
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3.9. Forced Vibrations

• Forced Vibrations with damping:
� We consider equations of the form

mu′′ + γu′ + ku = F (t)

where m > 0, γ > 0, k > 0 are mass, damping coe�cients, and spring constant. Here F (t)
represents external force done to the mass-spring system.

� We consider the case when

F (t) = F0 cosωt.

� Recall that we can write the solution as

u(t) = c1u1(t) + c2u2(t) +A cosωt+B sinωt

= uc + up.

� To �nd, uc: we solve mr
2 + γr + kr = 0 and get

r =
−γ ±

√
γ2 − 4mk

2m
∗ Since m, γ, k > 0 then

· r1, r2 =, real, negative: limt→∞ uc(t) = limt→∞ (c1e
r1t + c2e

r2t) = 0, or limt→∞ uc(t) =
limt→∞ (c1e

r1t + c2te
r2t) = 0.

· r1, r2 = imaginary, negative real part: limt→∞ uc(t) = limt→∞
(
c1e

λt cosµt+ c2e
λt sinµt

)
=

0.
· In either case:

lim
t→∞

uc(t) = 0.

• Summary:
� If solving: mu′′ + γu′ + ku = F0 cosωt
� Solution: u(t) = uc(t) +A cosωt+B sinωt where limt→∞ uc(t) = 0) = 0.

∗ We call uc(t) the transient solution.
∗ up(t) = A cosωt+B sinωt is called the steady-state solution.

· This means that in the long term, the solution u(t) ≈ up(t) and up(t) has the same
frequency as the force F .
· Without damping, the e�ect by intial conditions would persist for all time.

� Solutions look like this:

�
• Studying Amplitude: (if time permits)
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� Using trig identities we have that the steady state solution can be rewritten

up(t) = A cos (ωt) +B sin (ωt)

= R cos (ωt− δ)

where

R =
F0√

m2 (ω2
0 − ω)

2
+ γ2ω2

= amplitude

where

cos δ =
m
(
ω2
0 − ω2

)√
m2 (ω2

0 − ω)
2

+ γ2ω2

and sin δ =
γω√

m2 (ω2
0 − ω)

2
+ γ2ω2

.

and ω2
0 = k

m .
• Example1:

� A mass of 3 kg stretches a spring 5 cm.
� The mass is acted on by external force of 7 cos (3t) N
� It moves in a medium that imparts a viscous force of 3 N when the speed of the mass is 2
cm/s.

� If the mass is set in motion from its equilibrium position w/ initial velocity 3 cm/s, formulate
IVP:

� Solution:

� Recall 1 N = 1 kg·m
s2 =⇒ need to convert cm/s to m/s

� 2 cms = 2 cms
1m

100cm = .02ms .
� 3 cms = .03ms
� 5 cms = .05ms
� Recall

mu′′ + γu′ + ku = 7 cos (3t) .

� Remenber: mg = kL =⇒ 3 · 9.8 = k · .05 so

k =
3 · 9.8
.05

= 588
kg

s2
.

� Damping Force= 3N when |u′| = .02, so

3 = γ · (.02) =⇒ γ = 150
N · s
m

.

� Thus

3u′′ + 150u′ + 588u = 7 cos (3t) .

• Forced Vibrations without damping:
• Example2: Consider

u′′ + 2u = cos (ωt) , ω 6=
√

2.

� Solution:

� Step1: Recall that r2 + 2 = 0 so r = ±
√

2i, so that

uh(t) = c1 cos
(√

2t
)

+ c2 sin
(√

2t
)
.
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� Step2: We make our �rst guess

up(t) = A cos (ωt) +B sin (ωt)

and there are no repeats with uc as long as ω 6= 0, hence we have the correct guess. Thus

u′p(t) = −Aω sin (ωt) +Bω cos (ωt)

u′′p(t) = −Aω2 cos (ωt)−Bω2 sin (ωt)

hence plugging this into the LHS we have

LHS = u′′p + 2up =
[
−Aω2 cos (ωt)−Bω2 sin (ωt)

]
+ 2A cos (ωt) + 2B sin (ωt)

= A
(
2− ω2

)
cos (ωt) +B

(
2− ω2

)
sin (ωt)

setting LHS = RHS = 1 · cos (ωt) + 0 sin (ωt) we have

A
(
2− ω2

)
= 1, B

(
2− ω2

)
= 0

A =
1

2− ω2
, B = 0

so that

u(t) = c1 cos
(√

2t
)

+ c2 sin
(√

2t
)

+
1

2− ω2
cos (ωt) .

• Possible Solutions:
� Beating happens when: natural frequency of spring system is approximately equal to fre-
quency of the force:

ω0

2π
≈ ω

2π
⇐⇒ ω0 ≈ ω.

� The solution looks like this:
∗ This example had zero intiial conditions.

� Resonance: happens when they are equal (this will be very interesting!):

ω0 = ω.

� But we need a new up to solve for when resonance happens, since can't plug ω =
√

2.

1

2− ω2
cos (ωt)
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∗ We will see that solution looks like this:
∗ Notice that all of the physical phenomena we've observed so far either

· stayed oscillating forever (when undamped, not outside force),
· converged to zero (when damped, when no outside force happens),
· or the solution converges to a oscillating steady state solution (with outside force)
· Resonance, was the only one that blew up!

∗ Resonance can be either good or bad, depending on circumstances; for example, when
building bridges or designing seismographs.
· Go on youtube and search: Tacoma Narrows resonance.

• Example3: Consider

u′′ + 2u = cos
(√

2t
)
, u(0) = 0, u′(0) = 0.

� Solution:

� Step1: Recall that r2 + 2 = 0 so r = ±
√

2i, so that

uc(t) = c1 cos
(√

2t
)

+ c2 sin
(√

2t
)
.

� Step2: We make our �rst guess

up(t) = A cos
(√

2t
)

+B sin
(√

2t
)

but we know there are repeats so we choose instead our second guess (by multiplying old
guess by t)

up(t) = At cos
(√

2t
)

+Bt sin
(√

2t
)

� Thus

u′p(t) = A cos
√

2t−A
√

2t sin
√

2t

+B sin
√

2t+B
√

2t cos
√

2t

u′′p(t) = −
√

2A sin
√

2t−A
√

2 sin
√

2t

−A2t cos
√

2t

B
√

2 cos
√

2t+B
√

2 cos
√

2t

−B2t sin
√

2t
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hence plugging this into the LHS we have

LHS = u′′p + 2up = simplify

= 2
√

2B cos
√

2t− 2
√

2A sin
√

2t

setting LHS = RHS = 1 · cos
(√

2t
)

+ 0 sin
(√

2t
)
we have

2
√

2B = 1, −2
√

2A = 0

B =
1

2
√

2
, A = 0

so that

u(t) = c1 cos
(√

2t
)

+ c2 sin
(√

2t
)

+
1

2
√

2
t sin

(√
2t
)
,

using initial consition we have c1 = 0, c2 = 0.

u(t) =
1

2
√

2
t sin

(√
2t
)

� Hence we get the picture similar to the one above since

1

2
√

2
t sin

(√
2t
)
≈ ± t

2
√

2
when t is large.

• Other applications of 2nd Order ODEs:
� What are some applications of 2nd order ODEs in your major? What are some applications
of Di�erential Equations that you �nd interesting?



CHAPTER 4

Higher Order Linear Equations

4.1. Higher Order Systems

• Everything we did in Chapter 3 can be extended to higher order systems.
� Suppose we have the equation

an(t)y(n) + an−1(t)y(n−1) + · · ·+ a1(t)y′ + a0(t)y = g(t)

� We assume that an(t), . . . , a0(t) are continuous functions on an interval I, and that an(t) 6= 0
inside the interval: so that we can write it as

y(n) + pn−1(t)y(n−1) + · · ·+ p1(t)y′ + p0(t)y = g(t). (?)

with initial conditions

y(t0) = t0, y
′(t0) = y′0, · · · , y(n−1)(t0) = y

(n−1)
0 . (?)

� Uniqueness/Existence Theorem: If pn−1(t), . . . , p0(t) are continuous functions on an open
interval I (containing t0), then there exists a unique solution y = φ(t) throughout all of I to
the IVP in (?).

• Example1: Consider the ODE

(t− 2)y(4) + sin ty′′′ + ln ty =
√
t+ 5.

Find the intervals where you are guaranteed a unique solution to this ODE by the Uniqueness and
Existence Theorem.
� Solution: Rewriting we have

y(4) +
sin t

(t− 2)
y′′′ +

ln t

(t− 2)
y =

√
t+ 5

(t− 2)

and
∗ sin t

(t−2) is comtinuous when t 6= 2

∗ ln t
(t−2) is continuous when t > 0 and t 6= 2, and

∗
√
t+5

(t−2) is continuous when t ≥ −5 and t 6= 2.

∗ Making a number line we see that all three functions are continuous when either on the
interval (0, 2) or (2,∞).

• Consider the Homogeneous EQ with constant coe�cients:

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0.

89
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� As we did in the 2nd order case, the �rst thing we do is guess that the solution will look like
y = ert and

y = ert

y′ = rert,

...

y(n) = rnert

and plugging into the LHS and setting equal to zero we have

LHS = an
(
rnert

)
+ · · ·+ a1

(
rert

)
+ a0

(
ert
)

= ert (anr
n + · · ·+ a0)

= RHS = 0

hence

ert (anr
n + · · ·+ a0) = 0

but since ert 6= 0 then

anr
n + · · ·+ a1r + a0 = 0.

� As before the characteristic equation is given by:

anr
n + · · ·+ a0︸ ︷︷ ︸
Z(r)

= 0,

where we call Z(r) the characteristic polynomial.
∗ How do we solve n−degree polynomials? By factoring!

Z(t) = an (r − r1) (r − r2) · · · (r − rn) .

∗ General Solution: Solutions to the ODE are built exactly like in the 2nd degree case.
· If there are any repeat solutions, then keep multiplying by t until you don't have
any more repeat solutions.

• Example1: Find general solution and the particular solution to the IVP

y′′′ − 2y′′ − y′ + 2y = 0. y(0) = 0, y′(0) = 1, y′(0) = 2.

(Hint: Suppose you know r3 − 2r2 − r + 2 = (r − 2) (r + 1) (r − 1))
� Solution: Characteristic equation is 2r3 − 4r2 − 2r + 4 = 0 and by the hint we have

(r − 2) (r + 1) (r − 1) = 0

hence the general solution is y(t) = c1e
2t + c2e

−t + c3e
t. To �nd the particular solution to the

IVP we start by:

y(t) = c1e
2t + c2e

−t + c3e
t

y′(t) = 2c1e
2t − c2e−t + c3e

t

y′′(t) = 4c1e
2t + c2e

−t + c2e
t.
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then we have to solve the following system of equations:

0 = c1 + c2 + c3

1 = 2c1 − c2 + c3

2 = 4c1 + c2 + c3

and get c1 = 2
3 , c2 = − 1

6 and c3 = − 1
2 , hence

y(t) =
2

3
e2t − 1

6
e−t − 1

2
et.

• Example2: Find general solution of

y(4) + 8y′′′ + 16y′′ = 0.

(Hint: r4 + 8r3 + 16r2 = r2 (r + 4)
2
)

� Solution: Characteristic polynomial

r4 + 8r3 + 16r2 = 0

which by the hint we know

r2 (r + 4)
2

= 0.

� Note that since this a 4th degree polynomial we need to have 4 roots: 0, 0,−4,−4. So we use
the same method we do when we have repeats and get

y(t) = c1e
0t + c2te

0t + c3e
−4t + c4te

−4t

= c1 + c2t+ c3e
−4t + c4te

−4t.

• Example3: Solve

y(4) + y′′′ − 5y′′ + y′ − 6y = 0.

(Hint: Suppose (r − 2) (r + 3)
(
r2 + 1

)
)

� Solution: The characteristic equation is given by

r4 + r3 − 5r2 + r − 6 = 0

and by the hint

Z(r) = (r − 2) (r + 3)
(
r2 + 1

)
= 0

which gives

r = 2,−3,±i
hence

y(t) = c1e
2t + c2e

−3t + c3 cos t+ c3 sin t.

• Example4: Solve

y′′′ − 3y′′ + 3y′ − y = 0.

(Hint: r3 − 3r2 + 3r − 1 = (r − 1) (r − 1)
2
)

� Solution: The characteristic polynomial is r3 − 3r2 + 3r − 1 = 0 and by the hint,

(r − 1)
3

= 0

� So that r = 1, 1, 1

y(t) = c1e
t + c2te

t + c3t
2et.
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• Example5: Solve

y(4) + 8y′′ − 9y = 0

(Hint: r4 + 8r2 − 9 =
(
r2 − 1

) (
r2 + 9

)
)

� Solution: By the hint

r4 + 8r2 − 9 =
(
r2 − 1

) (
r2 + 9

)
= (r − 1) (r + 1) (r − 3i) (r + 3i) .

then
y(t) = c1e

t + c2e
−t + c3 cos(3t) + c4 sin(3t).

• Example6: Suppose the roots of the characteristic equation are

2, 3, 3, 3, 2± 3i, 2± 3i

then the general solution is

y(t) = c1e
2t + c2e

3t + c3te
3t + c4t

2e3t

+ c5e
2t cos(3t) + c6e

2t sin(3t)

+ c5te
2t cos(3t) + c6te

2t sin(3t).
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4.2. The Method of Undetermined Coe�cients

• We consider

y(n) + pn−1(t)y(n−1) + · · ·+ p1(t)y′ + p0(t)y = g(t)

where g(t) can be a polynomial, sin, cos, exp or products of these.
� Recall the General solution is of the form: y = yh + yp where yh is the general solution of the
corresponding homogeneous equation and yp is a particular solution to the non-homogeneous
equation.

• Example1: Find the general solution of

y′′′ − y′′ − y′ + y = 2e−t + 3.

(Hint: r3 − r2 − r + 1 = (r − 1) (r − 1) (r + 1))
� Step1: We �nd yh: Solve r

3 − r2 − r + 1 = 0, but by the hint

(r − 1) (r − 1) (r + 1) = 0

so that yh = c1e
t + c2te

t + c3e
−t.

� Step2: Find yp: We �rst guess yp = Ae−t + B, but there are repeats with yh hence we get
a second �nal guess of

yp = Ate−t +B

y′p = Ae−t −Ate−t

y′′p = −Ae−t −Ae−t +Ate−t = −2Ae−t +Ate−t

y′′′p = 2Ae−t +Ae−t −Ate−t = 3Ae−t −Ate−t

Hence

LHS = 3Ae−t −Ate−t

+ 2Ae−t −Ate−t

−Ae−t +Ate−t

+Ate−t +B

= 4Ae−t +B

� Step3: Set LHS=RHS so that

LHS = 4Ae−t +B = 2e−t + 3 = RHS

hence

4A = 2, B = 3

A =
1

2

hence

yp =
1

2
te−t + 3

so that the General Solution is

y = c1e
t + c2te

t + c3e
−t +

1

2
te−t + 3.
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• Example2: Consider
y′′′ + 4y′ = t+ sin(4t).

Find the general form of yp.
� Step1: We �nd yh: Solve

r3 + 4r = 0

r
(
r2 + 4

)
= 0

so that yh = c1 + c2 cos 2t+ c3 sin 2t.
� Step2: Find yp:

∗ First Guess: yp = At+B + C cos(4t) +D sin(4t). But B is already in yc as c1.
∗ Second Guess: yp = t (At+B) + C cos(4t) +D sin(4t) which is correct.

• Example3: Consider

y(4) − 2y′′ + y = et + te−t.

Find the general form of yp. (Hint: r
4 − 2r2 + 1 =

(
r2 − 1

)2
)

� Step1: We �nd yh: Solve

r4 − 2r2 + 1 = 0(
r2 − 1

)2
= 0

so that yh = c1e
t + c2te

t + c3e
−t + c4te

−t.
� Step2: Find yp:

∗ First Guess: yp = Aet + (Bt+ C) e−t.
∗ Second Guess: yp = Atet +

(
Bt2 + Ct

)
e−t.

∗ Third Guess: yp = At2et +
(
Bt3 + Ct2

)
e−t.

• Example4: Suppose

y(5) = t3,

�nd the general form for yp.
� Step1: We �nd yh: The roots to r

5 = 0 are

r = 0, 0, 0, 0, 0

so that

yc = c1 + c2t+ c3t
2 + c4t

3 + c4t
4

� Step2: Find yp:
∗ First Guess: yp = At3 +Bt2 + Ct+D
∗ Final Guess: yp = t5

(
At3 +Bt2 + Ct+D

)
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Series Solutions of Second Order Linear Systems

• Let us consider a Linear homogeneous equation

a(x)y′′ + b(x)y′ + c(x)y = 0.

• When we do not have constant coe�cients, recall from the last chapter that we had very limit
techniques in solving such equations in full generality. Sometimes we can't �nd a solution in terms
of elementary functions (polynomials, trig, ln, etc). But sometimes such ODEs are very important
and we'd still like to solve them in some way if possible.

• One important example (which is even useful in my research of Probability Theory) is the so callled
Bessel Di�erential Equation:

x2y′′ + xy′ +
(
x2 − ν2

)
y = 0, x > 0

where ν is some constant.
• For sake of simplicity, let us pick ν = 0, so that

x2y′′ + xy′ + x2y = 0 x > 0

and we can rewrite this equation by dividing by x2 to get

y′′ +
1

x
y′ + y = 0, x > 0.

• This seems like such a simple equation, there's gotta to be a solution we can write down! But it
turns out there is no nice solution in terms of elementary functions!
� But, recall that for any linear homogeneous equation

y′′ + p(x)y′ + q(x)y = 0,

when p, q are continuous then we know there are solutions y1, y2 that gives the general solution

y = c1y1 + c2y2.

• Thus we know that there is a general solution to

y′′ +
1

x
y′ + y = 0, x > 0

given by

y(x) = c1y1(x) + c2y2(x)!

� How do we �nd y1 and y2 ?
� In turns out that one way to solve this Bessel ODE, we need to use power series!
� Recall that we can write di�erentiable functions y(x) by a power series of the form

y(x) =

∞∑
n=0

an (x− x0)
n

95



96 5. SERIES SOLUTIONS OF SECOND ORDER LINEAR SYSTEMS

for some x0.
� Using the Power Series method one can �nd out that

y1(x) = J0(x),

y2(x) = Y0(x)

where

J0(x) =

∞∑
n=0

(−1)n

(n!)
2

22n
x2n.

� J0(x) is called the Bessel function of �rst kind of order ν = 0.
� Y0(x) is called the Bessel function of second kind of order ν = 0.
� And Y0(x) can also be represented by a series, but more complicated.
� Actually, another way to write Y0 is as an integral,

Y0(x) = − 2

π

∫ ∞
1

cos (tx)√
t2 − 1

dt, x > 0

• Thus the general solution to Bessel Equation

y′′ +
1

x
y′ + y = 0, x > 0

is given by

y(x) = c1J0(x) + c2Y0(x)

= c1

∞∑
n=0

(−1)n

(n!)
2

22n
x2n − c2

∫ ∞
1

2

π

cos (tx)√
t2 − 1

dt.



CHAPTER 6

The Laplace Transform

6.1. De�nition of the Laplace Transform

• We de�ne L, the Laplace transform.
• Before de�ning the Laplace Transform we review improper integrals since its de�nition depends
on it.

• Improper Integrals: ∫ ∞
a

f(t)dt = lim
B→∞

∫ B

a

f(t)dt.

� If the limit converges then the improper integral converges.
� If the limit diverges, then the improper integral diverges.

• De�nition: f is piecewise continuous on α ≤ t ≤ β if it is continuous there except for a �nite
number of jump(or removable) discontinuities

• Example: Are the following functions piecewise continutions?

f(t) =


t2 0 ≤ t ≤ 1

1 1 < t ≤ 2

4− t 2 < t ≤ 3

and

g(t) =


t2 0 ≤ t ≤ 1

(t− 1)−1 1 < t ≤ 2

1 2 < t ≤ 3.

� Solution: Sketch the graphs
� f(t) is piecewise continuous since it only has a jump discontinuity.
� g(t) is not since it has a discontinuity that is not jump or removabl

• How do we integrate piecewise functions?
• Example: Consider

�
� Then ∫ β

α

f(t)dt =

∫ t1

α

f(t)dt+

∫ t2

t1

f(t)dt+

∫ β

t2

f(t)dt.

97
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• Goal:

ODE Equation
L

=⇒ Algebraic Equation
⇓

Turn it into an ODE Solution ⇐=
L−1

Solve the Algebrac EQ

• Thus the Laplace transforms a function f(t) into a function F (s)

f(t)
L−→ F (s).

• A transform of f(t) turns f(t) into a di�erent function.
� We will transform functionsf(t) of t into functions F (s) of s.

• De�nition: The Laplace transform of f is de�ned by

L{f(t)} = F (s) =

∫ ∞
0

f(t)e−stdt.

• We assume s is real (though in general it can be complex).
• Existence of L{f(t)}:

� If f is piecewise continuous for [0, a] for all a.
� |f(t)| ≤ Kect for large t.
� Then L [f(t)] = F (s) exists.

• Example1: Find the Laplace transform of f(t) = e9t, t ≥ 0 .
� Solution: We compute

L
{
e9t
}

=

∫ ∞
0

f(t)e−stdt =

∫ ∞
0

e9te−stdt

=

∫ ∞
0

e(9−s)tdt

=
1

9− s

[
e(9−s)t

]t=∞
t=0

=
1

9− s

[
lim
b→∞

e(9−s)b − e0
]

but since

lim
b→∞

e(9−s)b =

{
∞ a− s > 0

0 a− s < 0

then

L
{
e9t
}

=

{
1
s−9 s > 9

not de�ned s < 9
.

• Example2: Find the Laplace transform of f(t) = eat, t ≥ 0 .
� Solution: We can use the same computation as in Example 1, but change every 9 to an a
and get

L
{
eat
}

=
1

s− a
s > a.

• Example3: Find the Laplace transform of f(t) = 1, t ≥ 0 .
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� Solution: Using a = 0 above we have that f(t) = e0·t = 1 hence we can use the formula
above to get

L{1} =
1

s
s > 0.

• Eventually, we'll make a table where we collect all of the Laplace transforms that we have computed,
so that we don't have to redo the work everytime.

• Example4: Find the Laplace transform of f(t) = sin(at).
� Solution: We compute

L{sin at} = F (s) =

∫ ∞
0

e−st sin(at)dt

= lim
B→∞

∫ B

0

e−st sin(at)dt

hence using integration by parts

u = sin(at) dv = e−stdt

du = a cos(at)dt v = −e
−st

s
we have

F (s) = lim
B→∞

[
−e
−st sin(at)

s

∣∣∣∣t=B
t=0

+

∫ B

0

e−st

s
a cos(at)dt

]

= lim
B→∞

[
−e
−sB sin(aB)

s
+ 0 +

∫ B

0

e−st

s
a cos(at)dt

]

= 0 +
a

s

∫ ∞
0

e−st cos(at)dt. (?)

� Integrating
∫∞
0
e−st cos(at)dt again we get

u = cos(at) dv = e−stdt

du = −a sin(at)dt v = −e
−st

s∫ ∞
0

e−st cos(at)dt = lim
B→∞

[
−e
−st cos(at)

s

∣∣∣∣t=B
t=0

−
∫ B

0

e−st

s
a sin(at)dt

]

= lim
B→∞

[
−e
−sB cos(aB)

s
+
e−st

s
− a

s

∫ B

0

e−st

s
a sin(at)dt

]

=

[
0 +

t

s
− a

s

∫ ∞
0

e−st sin(at)dt

]
hence plugging this back into (?) we have

F (t) =
a

s

[
1

s
− a

s

∫ ∞
0

e−st sin(at)dt

]
=
a

s

[
1

s
− a

s
F (s)

]
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hence we can solve this equation using algebra for F (s) and get

F (s) =
a

s2 + a2
, s > 0.

• Properties of the Laplace Transform: Linearity
(1) If f, g are two function where L exists for s > a1 and s > a2, respectively, Then

L{f(t)± g(t)} = L{f(t))} ± L{g(t)} , s > max {a1, a2} ,
and

(2) We have for c ∈ R,
L{cf(t))} = cL{f(t))} .

• Example5: Find the Laplace transform of f(t) = 7− e2t + 4 sin(3t).
� Solution: Using what we have computed we get

L
{

7− e−5t + 4 sin(3t)
}

= L{7} − L
{
e(−5)t

}
+ 4L{sin(3t)}

=
7

s
− 1

s− (−5)
+ 4 · 3

s2 + 9

=
7

s
− 1

s+ 5
+

12

s2 + 9
. s > 0
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6.2. Solutions to Initial Value Problems

• In this section we will show the connection between ODEs and Laplace Transforms.

Theorem. 1. Suppose f has a Laplace transform L{f} (see exact conditions in the textbook) then the
Laplace transform of f ′ is given by

L{f ′(t)} = sL{f(t)} − f(0).

Proof. Let

L{f ′(t)} = lim
B→∞

∫ B

0

f ′(t)e−stdt

and we use integration by parts

u = e−st dv = f ′(t)dt

du = −se−stdt v = f(t)

we have

L{f ′(t)} = lim
B→∞

[
f(t)e−st

]t=B
t=0

+

∫ B

0

f(t)se−stdt

= [0− f(0)] + s

∫ ∞
0

f(t)e−stdt

= −f(0) + sL{f(t)} ,

here we use a condition from Theorem 6.2.1 that says |f(t)| ≤ Keat for t ≥ M which implies that
limB→∞ f(B)e−sB = 0 when s > a. Rearranging gives us the desired result. �

Corollary. Suppose f, f ′, . . . , f (n) are nice functions that have Laplace transforms, then

L
{
f (n)(t)

}
= snL{f(t)} − sn−1f(0) · · · − sf (n−2)(0)− f (n−1)(0).

• Example:
� L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0).
� L{f ′′′(t)} = s3L{f(t)} − s2f(0)− sf ′(0)− f ′′(0).
� Do you see the pattern?

• Inverse Laplace Transforms:
� The Inverse Laplace transform L−1 is the function that satis�es L−1 {L [f ]} = f . In other
words,

L−1 {F} = f ⇐⇒ L{f} = F.

� I like to think of L−1 of going backwords.
� Examples:

∗ L−1
{

1
s

}
= 1.

∗ L−1
{

1
s−1

}
= et

∗ L−1
{

10
s+1

}
= 10L−1

{
1

s−(−1)

}
= 10e−t.

∗ L−1
{

6
s2+7

}
= 6L−1

{
1

s2+(
√
7)

2

}
= 6√

7
L−1

{ √
7

s2+(
√
7)

2

}
= 6√

7
sin
(√

7t
)
.

∗ I'll DO MORE EASY TABLE Examples in class!!!!!!
· t
· cos
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· and so on
∗ In general,

L−1
{

1

s− a

}
= eat.

∗ Finally, let's compute L−1
{

4
(s−1)(s+1)

}
. Whenever we have factor in the denominator,

we need to use partial fractions:

4

(s− 1) (s+ 1)
=

A

(s− 1)
+

B

(s+ 1)
,

hence

4 = A (s+ 1) +B (s− 1) ,

0 · s+ 4 = (A+B) s+ (A−B)

so that

A+B = 0

A−B = 4

and get A = 2, B − 2. Thus

4

(s− 1) (s+ 1)
=

2

s− 1
− 2

s+ 1
.

· Therefore:

L−1
{

4

(s− 1) (s+ 1)

}
= L−1

{
4

(s− 1) (s+ 1)

}
= L−1

{
2

s− 1

}
− L−1

{
2

s+ 1

}
= 2et − 2e−t.

∗ You try: L−1
{

6
s(s+4)

}
. First

6

s (s+ 4)
=
A

s
+

B

(s+ 4)

so that

6 = A (s+ 4) +Bs

or

0s+ 6 = (A+B) s+ 4A

and get

0 = A+B,

6 = 4A



6.2. SOLUTIONS TO INITIAL VALUE PROBLEMS 103

so that A = − 3
2 and B = 3

2 hence

L−1
{

6

s (s+ 4)

}
= L−1

{
3/2

s
+
−3/2

(s+ 4)

}
=

3

2
L−1

{
1

s

}
− 3

2
L
{

1

(s+ 4)

}
=

3

2
· 1− 3

2
L
{

1

s− (−4)

}
=

3

2
· 1− 3

2
e−4t

• Example1: Solve

y′ = y − 4e−t, y(0) = 1

using Laplace transforms.
� Solution:
� Step1: Find the Laplace Transform of the ODE (The going forwards part):

L{y′} = L{y} − 4L
{
e−t
}
⇐⇒ sL{y} − y(0) = L{y} − 4

1

s+ 1

⇐⇒ sL{y} − 1 = L{y} − 4
1

s+ 1
.

� Step2: Solve for L{y} using algebra: and get

L{y} =
1

s− 1
− 4

(s− 1) (s+ 1)
.

� Step3: We want to go backwards and inverse this. But �rst let's do partial fractions:

4

(s− 1) (s+ 1)
=

A

(s− 1)
+

B

(s+ 1)
,

hence

4 = A (s+ 1) +B (s− 1) ,

0 · s+ 4 = (A+B) s+ (A−B)

so that

A+B = 0

A−B = 4

and get A = 2, B = −2. Thus

4

(s− 1) (s+ 1)
=

2

s− 1
− 2

s+ 1
.



104 6. THE LAPLACE TRANSFORM

� Step4: Use the inverse Laplace transform to get

y = L−1 {L {y}} = L−1
{

1

s− 1

}
− L−1

{
4

(s− 1) (s+ 1)

}
= L−1

{
1

s− 1

}
−
(
L−1

{
2

s− 1

}
− L−1

{
2

s+ 1

})
= et − L−1

{
2

s− 1

}
+ L−1

{
2

s+ 1

}
= et − 2et + 2e−t

= −et + 2e−t.

• Example2: Solve
y′ + 4y = 6, y′(0) = 0

using Laplace transforms.
� Solution:
� Step1: Find the Laplace Transform of the ODE (The going forwards part):

L{y′}+ 4L{y} = L{6} ⇐⇒ sL{y} − y(0) + 4L{y} =
6

s

� Step2: Solve for L{y} using algebra: and get

L{y} =
6

s (s+ 4)
.

� Step3: Partial Fractions (We did this already)

6

s (s+ 4)
=

3/2

s
+
−3/2

(s+ 4)

� Step4: Use the inverse Laplace transform to get

y = L−1 {L {y}} = L−1
{

3/2

s
+
−3/2

(s+ 4)

}
=

3

2
L−1

{
1

s

}
− 3

2
L
{

1

(s+ 4)

}
=

3

2
· 1− 3

2
L
{

1

s− (−4)

}
=

3

2
· 1− 3

2
e−4t
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6.3. Solutions to Higher Order IVPs

Recall

Corollary. Suppose f, f ′, . . . , f (n) are nice functions that have Laplace transforms, then

L
{
f (n)(t)

}
= snL{f(t)} − sn−1f(0) · · · − sf (n−2)(0)− f (n−1)(0).

• Example:
� L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0).
� L{f ′′′(t)} = s3L{f(t)} − s2f(0)− sf ′(0)− f ′′(0).

• Table: We will use a table of Laplace transforms to perform more di�cult Inverse Laplace Trans-
forms. See Page 321 in Boyce/DePrima book.

• More practice with Partial Fractions: To do partial fractions make sure you �rst factor the
denominator as much as possible
(1) The correct form of the partial fractions is

5s

(s− 1) (s2 + 1)
=

A

s− 1
+
Bs+ C

s2 + 1

(2) The correct form of the partial fractions is

6s+ 1

(s− 1)
3

(s2 + 3)
=

A

s− 1
+

B

(s− 1)
2 +

C

(s− 1)
3 +

Ds+ E

s2 + 3

(3) The correct form of the partial fractions is

9s− 1

s (s2 + 9) (s− 5)
=
A

s
+
Bs+ C

s2 + 9
+

D

s− 5

(4) The correct form of the partial fractions is

s2 + s− 1

(s2 + 1)
3

(s− 1)
=
As+B

s2 + 1
+

Cs+D

(s2 + 1)
2 +

Es+ F

(s2 + 1)
3 +

G

s− 1
.

(5) The correct form of the partial fractions is

9s+ 1

(s4 + 1) (s2 + 2s+ 10) s2
=
As3 +Bs2 + Cs+D

s4 + 1
+

Es+ F

s2 + 2s+ 10
.

+
G

s
+
H

s2
.

• More practice with taking Inverse Laplace Transform:

(1) F (s) =
1

s4 + s2
�rst let's do partial fractions:

1

s2 (s2 + 1)
=
A

s
+
B

s2
+
Cs+D

s2 + 1

hence

1 = As
(
s2 + 1

)
+B

(
s2 + 1

)
+ (Cs+D) s2

so that

0s3 + 0s2 + 0s+ 1 = (A+ C) s3 + (B +D) s2 +As+B
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and get the equations

A+ C = 0

B +D = 0

A = 0

B = 1

and get B = 1, A = 0, C = 0, D = −1. Thus

1

s2 (s2 + 1)
=

1

s2
− 1

s2 + 1
.

Using Formulas 3 and 5 in the Laplace Trasform table:

L{tn} =
n!

sn+1
, L{sin(at)} =

a

s2 + a2
.

Use get the inverse Laplace transform:

L−1 {F (s)} = L−1
{

1

s2

}
− L−1

{
1

s2 + 1

}
= t− sin t,

(2) (Harder) F (s) =
1− 2s

s2 + 4s+ 5
. Note that we can't factor s2 + 4s + 5 with real roots, thus we

will complete the square.
� Completing the Square: Suppose we have s2+bs+c, then the trick is to ADD/SUBTRACT(

b
2

)2
, and the polynomials will become s2 + bs+ c =

(
s+ b

2

)2 − ( b2)2 + c.

∗ Example: Complete the square for s2 +4s+5: Then b = 4 hence we add/subtract(
b
2

)2
=
(
4
2

)2
= 4. Thus

s2 + 4s+ 5 = s2 + 4s+ 4 + (−4 + 5)

= (s+ 2)
2

+ 1

� Going back to the problem of �nd the Laplace Transform we have that

F (s) =
1− 2s

s2 + 4s+ 5
=

1− 2s

(s+ 2)
2

+ 1

and looking at Numbers 9, and Numbers 10 from the Laplace trasnform table:

L
{
eat sin bt

}
=

b

(s− a)2 + b2
and L

{
eat cos bt

}
=

s− a
(s− a)2 + b2

.
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We can apply these by separating F (s) into pieces like this:=

L−1 {F (s)} = L−1
{

1− 2s

(s+ 2)
2

+ 1

}

= L−1
{
−2 (s+ 2)

(s+ 2)
2

+ 1

}
+ L−1

{
+4 + 1

(s+ 2)
2

+ 1

}

= −2L−1
{

(s− (−2))

(s− (−2))
2

+ 1

}
+ 5L−1

{
1

(s+ 2)
2

+ 1

}
= −2e−2t cos t+ 5e−2t sin t.

(3) (You Try) F (s) =
2s− 8

s2 − 4s+ 5
. Note that we can't factor s2 − 4s+ 5 with real roots, thus we

will complete the square.
� Completing the Square: Suppose we have s2+bs+c, then the trick is to ADD/SUBTRACT(

b
2

)2
, and the polynomials will become s2 + bs+ c =

(
s+ b

2

)2 − ( b2)2 + c.

∗ Example: Complete the square for s2−4s+5: Then b = −4 hence we add/subtract(
b
2

)2
=
(−4

2

)2
= 4. Thus

s2 − 4s+ 5 = s2 − 4s+ 4 + 1

= (s− 2)
2

+ 1

� Going back to the problem of �nd the Laplace Transform we have that

F (s) =
2s− 8

(s− 2)
2

+ 1
=

2 (s− 2)

(s− 2)
2

+ 1
− 4

1

(s− 2)
2

+ 1

We can apply these by separating F (s) into pieces like this:=

L−1 {F (s)} = L−1
{

2s− 8

(s− 2)
2

+ 1

}

= L−1
{

2 (s− 2)

(s− 2)
2

+ 1

}
− 4L−1

{
1

(s− 2)
2

+ 1

}
= 2e2t cos t− 4e2t sin t

(4) F (s) =
2s− 3

s2 − 4
.

� Notice that this one looks likeNumbers 7 and 8 from the Table of Laplace-Transforms:

L{sinh(at)} =
a

s2 − a2
and L{cosh (at)} =

s

s2 − a2
s > |a| .
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� Hence we can separate F (s) into pieces so that we can make it look like the formulas
above:

L−1 {F (s)} = L−1
{

2s− 3

s2 − 4

}
= 2L−1

{
s

s2 − 22

}
− 3

2
L−1

{
2

s2 − 22

}
= 2 cosh (2t)− 3

2
sinh (2t) .

(5) (if time permits)F (s) =
3s

s2 − s− 6
. We want to use partial fractions

3s

(s− 3)(s+ 2)
=

A

s− 3
+

B

s+ 2

and multiply both sides by the denominator of the LHS we get

3s = A (s+ 2) +B (s− 3)

and rewriting we get

3s+ 0 = (A+B) s+ (2A− 3B)

so that

3 = A+B and = 2A− 3B

and solving for A,B gets us

A =
9

5
, B =

6

5
.

So that using our table we have that

L−1 {F (s)} = L−1
{

9/5

s− 3

}
+ L−1

{
6/5

s− (−2)

}
=

9

5
e3t +

6

5
e−2t.

• More Examples using Laplace Transforms to solve IVPs:
• Example1: Use Laplace Transforms to solve:

y′′′ + y′ = 1, y(0) = y′(0) = y′′(0) = 0.

� Solution:
� Step1: Find the Laplace Transform of the ODE (The going forwards part). Recall the
formulas L{f ′(t)} = sL{f(t)} − f(0) and L{f ′′′(t)} = s3L{f(t)} − s2f(0)− sf ′(0)− f ′′(0).
Applying L to both sides we get

L{y′′′ + y′} = L{1} , ⇐⇒[
s3L{y} − s2y(0)− sy′(0)− y′′(0)

]
+ [sL{y} − y(0)] =

1

s
, ⇐⇒[

s3L{y} − s2 · 0− s · 0− 0
]

+ [sL{y} − 0] =
1

s
, ⇐⇒

L{y}
(
s3 + s

)
=

1

s
, ⇐⇒
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� Step2: Solve for L{y} using algebra: and get

L{y} =
1

s2 (s2 + 1)
.

� Step3: We want to go backwards and inverse this. But �rst let's do partial fractions: But
remenber we did this in Example 1 of the Laplace transforms and got

1

s2 (s2 + 1)
=

1

s2
− 1

s2 + 1
.

� Step4: Using Formulas 3 and 5 in the Laplace Trasform table:

L{tn} =
n!

sn+1
, L{sin(at)} =

a

s2 + a2
.

Use get the inverse Laplace transform:

y = L−1 {L {y}} = L−1
{

1

s2

}
− L−1

{
1

s2 + 1

}
= t− sin t,

• Example2: Use Laplace Transforms to solve:

y′′ − 4y′ + 5y = 2et, y(0) = 3, y′(0) = 1.

� Solution:
� Step1: Find the Laplace Transform of the ODE (The going forwards part). Recall the
formulas L{f ′(t)} = sL{f(t)} − f(0) and L{f ′′(t)} = s2L{f(t)} − sf(0) − f ′(0). Applying
L to both sides we get

L{y′′ − 4y′ + 5y} = L
{

2et
}
, ⇐⇒[

s2L{y} − sy(0)− y′(0)
]
− 4 [sL{y} − y(0)] + 5L{y} =

2

s− 1
, ⇐⇒

s2L{y} − 3s− 1− 4sL{y}+ 12 + 5L{y} =
2

s− 1
, ⇐⇒

L{y}
(
s2 − 4s+ 5

)
=

2

s− 1
+ 3s− 11, ⇐⇒

� Step2: Solve for L{y} using algebra: and get

L{y} =
2

(s− 1) (s2 − 4s+ 5)
+

3s− 11

s2 − 4s+ 5
.

� Step3: Do Partial Fractions and complete the square:

2

(s− 1) (s2 − 4s+ 5)
=

A

s− 1
+

Bs+ C

s2 − 4s+ 5

and get A = 1, B = −1, C = 3 so that

2

(s− 1) (s2 − 4s+ 5)
=

1

s− 1
+

−s+ 3

s2 − 4s+ 5



110 6. THE LAPLACE TRANSFORM

� Step4: The inverse Laplace transform:

y = L−1 {L {y}}

= L−1
{

1

s− 1
+

−s+ 3

s2 − 4s+ 5
+

3s− 11

s2 − 4s+ 5

}
= L−1

{
1

s− 1

}
+ L−1

{
2s− 8

s2 − 4s+ 5

}
and recall that from an above example

L−1
{

2s− 8

s2 − 4s+ 5

}
= 2e2t cos t− 4e2t sin t

hence

y = L−1
{

1

s− 1

}
+ L−1

{
2s− 8

s2 − 4s+ 5

}
= et + 2e2t cos t− 4e2t sin t.

• Example3(you do): Take the Laplace transform of the following equation:

y′′ + 4y = 3 cos t y(0) = y′(0) = 0.

� Solution:
� Step1: Find the Laplace Transform of the ODE (The going forwards part). Recall the
formulas L{f ′(t)} = sL{f(t)} − f(0) and L{f ′′(t)} = s2L{f(t)} − sf(0) − f ′(0). Applying
L to both sides we get

L{y′′ + 4y} = L{3 cos t } , ⇐⇒[
s2L{y} − sy(0)− y′(0)

]
+ 4L{y} =

3s

s2 + 1
, ⇐⇒

L{y}
(
s2 + 4

)
=

3s

s2 + 1
, ⇐⇒

� Step2: Solve for L{y} using algebra: and get

L{y} =
3s

(s2 + 4) (s2 + 1)
.

� Step3: Do Partial Fractions and complete the square:

3s

(s2 + 4) (s2 + 1)
=
As+B

s2 + 4
+
Cs+ C

s2 + 1

and get A = −1, B = 0, C = 1, D = 0 so that

3s

(s2 + 4) (s2 + 1)
=
−s

s2 + 4
+

s

s2 + 1

� Step4: The inverse Laplace transform:

y = L−1 {L {y}}

= L−1
{
−s

s2 + 4
+

s

s2 + 1

}
= − cos(2t) + cos t.
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6.4. Step Functions

• Step functions are often used in problems involving
� �ow of electric circuts,
� discontinuous impulsive forcing, such as in vibrations of mechanical systems

• De�nition: The Heaviside function, or unit step function is de�ned by

uc(t) =

{
0 t < c

1 t ≥ c
.

� Though it really doesn't matter, we will assume c > 0.

•

• Note that 1− uc(t) looks like:
• Example1: Sketch the following function and describe it as a piecewise function:

f(t) = 2tu2(t)− (t− 1)u4(t).

� Solution: We look at the critical points which are t = 2, 4 and consider di�erent cases:
∗ t < 2, f(t) = 0 + 0 = 0
∗ 2 ≤ t < 4, f(t) = 2t · 1 + 0 = 2t,
∗ 4 ≤ t, f(t) = 2t · 1− (t− 1) · 1 = t+ 1, hence

f(t) =


0 t < 2

2t 2 ≤ t < 4

t+ 1 t ≥ 4.

• Example2: Write f(t) in terms of step functions:

f(t) =


t 0 ≤ t < 1

t− 1 1 ≤ t < 2

t− 2 2 ≤ t < 3

0 3 ≤ t.
� Solution: The discontinuity points are t = 0, 1, 2, 3.

∗ When 0 ≤ t < 1, the function will be f(t) = tu0(t) + · · · . Our goal is to �gure out the
rest.

∗ When 1 ≤ t < 2, the function will be f(t) = tu0(t) + ? · u1(t) + · · · = t− 1, hence

t+? = t− 1 =⇒ ? = −1.

· Hence f(t) = tu0(t)− 1 · u1(t) + · · ·
∗ When 2 ≤ t < 3, the function will be f(t) = tu0(t) − 1 · u1(t) + ?u2(t) + · · · = t − 2,
hence

t− 1+? = t− 2 =⇒ ? = −1.

· Hence f(t) = tu0(t)− 1 · u1(t)− 1u2(t) + · · ·
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∗ When t ≥ 3, the function will be f(t) = tu0(t)− 1 ·u1(t)− 1u2(t) +?u3(t) · · · = 0, hence

t− 1− 1+? = 0 =⇒ ? = 2− t
∗ Thus

f(t) = tu0(t)− u1(t)− u2(t) + (2− t)u3(t).

• We can compute the Laplace transform of uc(t):

L{uc(t)} =

∫ ∞
0

uc(t)e
−stdt =

∫ ∞
c

e−stdt

=

[
−e
−st

s

]t=∞
t=c

=
e−cs

s
.

• Example3: Find the Laplace Transform of

f(t) =

{
2 t < 3

−3 t ≥ 3
.

� Solution: First use the technique from the �rst two examples two write f(t) in terms of uc,
and get

f(t) = 2− 5u3(t),

hence

F (s) = L{f(t)} =
2

s
− 5

e−3s

s
.

Theorem. 1. If F (s) = L{f(t)} exists for s > a ≥ 0 and c > 0, then

L{uc(t)f (t− c)} = e−csL{f(t)} = e−csF (s),

Conversely, if f(t) = L−1 {F (s)}, then
{uc(t)f (t− c)} = L−1

{
e−csF (s)

}
.

• Remark: Note that uc(t)f(t − c) translates a function to the right by c, and leaves everything to
the left as zero.

Theorem. 2. If F (s) = L{f(t)} exists for s > a ≥ 0 and c > 0, then

L
{
ectf (t)

}
= F (s− s), s > a+ c.

Conversely, if f(t) = L−1 {F (s− c)}, then
ectf(t) = L−1 {F (s− c)} .

• We'll need the following formulas:

� L{tn} = n!
sn+1 , n positive integer.

∗ L {t} = 1
s2 , L

{
t2
}

= 2
s3 , and L

{
t3
}

= 3!
s4 .

� L{sin at} = a
s2+a2

� L{cos at} = s
s2+a2

� L{sinh at} = a
s2−a2

� L{cosh at} = s
s2−a2

� L{uc(t)f (t− c)} = e−csF (s)
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� L{ectf (t)} = F (s− c)
• Example4: Find the Laplace transform of

f(t) =

{
0 t < 2

t2 − 4t+ 5 t ≥ 2

� Solution: First we complete the square by adding/subtracting
(
b
2

)2
=
(
4
2

)2
= 4 and get

t2 − 4t+ 5 = t2 − 4t+ 4− 4 + 5 = (t− 2)
2 − 4 + 5 = (t− 2)2 + 1

so that

f(t) =

{
0 t < 2

(t− 2)
2

+ 1 t ≥ 2

= u2(t)
[
(t− 2)

2
+ 1
]

= u2(t) (t− 2)
2

+ u2(t),

hence using formulas L{uc(t)f (t− c)} = e−csF (s) and L
{
t2
}

= 2
s3 and c = 2,

L{f(t)} = e−2sF (s) +
e−2s

s
, where f(t− 2) = (t− 2)

2
, f(t) = t2

= e−2s
2

s3
+
e−2s

s
.

• Example5: Take the Inverse Laplace Transform of:F (s) =
e−2s

s2 + s− 2
� Solution: In this example we can actually factor

e−2s

s2 + s− 2
=

e−2s

(s+ 2) (s− 1)

= e−2s
(
−1/3

s+ 2
+

1/3

s− 1

)
, by partial fractions

and use L{uc(t)f (t− c)} = e−csF (s) (use this whenever use see an e−cs when taking in-
verses!)

L−1 {F (s)} = −1

3
L−1

{
e−2s

s− (−2)

}
+

1

3
L−1

{
e−2s

s− 1

}
= −1

3
u2(t)f1 (t− 2) +

1

3
u2(t)f2 (t− 2)

� Use the fact that L{f1} = L
{
e−2t

}
= 1

s+2 and L{f2} = L{et} = 1
s−1 hence

L−1 {F (s)} = −1

3
u2(t)e−2(t−2) +

1

3
u2(t)e(t−2).

• Example6: Take the Inverse Laplace Transform of:F (s) =
9 (s− 3) e−5s

s2 − 6s+ 13
� Solution: In this example we can only complete the square since we can't factor and get

9 (s− 3) e−5s

s2 − 6s+ 13
=

9 (s− 3) e−5s

(s− 3)
2

+ 22
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∗ Now note that by L{ectf (t)} = F (s− c) and L{cos at} = s
s2+a2 we have

L{cos (2t)} =
s

s2 + 22
=⇒ L

{
e3t cos (2t)

}
=

(s− 3)

(s− 3)2 + 22

∗ (Need to take care of the e−5s) Now use L{uc(t)f1 (t− c)} = e−csF1(s) with f1(t) =
e3t cos (2t) and c = 5 so that f1(t− 5) = e3(t−5) cos (2 (t− 5)) hence

L
{
u5(t)e3(t−5) cos (2 (t− 5))

}
= e−5s

(s− 3)

(s− 3)2 + 22

Thus multiplying both sides by 9

L−1 {F (s)} = 9u5(t)e3(t−5) cos (2 (t− 5)) .

• Example7: Take the Inverse Laplace Transform of:F (s) =
e−7s

s2 − 4
.

� Solution: We note L{sinh 2t} = 2
s2−4 and use L{uc(t)f1 (t− c)} = e−csF1(s) where f1(t) =

sinh 2t =⇒ f1(t− 7) = sinh 2 (t− 7) to get that

L{u7(t)f1 (t− 7)} = e−7sF1(s), =⇒ L{u7(t) sinh 2 (t− 7)} =
2e−7s

s2 − 4

=⇒ 1

2
L{u7(t) sinh 2 (t− 7)} =

e−7s

s2 − 4

hence

L−1 {F (s)} =
1

2
u7(t) sinh 2 (t− 7) .

• Example8: Take the Inverse Laplace Transform of:F (s) =
1

s2
+

e−6s

(s− 2)
3

� Solution: We know L{t} = 1
s2 , L

{
t2
}

= 2
s3 and L{e

ctf (t)} = F (s−c) and L{uc(t)f (t− c)} =
e−csF (s) hence

L−1 {F (s)} = t+
1

2
L−1

{
2e−6s

(s− 2)
3

}

= t+
1

2
u6(t)e2(t−6)(t− 6)2.

• Example9: Take the Inverse Laplace Transform of: F (s) =
1

s2 − 10s+ 26
� Solution: (practice with using L{ectg (t)} = G(s− c))First we complete the square and get

1

s2 − 10s+ 26
=

1

(s− 5)
2

+ 1

and use L{sin at} = a
s2+a2 with a = 1 so that L{sin t} = 1

s2+1

∗ Then use the fact that L{ectg (t)} = G(s− c) with c = 5 and g(t) = sin t, thus we know
that

L
{
e5t sin t

}
=

1

(s− 5)
2

+ 1

hence

L−1 {F (s)} = e5t sin t.
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6.5. ODEs with Discontinuous Forcing functions

• We will now do some examples involving intial value problems:
• Example1: Solve using Laplace Transforms:

y′ = −y + u3(t), y(0) = 2.

� Solution:
� Step1: Take L of both sides and solve for L

L{y′} = L{−y}+ L{u3(t)}

so that

sL{y} − y(0) = −L{y}+
e−3s

s
.

� Step2: Solve for L{y},

L{y} =
2

s+ 1
+

e−3s

s (s+ 1)

� Step3: We do partial fractions on

1

s (s+ 1)
=

1

s
− 1

s+ 1

� Step4: Take the inverse Laplace transform: Using L [ua(t)f(t− a)] = e−asF (s), and get

y = L−1
{

2

s+ 1
+ e−3s

1

s
− e−3s 1

s+ 1

}
= 2e−t + u3(t)− u3(t)e−(t−3).

• Example2 (you try?): Solve using Laplace Transforms:

y′ = −3y + 6u4(t)e−(t−4), y(0) = 5.

� Solution:
� Step1: Take L of both sides

L{y′} = −3L{y}+ 6L
{
u4(t)e−(t−4)

}
and get

sL{y} − y(0) = −3L{y}+ 6L
{
u4(t)e−(t−4)

}
so that

� Step2: Solve for L{y} and get

L{y} =
5

s+ 3
+

6e−4s

(s+ 3) (s+ 1)
.

� Step3: We do partial fractions

6

(s+ 3) (s+ 1)
=

−3

(s+ 3)
+

3

(s+ 1)
.
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� Step3: Take the inverse Laplace transform: Using L [ua(t)f(t− a)] = e−asF (s), and

y = L−1
{

5

s+ 3
+

6e−4s

(s+ 3) (s+ 1)

}
= L−1

{
5

s+ 3

}
+ L−1

{
−3e−4s

1

(s+ 3)
+ 3e−4s

1

(s+ 1)

}
= 5e−3t − 3u4(t)e−3(t−4) + 3u4(t)e−(t−4).

• Example3: Solve using Laplace Transforms:

y′′ + 4y = 3u5(t) sin (t− 5) , y(0) = 1, y′(0) = 0.

� Solution:
� Step1: Take L of both sides and solve for L

L{y′′}+ 4L{y} = 3L{u5(t) sin (t− 5)}

and recall L [ua(t)f(t− a)] = e−asF (s), hence a = 4, f(t − 5) = sin (t− 5) hence f(t) = sin t
and L{sin t} = 1

s2+1 hence

s2L{y} − sy(0)− y′(0) + 4L{y} = 3
e−5s

s2 + 1
, =⇒(

s2 + 4
)
L{y} − s = 3

e−5s

s2 + 1
, =⇒

L{y} = 3
e−5s

(s2 + 4) (s2 + 1)
+

s

s2 + 4

� Step2: We do partial fractions on

3

(s2 + 4) (s2 + 1)
=
As+B

s2 + 4
+
Cs+D

s2 + 1

hence

3 = (As+B)
(
s2 + 1

)
+ (Cs+D)

(
s2 + 4

)
, =⇒

0 · s3 + 0 · s2 + 0 · s+ 3 = (A+ C) s3 + (B +D) s2 + (A+ 4C) s+ (B + 4D)

hence

A+ C = 0

B +D = 0

A+ 4C = 0

B + 4D = 3

and get

A = 0 B = −1, C = 0, D = 1

hence
3

(s2 + 4) (s2 + 1)
=
−1

s2 + 4
+

1

s2 + 1
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� Step3: Take the inverse Laplace transform: Using L [ua(t)f(t− a)] = e−asF (s), and L{sin(at)} =
a

s2+a2 and L{cos(at)} = a
s2+a2 we have

y = L−1
{
−e−5s

s2 + 4
+

e−5s

s2 + 1
+

s

s2 + 4

}
= −1

2
L−1

{
2e−5s

s2 + 22

}
+ L−1

{
e−5s

s2 + 1

}
+ L−1

{
s

s2 + 4

}
= −1

2
u5(t) sin (2 (t− 5)) + u5(t) sin (t− 5) + cos (2t)

• Example4: Solve using Laplace Transforms:

y(4) − y = u1(t)− u2(t), y(0) = 0, y′(0) = 0, y′′(0) = 0., y′′′(0) = 0..

� Solution:
� Step1: Take L of both sides and solve for L

L
{
y(4)

}
− L{y} = L{u1(t)− u2(t)}

hence

s4L{y} − s3y(0)− s2y′(0)− sy′′(0)− sy′′′ − y′(0)− L{y} =
e−s

s
− e−2s

s
=⇒(

s4 − 1
)
L{y} =

e−s

s
− e−2s

s
, =⇒

L{y} =
e−s

s (s4 − 1)
− e−2s

s (s4 − 1)

� Step2: We do partial fractions on

1

s (s4 − 1)
=

1

s (s2 − 1) (s2 + 1)
=

1

s (s+ 1) (s− 1) (s2 + 1)
=

hence

1

s (s4 − 1)
=
A

s
+

B

s+ 1
+

C

s− 1
+
Ds+ E

s2 + 1

after doing the work to get the partial fractions you get

1

s (s4 − 1)
= −1

s
+

1

4

1

s+ 1
+

1

4

1

s− 1
+

1

2

s

s2 + 1

putting it back we need to take the inverse of

e−s
[
−1

s
+

1

4

1

s+ 1
+

1

4

1

s− 1
+

1

2

s

s2 + 1

]
− e−2s

[
−1

s
+

1

4

1

s+ 1
+

1

4

1

s− 1
+

1

2

s

s2 + 1

]



120 6. THE LAPLACE TRANSFORM

� Step3: Take the inverse Laplace transform: Using L [ua(t)f(t− a)] = e−asF (s), and L{cos(at)} =
a

s2+a2 and L{eat} = 1
s−a we have

y = L−1
{
e−s

[
−1

s
+

1

4

1

s+ 1
+

1

4

1

s− 1
+

1

2

s

s2 + 1

]}
− L−1

{
e−2s

[
−1

s
+

1

4

1

s+ 1
+

1

4

1

s− 1
+

1

2

s

s2 + 1

]}
= −u1(t) + u1(t)

[
1

4
e−1(t−1) +

1

4
e1(t−1) +

1

2
cos (t− 1)

]
+ u2(t)− u2(t)

{
1

4
e−1(t−2) +

1

4
e1(t−2) +

1

2
cos (t− 2)

}
• Example5: Find the Laplace transform of

f(t) =

{
t 0 ≤ t < 1

3t 1 ≤ t <∞
.

� Solution:
∗ Step1: First let us rewrite this in terms of unit step functions.

· When 0 ≤ t < 1: the function is f(t) = t
· When 1 ≤ t <∞: then function is f(t) = t+? · u1(t) = 3t hence ? = 2t so that

f(t) = t+ 2tu1(t).

∗ Step2: Before we can take a Laplace transform, we notice that our fomula involves
L{uc(t)g (t− c)} = e−ctL{g(t)}. Thus we will need to turn 2tu1(t) into this form:

f(t) = t+ 2tu1(t)

= t+ 2 (t− 1)u1(t) + 2u1(t)

hence

L{f(t)} = L{t}+ 2L{(t− 1)u1(t)}+ 2L{u1(t)}

=
1

s2
+ 2e−s

1

s2
+ 2e−s

1

s
.

• We now introduce the following useful formula that is not included in the table:

Fact. We have

L{uc(t)h(t)} = e−csL{h (t+ c)} .

• Example 6: Take the Laplace transform of f(t) = u1(t)tet.
� Solution: Notice that we cannot use the formula L{uc(t)g (t− c)} = e−ctL{g(t)} directly
since tet is not written as a function of (t− 1).

� Hence we'll need to use L{uc(t)h(t)} = e−csL{h (t+ c)} with h(t) = tet and c = 1. Thus

h (t+ 1) = (t+ 1)et+1
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and we get

L
{
u1(t)tet

}
= e−csL{h (t+ c)}
= e−sL

{
(t+ 1)et+1

}
= e−sL

{
tete+ ete

}
= e−s

(
eL
{
tet
}

+ eL
{
et
})

= e1−s

(
1

(s− 1)
2 +

1

(s− 1)

)
where we used formula 2 and 11 in the table.
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6.6. Impulse Functions

• We consider

ay′′ + by′ + cy = f(t),

where

g(t) =

{
large t0 − τ < t < t0 + τ.

0 elsewhere

• Here g(t) is a force and

I(τ) =

∫ t0+τ

t0−τ
g(t)dt =

∫ ∞
−∞

g(t)dt

is the impulse of the force, or the amount of force in a short time period about t0.
� Example: If y =current in an electric circuit, g(t) = is the time derivative of the voltage,
then I(τ) is the total voltage impressed on circuit in the time interval I = (t0 − τ, t0 + τ).

• We will use the following particular example of a force with τ = 0 (to simplify things):

g(t) = dτ (t) =

{
1
2τ −τ < t < τ,

0 elsewhere
,

where τ > 0 is small.
� Nice Properties of dτ (t):

(1) lim
τ→0+

dτ (t) = 0, whenever t 6= 0, and limτ→0+ dτ (0) =∞.

(2) I(τ) =
∫ τ
−τ

1
2τ dt =

[
1
2τ t
]τ
−τ = 1 for every τ ,

(a) Hence lim
τ→0+

I(τ) = 1,

• We thus want to de�ne a unit impulse function δ, with the properties

δ(t) =

{
0 t 6= 0

∞ t = 0

and ∫ ∞
−∞

δ(t)dt = 1.
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� This function doesn't really exist, it is an example of a generalized function called the Dirac
delta function. But it can be �de�ned� as a limit of the dτ (t) functions:

δ(t) = lim
τ→0+

dτ (t).

• In general: We can consider a unit impulse at an arbitrary point t = t0, meaning δ (t− t0), hence

δ (t− t0) = 0, t 6= t0,∫ ∞
−∞

δ(t− t0)dt = 1.

• Let's computer the Laplace Trasnform of δ (t− t0):

L{δ (t− t0)} = lim
τ→0+

L{dτ (t− t0)}

= lim
τ→0+

∫ t0+τ

t0−τ
e−stdτ (t− t0) dt

= lim
τ→0+

1

2τ

∫ t0+τ

t0−τ
e−stdt = lim

τ→0+

1

2τ

[
e−st

t

]t=t0+τ
t=t0−τ

=
e−st0

s
lim
τ→0+

esτ − e−sτ

2τ
, by algebra

= e−st0 lim
τ→0+

sinh(sτ)

sτ
, by fomrula below

= e−st0 lim
τ→0+

s cosh(sτ)

s
, by L'Hopitals rule

= e−st0 .

where I used the fact that

sinh(sτ) =
esτ − s−sτ

2
.

• Summary:

L{δ (t− t0)} = e−st0 , t0 > 0.

• Examples:
� If t0 = 0, then

L{δ (t)} = e−s·0 = 1.

� If t0 = 9 then

L{δ (t− 9)} = e−9s.

• Important property of delta functions: Suppose f is a continuous function, then∫ ∞
−∞

f(t)δ(t− t0)dt = f (t0) .

• In the next example we show how the delta function is connected to the Heaviside function.
• Example0: Solve the IVP

y′ = δ(t− c), y(0) = y0.
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� Solution: Take L of both sides and

L{y′} = L{δ (t− c)} =⇒
sL{y} − y(0) = e−cs =⇒

L{y} =
y0
s

+
e−cs

s

hence

y = L−1
{y0
s

}
+ L−1

{
e−cs

s

}
= y0 + uc(t).

• Example 0 shows that the derivative of the Heaviside function ins the delta function.
• Fact:

d

dt
[uc(t)] = δ (t− c) .

• Example1: Solve the IVP

y′′ + 4y = δ (t− π)− δ (t− 2π) , y(0) = 0, y′(0) = 0.

� Solution:
� Step1: Take L of both sides and solve for L{y}:

L{y′′}+ 4L{y} = L{δ (t− π)} − L{δ (t− 2π)} =⇒
s2L{y} − sy(0)− y′(0) + 4L{y} = e−πs − e−2πs =⇒(

s2 + 4
)
L{y} = e−πs − e−2πs =⇒

L{y} =
e−πs

s2 + 4
− e−2πs

s2 + 4
.

� Step2: Notice that we don't need to do partial fractions or complete the square here since
s2 + 4 is already a sum of two squares.

� Step3: Take an inverse Laplace transform:
∗ Using L [ua(t)f(t− a)] = e−asF (s) and L{sin(at)} = a

s2+a2 we get

y = L−1
{
e−πs

s2 + 4

}
− L−1

{
e−2πs

s2 + 4

}
=

1

2
L−1

{
e−πs

2

s2 + 22

}
− 1

2
L−1

{
e−2πs

2

s2 + 22

}
=

1

2
uπ(t)f1 (t− π)− 1

2
u2π(t)f2 (t− 2π)

=
1

2
uπ(t) sin (2 (t− π))− 1

2
u2π(t) sin (2 (t− 2π))

where f1, f2 = sin(2t).
∗ Now it turns out, that

sin (2 (t− π)) = sin (2t− 2π) = sin(2t)

and

sin (2 (t− 2π)) = sin (2t− 4π) = sin(2t).
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or in general

sin (x) = sin (x+ 2π) .

∗ Hence a possible multiple choice answer could be:

y =
1

2
uπ(t) sin (2t)− 1

2
u2π(t) sin (2t) .

• Example2: Solve the IVP

y′′ + 2y′ + 3y = sin t+ δ (t− 3π) , y(0) = 0, y′(0) = 0.

� Solution:
� Step1: Take L of both sides and solve for L{y}:

L{y′′}+ 2L{y′}+ 3L{y} =
1

s2 + 1
+ e−3πs =⇒[

s2L{y} − sy(0)− y′(0)
]

+ 2 [sL{y} − y(0)] + 3L{y} =
1

s2 + 1
+ e−3πs =⇒

s2L{y}+ 2sL{y}+ 3L{y} =
1

s2 + 1
+ e−3πs =⇒(

s2 + 2s+ 3
)
L{y} =

1

s2 + 1
+ e−3πs =⇒

L{y} =
1

(s2 + 2s+ 3) (s2 + 1)
+

e−3πs

s2 + 2s+ 3

� Step2: First we do partial fractions:

1

(s2 + 2s+ 3) (s2 + 1)
=

As+B

(s2 + 2s+ 3)
+
Cs+D

(s2 + 1)

and do the algebra to get

A =
1

4
, B =

1

4
, C = −1

4
, D =

1

4

� Also we need to complete the square:

s2 + 2s+ 3 = (s+ 1)
2

+ 2.

so that

1

(s2 + 2s+ 3) (s2 + 1)
=

1

4

(
s+ 1

(s+ 1)
2

+ 2
+
−s+ 1

(s2 + 1)

)

� Step3: Take an inverse Laplace transform:
∗ Using L [ua(t)f(t− a)] = e−asF (s) , L{cos(at)} = s

s2+a2 L{sin(at)} = a
s2+a2 ,



126 6. THE LAPLACE TRANSFORM

∗ Also using L{eat cos(bt)} = s−a
(s−a)2+b2 L{e

at sin(bt)} = b
(s−a)2+b2 we get

y =
1

4
L−1

{
s+ 1

(s+ 1)
2

+ 2

}
+

1

4
L−1

{
−s+ 1

(s2 + 1)

}

+ L−1
{

e−3πs

(s+ 1)
2

+ 2

}

=
1

4
L−1

{
s+ 1

(s+ 1)
2

+
(√

2
)2
}
− 1

4
L−1

{
s

s2 + 1

}

+
1

4
L−1

{
1

s2 + 1

}
+

1√
2
L−1

{
e−3πs

√
2

(s+ 1)
2

+
(√

2
)2
}

=
1

4

(
e−t cos

(√
2t
)
− cos t+ sin t

)
+

1√
2
u3π (t) f1 (t− 3π)

=
1

4

(
e−t cos

(√
2t
)
− cos t+ sin t

)
+

1√
2
u3π (t) e−1(t−3π) sin

(√
2 (t− 3π)

)
∗ Where f1 = L−1

{ √
2

(s+1)2+(
√
2)

2

}
= e−t cos

√
2t.
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6.7. The Convolution Integral

• Suppose we want to take the inverse Laplace transform of a product: Is it true that

L−1 {F (s)G(s)} ?
= L−1 {F (s)}L−1 {G(s)} . ,NO!

• In order to take the inverse of a product, we need to de�ne the convolution integral: Let f(t), g(t)
be two nice functions, then

(f ? g) (t) =

∫ t

0

f (t− τ) g (τ) dτ =

∫ t

0

f(τ)g (t− τ) dτ.

� The function h = f ? g is called the convolution of f and g.
• Theorem: The Laplace transform of the convolution is

L{(f ? g) (t)} = L{f(t)}L {g(t)} = F (s)G(s)

that is

L−1 {F (s)G(s)} = (f ? g) (t) =

∫ t

0

f (t− τ) g (τ) dτ.

• Convolutions have nice properties: We can treat ? almost like real multiplication
� f ? g = g ? f (commutative)
� f ? (g1 + g2) = f ? g1 + f ? g2 (distributive)
� (f ? g) ? h = f ? (g ? h) (associative)
� f ? 0 = 0 ? f = 0.

• However it doesn't have all the properties of ordinary multiplication: (f ? 1) 6= 1 ? f .
� Consider f = cos t.

• Example1: Find the Laplace transform of

h(t) =

∫ t

0

sin (t− τ) cos τdτ

� Solution: Use f = sin t and g = cos t and we know that by the Theorem

L
{∫ t

0

sin (t− τ) cos τdτ

}
= L{sin t}L {cos t}

=
1

s2 + 1
· s

s2 + 1

=
s

(s2 + 1)2
.

• Example2: Find the Laplace transform of

et
∫ t

0

sin τ cos (t− τ) dτ.

� Solution: This question is testing if you know how to use formulas

L
{
ectf(t)

}
= F (s− c)

hence we need to �rst take the Laplace transform of

L
{∫ t

0

sin τ cos (t− τ) dτ

}
= L

{∫ t

0

sin (t− τ) cos (τ) dτ

}
=

s

(s2 + 1)2
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from Example1. Hence using the formula above we have

L
{
et
∫ t

0

sin τ cos (t− τ) dτ

}
=

s− 1(
(s− 1)

2
+ 1
)2

• Example3: Find the inverse Laplace transform of

H(s) =
30

(s− 3)
3

(s2 + 25)

� Solution: Split up H(S) = F (s)G(s) where F (s) = 2
(s−3)3 and G(s) = 5

s2+25 so that

H(s) = 3 · 2!

(s− 3)2+1
· 5

s2 + 52

and since

L−1 {F} = L−1
{

2!

(s− 3)2+1

}
= t2e3t,

L−1 {G} = L−1
{

5

s2 + 52

}
= sin (5t)

so that

L−1 {H(s)} = 3

∫ t

0

f(t− τ)g(τ)dτ

= 3

∫ t

0

(t− τ)2e3(t−τ) sin (5τ) dτ

but you also need to be prepared that one of the possible solutions is

L−1 {H(s)} = 3

∫ t

0

f(τ)g(t− τ)dτ

= 3

∫ t

0

τ2e3τ sin (5 (t− τ)) dτ.

• Example4: Solve the IVP in terms of the convolution integrals:

4y′′ + 4y′ + 17y = g(t), y(0) = 0, y′(0) = 0.

� Solution:
� Step1: Take L of both sides and solve L{y}:

4
(
s2L{y} − sy(0)− y′(0)

)
+ 4 (sL{y} − y(0)) + 17L{y} = L{g(t)}

and plugging in the initial conditions we have

L{y}
(
4s2 + 4s+ 17

)
= L{g(t)}

so that

L{y} =
L{g(t)}

4s2 + 4s+ 17
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� Step2: Instead of doing partial fractions we will use the convolution integral. But �rst let us
complete the square by �rst wrtiting

4s2 + 4s+ 17 = 4

(
s2 + s+

17

4

)
hence we want add/subtract

(
b
2

)2
=
(
1
2

)2
= 1

4hence

4

(
s2 + s+

17

4

)
= 4

(
s2 + s+

1

4
− 1

4
+

17

4

)
= 4

((
s+

1

2

)2

+
16

4

)

= 4

((
s+

1

2

)2

+ 4

)
hence

L{g(t)}
4s2 + 4s+ 17

=
1

4

1((
s+ 1

2

)2
+ 4
)L{g(t)}

� Step3: We take the inverse Laplace transform of

L−1
1

4

1((
s+ 1

2

)2
+ 4
)L{g(t)}

 = L−1
{

1

4
L{f(t)}L {g(t)}

}
hence we need to take the inverse of

f(t) = L−1
 1((

s+ 1
2

)2
+ 4
)


=
1

2
L−1

 2((
s+ 1

2

)2
+ 4
)


=
1

2
e−

1
2 t sin (2t) .

Thus using the formula L−1 {F (s)G(s)} = (f ? g) (t) =
∫ t
0
f (t− τ) g (τ) dτ we have

y = L−1
{

1

4
L{f(t)}L {g(t)}

}
=

1

4

∫ t

0

f (t− τ) g (τ) dτ

=
1

4

∫ t

0

1

2
e−

1
2 (t−τ) sin (2 (t− τ)) g (τ) dτ

=
1

8

∫ t

0

e−
1
2 (t−τ) sin (2 (t− τ)) g (τ) dτ.
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• Example5: Compute the following integral∫ 5

0

e−x sinxdx

using only Laplace transforms.
� Solution:: First we want to write this as a convolution:∫ 5

0

e−x sinxdx = e−5
∫ 5

0

e5−x sinxdx.

and let

h(t) =

∫ t

0

et−τ sin τdτ.

The Laplace trasnform of this is

L{h(t)} = L
{∫ t

0

et−τ sin τdτ

}
= L

{∫ t

0

f(t− τ)g(τ)dτ

}
= L{f(t)}L {g(t)}
= L

{
et
}
L{sin t}

=
1

(s− 1) (s2 + 1)

� Now do partiial fractions on this and get

1

(s− 1) (s2 + 1)
=

1

2

(
1

s− 1
− s+ 1

s2 + 1

)
� Hence we can now take the inverse Laplace transform of this:

h(t) =
1

2
L−1

{
1

s− 1

}
− 1

2
L−1

{
s

s2 + 1

}
− 1

2
L−1

{
1

s2 + 1

}
=

1

2
et − 1

2
cos t− 1

2
sin t.

� Thus we computed that

h(t) =

∫ t

0

et−τ sin τdτ =
1

2
et − 1

2
cos t− 1

2
sin t

� Thus

e−5
∫ 5

0

e5−x sinxdx = e−5h(5)

= e−5
(

1

2
e5 − 1

2
cos 5− 1

2
sin 5

)
.

as needed



CHAPTER 7

Systems of First Order Linear Equations

7.1. Systems of First Order Linear Equations

Predator-Prey System
Let R(t) = prey population and let F (t)= predator population. Then the following is a system of �rst

order equations:

dR

dt
= 2R− 1.2RF

dF

dt
= −F + 0.9RF.

Notice that the prey and predator population are dependent on each other, and thus we need a system
of equations.

Spring-Mass System

• Suppose we have mass attached to a spring which is attached to another mass attached to a spring.
• The behavior of one mass is a�ected the other (and vice versa)
• We need a system of ODE to solve such problems

Mixing Problem

• Example 1:
� Salt water with concentration 3 g/L of salt �ows into tank #1 at a rate 4 L/min. at a rate of

4 L/min.
∗ The well mixed mixture from tank #1 �ows into tank #2 at a rate of 4 L/min, and the
well mixed mixture of tank #2 �ows out at a rate of 4 L/min.

� Tank #1 initially has 30 L of salt water with 6 g of salt dissolved in it.
� Tank #2 initially has 20 L of fresh water.
� Question: Write a system of ODEs representing this problem.
� Solution:
� Step1: First we de�ne variables.

∗ Let x1(t) and x2(t) be the amount of salt in tank #1 and tank #2, respectively at time
t (minutes)

� Step2: Use x′i = Rate in − Rate out. We �rst get

x′1(t) =

(
concentration

of salt coming in

)
× Rate−

(
concentration

of salt coming out

)
× Rate

= 3
g

L
· 4 L

min
− x1(t)

water in tank 1 @time t
· 4 L

min

but since

water @ time t = 30 + (4− 4) t = 30

131
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hence

x′1(t) = 12− 4x1(t)

30
, x1(0) = 6.

� Step3: Use x′i = Rate in − Rate out. We �rst get

x′2(t) =

(
concentration

of salt coming in

)
× Rate−

(
concentration

of salt coming out

)
× Rate

=
x1(t)

30

g

L
· 4 L

min
− x2(t)

20 + (4− 4)t
· 4 L

min

=
4x1(t)

30
− 4x2(t)

20
, x2(0) = 0

� Putting it together the system we have is{
x′1 = 12− 2

15x1 x1(0) = 6.

x′2 = 4
30x1 −

1
5x2 x2(0) = 0

• Overview of system of ODES
� We will be dealing only with 2× 2 systems. But in general we can have n× n systems.
� The following is called a linear homogeneous system:

x′1 = a(t)x1 + b(t)x2

x′2 = c(t)x1 + d(t)x2

� The following system is called non-homogeneous if

x′1 = a(t)x1 + b(t)x2 + g1(t)

x′2 = c(t)x1 + d(t)x2 + g2(t)

where g1(t) or g2(t) 6= 0.
� As long as all the coe�cient functions are all continuous then we have the existence and
uniqueness of a solution (x1(t), x2(t)).

� Any 2nd order ODE has a corresponding system of 2 equations.
∗ That is if

a(t)y′′ + b(t)y′ + c(t)y = g(t)

then we let x1 = y and x2 = y′, and obtain

x′1 = x2,

x′2 = − c
a
x1 −

b

a
x2 +

g

a
.

• Example1: Turn

y′′ +
1

2
y′ + 2y = sin t

into a system.
� Solution:
� Goal: We let x1 = y , x2 = y′ and set up the following system:

x′1 =?

x′2 =?
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� To do so, we start with what we de�ned and take derivatives:

x1 = y =⇒ x′1 = y′ = x2
x2 = y′ =⇒ x′2 = y′′ = − 1

2y
′ − 2y − sin t

hence

x′2 = −1

2
y′ − 2y − sin t

= −1

2
x2 − 2x1 − sin t, by de�nition

thus {
x′1 = x2

x′2 = −2x1 − 1
2x2 + sin t

� Is this Linear? Yes
� Is this homogeneous or non-homogenous? non-homogeneous because of the sin t.

• How do we solve system of ODEs? one way is to turn them into 2nd order ODES
• Example2: Consider the following system of EQs

x′1 = 3x1 − 2x2, x1(0) = 3

x′2 = 2x1 − 2x2, x2(0) =
1

2

Turn the following system into a single equation and solve for (x1, x2).
� Solution: To do so we solve for (x1, x2)one variable (the one that appears least often) using
algebra:
∗ Step1: From EQ1 solve for x2:

2x2 = 3x1 − x′1 =⇒ x2 =
3

2
x1 −

1

2
x′1

=⇒ x2 =
3

2
x1 −

1

2
x′
1 (?)

∗ Take a serivative of both sides

x′2 =
3

2
x′1 −

1

2
x′′1

then set this equal to the RHS of EQ 2:

3

2
x′1 −

1

2
x′′1 = 2x1 − 2x2 (??)

∗ Plug (?) into (??):

3

2
x′1 −

1

2
x′′1 = 2x1 − 2

(
3

2
x1 −

1

2
x′1

)
and note that this is only dependent on the x1variable. Doing some algebra we get the
equation

x′′1 − x′1 − 2x1 = 0 (? ? ?)
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∗ Step2: Now combining (?) into (? ? ?) we have
x2 = 3

2x1 −
1
2x
′
1 ⇐ plug x1 here

⇑
x′′1 − x′1 − 2x1 = 0 =⇒ solve for x1

· Solve x1 using the methods from Chapter 3 and get

x1 = c1e
2t + c2e

−t.

hence plug x1 and its derivative x′1 into

x2 =
3

2
x1 −

1

2
x′1

=
3

2

(
c1e

2t + c2e
−t)− 1

2

(
2c1e

2t − c2e−t
)

=
1

2
c1e

2t + 2c2e
−t.

which gives the two general solutions we needed.
• This method is tedious and we'll never use this method again.
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7.2. Review of Matrices

We will start by considering the following linear system with constant coe�cients:

x′1 = ax1 + bx2

x′2 = cx1 + dx2.

Let

A =

(
a b
c d

)
be a matrix and let x =

(
x1
x2

)
be a vector we can de�ne matrix-vector product as

Ax =

(
a b
c d

)(
x1
x2

)
=

(
ax1 + bx2
cx1 + dx2

)
.

• Give an example matrix-vector multiplication with A =

(
1 2
−1 3

)
and x =

(
2
1

)
.

• Talk about adding vectors and scaling vectors!
• Thus we can write a system of ODES as

x′ = Ax

where A =

(
a b
c d

)
and x =

(
x1
x2

)
.

� A is the coe�cient matrix
• Example: The system

x′1 = −2x1 + x2

x′2 = x1 − 2x2

can be represent by (
x′1
x2

)
=

(
−2 1
1 −2

)(
x1
x2

)
x′ = Ax

• Example: Verify that x =

(
1
−2

)
e−4t is a solution to

x′ =

(
2 3
4 −2

)
x.

� Solution: We plug x =

(
1
−2

)
e−4t into the LHS and RHS and see if the are equal to each

other

LHS = x′ =

(
e−4t

−2e−4t

)′
=

(
−4e−4t

8e−4t

)
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and

RHS =

(
2 3
4 −2

)
x =

(
2 3
4 −2

)(
e−4t

−2e−4t

)
=

(
2e−4t − 6e−4t

4e−4t + 4e−4t

)
=

(
−4e−4t

8e−4t

)
since

LHS = RHS

then x =

(
1
−2

)
e−4t is a solution to this system.

• How to picture solutions to systems?
Phase Plane/Portrait:

� What do solutions x(t) to x′ = Ax look like? They are parametric equations in the
plane! We graph in the x1-x2 plane since

x(t) = (x1(t), x2(t))

is a vector (or point) that changes in time. Recall your Calc 3.

∗ Graph would look like this:
∗ This is called the Phase Plane

� Phase Portrait are several phase planes for di�erent initial conditions.
∗ Graph a Phase Portrait

� What are the simplest solutions?
∗ An equilibrum solution are the constant solutions: x(t) = (x0, y0).
∗ An equilibrum solution is a dot, since as times moves on it stays constant in the same
place.

∗ To solve for the equilibrium solution you set the derivative equalk to zero, in this case

Ax = 0.

� A direction �eld can be drawn by drawing the following vector �eld

F (x1, x2) = Ax.
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7.3. Systems of Linear Equatiosn: Linear Independence, Eigenvalues, Eigenvectors

Crash course in linear algebra:
Determinants:

• Suppose we want to �nd solutions to Ax = 0 or(
a b
c d

)(
x1
x2

)
=

(
0
0

)
⇐⇒ ax1 + bx2 = 0

cx1 + dx2 = 0

• take (
1 2
−1 3

)(
x1
x2

)
=

(
0
0

)
⇐⇒ x1 + 2x2 = 0

−x1 + 3x2 = 0

• Can we �nd solutions to this system? Yeah easy! its just algebra.
� Notice that x = (x1, x2) = (0, 0) is always an equilibrium solution to

ax1 + bx2 = 0
cx1 + dx2 = 0

.

� When do we have nontrivial solutions? There is a way to knowing without actually soliving
for it.

• The determinant of a matrix A =

(
a b
c d

)
is de�ned to be

detA = ad− bc

• The determinant of a matrix A =

(
1 2
−1 3

)
is de�ned to be

detA = 3− (−2) = 5

Theorem. If A is matrix and detA 6= 0 then the only solutions to the system Ax = 0 is the (0, 0), the
origin.

If detA = 0 then there are in�nitely many solutions.

• Note that det

(
2 6
1 3

)
= 0 and hence there are nontrivial solutions.

� check that (−3, 1) is a nontrivial solution.
• If detA = 0 are then A is singular, or degenerate.

� If detA 6= 0 are nonsingular, or nondegenerate, or invertible.
� When A is invertible then the inverse matrix A−1 exists and we can solve

Ax = b (?)

by

x = A−1b

and this is the unique solution to (?).

Independence:

• Another important concept in linear algebra is when two vectors are independent or dependent.

• If x =

(
x1
x2

)
and y =

(
y1
y2

)
are vectors, then c1x + c2y is said to be a linear combination

of the two vectors.
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� Given example! The vector

(
−3
8

)
is a linear combination of

(
1
2

)
and

(
−2
3

)
. Why?

Because if we let c1 = 1 and c2 = 2 note that

1

(
1
2

)
+ 2

(
−2
3

)
=

(
1
2

)
+

(
−4
6

)
=

(
−3
8

)
• De�nition: The vectors x =

(
x1
x2

)
and y =

(
y1
y2

)
are said to be linearly independent if

the only solutions to c1x + c2y = 0 are the trivial solutions c1 = c2 = 0.
� A visual (and very usefull) way to understand this, two vectors are linearly independent if
they do not lie in the same line through the origin.

� Also, this means x and y are linearly independent if the only way 0 is a linear combination of
these vectors, is the trivial linear combination.

� Multiple vectors? The vectors x,y, z are linearly indepedent if the only solution to c1x +
c2y + c3z = 0 are the trivial solutions c1 = c2 = c3 = 0.

• Example1: Are

(
1
2

)
and

(
3
4

)
linearly independent? (yes)

� Method1:

k1

(
1
2

)
+ k2

(
3
4

)
= 0 ⇐⇒ k1

(
1
2

)
+ k2

(
3
4

)
= 0

⇐⇒
(

k1 + 3k2
2k1 + 4k2

)
= 0

⇐⇒
(

1 3
2 4

)(
k1
k2

)
= 0

⇐⇒ detA = 4− 6 6= 0

and from the theorem this tells us that they only solution is the trivial solution k1 = k2 = 0 .
Hence yes! linearly independent!

� Method2: Draw this on the x − y plane and note they're NOT on the same line through the
origin.

• Example2: Are

(
3
−5

)
and

(
−6
10

)
linearly independent? (No) check both ways!

� Method1:

k1

(
3
−5

)
+ k2

(
−6
10

)
= 0 ⇐⇒

(
3 −6
−5 10

)(
k1
k2

)
= 0

⇐⇒ detA = 30− 30 = 0

and from the theorem this tells us there are in�nitely many solutions.
� Hence linearly dependent!
� Method2: Draw this on the x − y plane and note they ARE on the same line through the
origin.
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7.4. Linearity principle

Linearity Principle:

Theorem. Suppose x′ = Ax is a linear system of di�erential equations.
(1) If x(t) is a solution of this system and c is any constnat, then cx(t) is also a solution.

(2) If x(1)(t) and x(2)(t) are two solutions of this systme, then x(1(t) + x(2)(t) is also a solution.

• The point is we can create new solutions from one we already know are solutions via linear combi-
nations!

• In fact, as long as I have one solution then I have in�nitely many.
• In fact, we'll see that if as long as we have two solutions that are linearly indepedent, then we have
al possible solutions.

Theorem. (The General Solution) Suppose x(1)(t) and x(2)(t) are solutions of the system x′ = Ax.
If x(1)(0) and x(1)(0) are linearly independent, then for any initial condition x(0) = (x0, y0), we can �nd
constants c1 and c2 such that x(t) = c1x

(1)(t) + c2x
(1)(t) is the solution to the IVP

x′ = Ax, x(0) =

(
x0
y0

)
.

• This theorem says that as long as I �nd two linearly indepedent solutions x(1)(t) and x(2)(t) then
every solution is of the form

x(t) = c1x
(1)(t) + c2x

(1)(t).
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7.5. Basic Theory of Systems of 1st Order Linear EQs

Equilibrium solutions:

• Consider

x′ = Ax

where A =

(
a b
c d

)
and x =

(
x1
x2

)
.

• Recall An equilibrium solution, is x(t) = (x0, y0) such that Ax = 0. That is if(
a b
c d

)(
x
y

)
= 0 ⇐⇒

(
ax+ by = 0
cx+ dy = 0

)
.

These are the constant solutions.
� We usually assume detA 6= 0 so that x(t) = 0 is the only equilibrium solution.
� These are the constant solutions.
� We will ask if other solutions are stable or unstable? That is, do other solutions approach the
origin or not.

Some Linear Algebra

• Draw a vector �eld, with some straight line solutions
� An eigenvector is a vector where the vector �eld points in the same or opposite direction as
the vector itself.

Definition. Given a matrix A, a number λ is called an eigenvalue of A if there is a nonzero vector v
such that

Av = λv.

The corresponding vector v is called an eigenvector of the eigenvalue λ.

Derivation:

• Our goal is to �rst �nd eigenvalue, then �nd the corresponding eigenvector:

Let I =

(
1 0
0 1

)
identity matrix then λI =

(
λ 0
0 λ

)
. Note that by the de�nition of an eigenvalue, we

must have that for some v

Av = λv ⇐⇒ Av = λv

⇐⇒ Av − λv = 0

⇐⇒ Av − λIv = 0

⇐⇒ (A− λI)v = 0.

Now A− λI is actually another matrix. What matrix? Let's see

A− λI =

(
a b
c d

)
−
(
λ 0
0 λ

)
=

(
a− λ b
c d− λ

)
.

So using our theorem from a previous section , we know when the equation (A− λI)v = 0 has nontrivial
solution? Recall from the theorem that if

det (A− λI) = 0
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then we had nontrivial solutions!! Let's solve for λ, because we know how to �nd determinants!!!

det (A− λI) = 0 ⇐⇒ det

(
a− λ b
c d− λ

)
= 0

⇐⇒ (a− λ) (d− λ)− bc = 0.

⇐⇒ (something)λ2 + (something)λ+ (something) = 0

so solve for λ and that will be your eigenvalue! This polynomial is called the characteristic polynomial!

Example1: Find the eigenvalues and the corresponding eigenvectors of A =

(
2 3
0 −4

)
.

• Step1: Solve

det (A− λI) = 0 ⇐⇒ det

(
2− λ 3

0 −4− λ

)
= 0

⇐⇒ (2− λ) (−4− λ)− 0 · 3 = 0.

⇐⇒ (2− λ) (−4− λ) = 0

⇐⇒ λ = −4, 2.

• Step2: Find the eigenvectors: Let's start with λ1 = 2 then v1 =

(
x1
x2

)
is an eigenvector if

Av = 2v ⇐⇒
(

2 3
0 −4

)(
x1
x2

)
= 2

(
x1
x2

)
⇐⇒

(
2x1 + 3x2
−4x2

)
= 2

(
x1
x2

)
⇐⇒

{
2x1 + 3x2 = 2x1

−4x2 = 2x1

⇐⇒ x2 = 0 and x1 = can be anything.

so choose v1 =

(
1
0

)
as the eigenvector.

• Step3: Find the eigenvectors: Now let λ2 = −4 then v2 =

(
x1
x2

)
is an eigenvector if

Av = −4v ⇐⇒

{
2x1 + 3x2 = −4x1

−4x2 = −4x2

⇐⇒

{
6x1 + 3x2 = 0 =⇒ x2 = −2x1

−4x2 = −4x2

so choose v2 =

(
1
−2

)
as the eigenvector.

� (?)Notice that any multiple would also be an eigevnvector. So we can also choose

v2 = −3

(
1
−2

)
=

(
−3
6

)
.

Back to Di�erential Equations: Why Eigenvectors?
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• Consider

x′ =

(
2 3
0 −4

)
x

• The direction �eld looks like this:
• We want to search for straight line solutions (Note them on the graph)

� Because they probably have easy explicit formulas and more importantly they are linearly
independent! (why?)

• How do we �nd them?
� From the geometry of the phase plane. If x is a straight line solution, then notice that Ax = λx
for some λ. Because the vector Ax(x, y) points in the same direction as the vector from (0, 0)
to x(x, y). This means the solution x are all eigenvectors!!!!!!!

� So if we can �nd an eigenvector and its eigenvalue then we would have found a straight line
solution.

Claim. Suppose λ is an eigenvalue and v =

(
x
y

)
is an eigevenvector. Then we claim that

x(t) = eλt
(
x
y

)
=

(
eλtx
eλty

)
is a straight line solution:

Proof. We just have to check that LHS and RHS equal for

dx

dt
= Ax.

The Left Hand Side is

dx

dt
=

d

dt

(
eλtx
eλty

)
=

(
λeλtx
λeλty

)
= λ

(
eλtx
eλty

)
= λx

and the Right Hand Side is

Ax = Aeλtv = eλtAv = eλtλv = λ
(
eλtv

)
= λx.

So yes they are equal! �

Example2: Find the General solution:
Going back to our example

dx

dt
=

(
2 3
0 −4

)
x.
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recall that we have the eigenvalue λ1 = 2 with eigenvector v1 =

(
1
0

)
, and λ2 = −4 with eigenvector

v2 =

(
1
−2

)
. From the theorem we have just proved: Then we know two straight line solutions:

x(1)(t) = e2t
(

1
0

)
, and x(2)(t) = e−4t

(
1
−2

)
.

If these are independent, then we can form the general solution using a theorem from last time! Are

Y1(0) =

(
1
0

)
and Y2(t) =

(
1
−2

)
independent?

Take the Wronkian:

W
[
x(1),x(2)

]
=

∣∣∣∣ e2t e−4t

0 −2e−4t

∣∣∣∣ = −2e−2t 6= 0

hence
{
x(1),x(2)

}
forms a fundamental set of solutions.

• Yes! remenber that these vector are in completely di�erent lines! Therefore they are independent!

Thus the general solution is

x(t) = c1e
2t

(
1
0

)
+ c2e

−4t
(

1
−2

)
.

• Summary:

Theorem. Suppose A is a matrix with distinct, real eigenvalues λ1, λ2 with corresponding eigenvectors
v1,v2, repectively. Then the solutions general solution of the system

x′ = Ax

is

x(t) = c1e
λ1tv1 + c2e

λ2tv2.

And the solutions x(1)(t) = eλ1tv1,x
(2)(t) = eλ2tv2 are linearly independent.

If enough time teach the following tricks:

• Let A =

(
a b
c d

)
. Let's �gure out how to use this.

• trA = a+ d. the sum of the diagonal.
• Fact 1: the eigenvalues add to the trace ,λ1 + λ2 = a+ d.
• Fact 2: if the two rows add to the same number a+ b = a+ d, then that number is an eigenvalue
with eigenvector v = (1, 1)

• Fact 3: if the two columns add to the same number a+c = b+d, then that number is an eigenvalue
and an eigenvector for the OTHER eigenvalue is (1,−1)

Example3:

• Take A =

(
2 2
1 3

)
.

� Using Fact 2: 2 + 2 = 1 + 3 = 4.So λ1 = 4 is an eigenvalue and v1 =

(
1
1

)
is the eigenvalue.

� Using Fact 1:

λ1 + λ2 = 2 + 3 = 5

λ2 = 5− 4 = 1
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� So we only need to the �nd v2. Need actual work here:{
2x1 + 2x2 = x1

x1 + 3x2 = x2
⇐⇒

{
x1 + 2x2 = 0

x1 + 2x2 = 0

⇐⇒ x1 = −2x2

⇐⇒ v2 =

(
−2
1

)
Example4:

• Take A =

(
4 5
1 8

)
.

� λ1 = 9 and v1 =

(
1
1

)
� Since λ1 + λ2 = 12 then λ2 = 3.
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7.6. Phase Portraits for system w/real eigenvalues

Here are two facts we may have not noticed last time:

• If the eigenvalue λ is negative, the straight line solution x(t) = eλtv tends to the origin as t→∞.

Draw a picture with example x(t) = e−t
(

1
0

)
.

• If the eigenvalue λ is positive, the straight line solution x(t) = eλtv tends to away from the origin

as t→∞. Draw a picture with example x(t) = e−t
(

1
0

)
Saddles:

Definition. A linear system for which we have one positive and one negative eigenvalue has an equi-
librium point that is called a saddle.

Example1: Consider

x′ =

(
−3 0
0 2

)
x

if we solve this system we get

x(t) = c1e
−3t
(

1
0

)
+ c2e

2t

(
0
1

)
• Draw straight line solutions in Phase Plane
• Draw other solutions in Phase Plane. Show this by using t→∞ analysis.

•
Make an analysis on the x(t), y(t) graphs with initial point (1, 1) and get graph that looks like this::

Example2: Consider

x′ =

(
8 −11
6 −9

)
x

using trick about eigenvalues we get that λ1 = −3 ad λ2 = 2 with eigenvectors v1 =

(
1
1

)
and v2 =

(
11
6

)
.

if we solve this system we get

x(t) = c1e
−3t
(

1
1

)
+ c2e

2t

(
11
6

)
.

• Draw straight line solutions in Phase Plane
• Draw other solutions in Phase Plane. Show this by using t→∞ analysis.
• Also draw x(t), y(t) curves for the following initial conditions:

� (0,−5)
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� (20, 10) should be inside one of the parabola thingys

Asymptotically stable node

Definition. A linear system for which we have both negative, distinct eigenvalues has an equilibrium
point that is called a asymptotically stable node.

Example1: Consider
dx

dt
=

(
−1 0
0 −4

)
x

if we solve this system we get

x(t) =

(
c1e
−t

c2e
−4t

)
= c1e

−t
(

1
0

)
+ c2e

−4t
(

0
1

)
• Draw straight line solutions in Phase Plane with ARROWs
• Draw other solutions in Phase Plane.

� MAKE DISTINCTION ON THE ARROWS.(They sink in )

•
Example2: Consider

dx

dt
=

(
−2 −2
1 −3

)
x

if we solve this system we get

x(t) = c1e
−4t
(

1
1

)
+ c2e

−t
(
−2
1

)
.

Asymptotically unstable node

Definition. A linear system for which we have both positive, distinct eigenvalues has an equilibrium
point that is called a asymptotically unstable node.

Example1: Consider
dx

dt
=

(
2 2
1 3

)
x

if we solve this system we get

x(t) = c1e
4t

(
1
1

)
+ c2e

t

(
−2
1

)
• Draw straight line solutions in Phase Plane with ARROWs
• Draw other solutions in Phase Plane.

� MAKE DISTINCTION ON THE ARROWS.(They SOURCE out )
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•
Pictures tell us more than intuition:
If there's any more time draw Phase Portraits for the following countivive system (pro�t example)

dx

dt
=

(
−2 −3
−3 −2

)
x

use tricks and get

x(t) = k1e
t

(
−1
1

)
+ k2e

−5
(

1
1

)
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7.7. Complex Eigenvalues

• We have only worked when we have distinct real eigenvectors.
• But what if we get complex numbers as eigenvectors?

� When will this even happen?
• Consider

dx

dt
=

[
1 −3
3 1

]
x.

• With this direction �eld:

• The intuition form before doesn't work. There are no straight line solutions. It looks like solutions
will be spirals.

• So we shall proceed as have done before, but this time you will see that we will have complex
numbers

Complex numbers:

• Here are some facts. Complex numbers are of the form a+ bi where a, b ∈ R and i =
√
−1.

� i2 = −1. Remenber this.
• Also we'll need to know Euler's Formula: eib = cos b+ i sin b. So

ea+ib = eaeib = ea (cos b+ i sin b) = ea cos b+ iea sin b.

Example1: Find general solutions of

dx

dt
=

[
1 −3
3 1

]
x.

• Find the eigenvalue:

det (A− λI) = 0 ⇐⇒ (1− λ)
2

+ 9 = 0

⇐⇒ λ =
2±
√
−36

2
= 1± 3i.

• Pick one eigenvalue: Find the eigenvector: Solve{
x1 − 3x2 = (1 + 3i)x1

3x1 + x2 = (1 + 3i)x2
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One of these equations will be redundant. So pick one equation to �nd the eigenvector

3x1 + x2 = (1 + 3i)x2 ⇐⇒ 3x1 = 3ix2

⇐⇒ x1 = ix2

⇐⇒ pick x2 = 1 and get x1 = i.

So the eigenvector v =

(
i
1

)
is associated with the eigenvalue λ = 1 + 3i.

• Find the corresponding complex solution:

xcomp(t) = veλt

=

(
i
1

)
e(1+3i)t

=

(
i
1

)
ete3ti

=

(
i
1

)
et (cos 3t+ i sin 3t)

=

(
iet (cos 3t+ i sin 3t)
1et (cos 3t+ i sin 3t)

)
=

(
iet cos 3t− et sin 3t
et cos 3t+ iet sin 3t

)
=

(
−et sin 3t+ iet cos 3t
et cos 3t+ iet sin 3t

)
put i's together

=

(
−et sin 3t
et cos 3t

)
+ i

(
et cos 3t
et sin 3t

)
= xre(t) + ixim(t).

Theorem. If xcomp(t) = xre(t)+ixim(t) is a solution to the linear system dx
dt = Ax. Then xre(t),xim(t)

are two linearly independent solutions to the system as well.

• So it turns out the general solution to this system is

x(t) = c1

(
−et sin 3t
et cos 3t

)
+ c2

(
et cos 3t
et sin 3t

)

� REMOVE THE i!!!!!
• Qualitative Analysis: We already know from the direction �eld that the curves are going to be
spirals. The et terms says that the solutions are getting father and father away from the origin:
� Thus graph of the Phase Portrait looks like this:
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�

Summarize:

Theorem. If a linear system as eigenvalue λ = α± βi. Then the solution curves from spirals about the
origin with natural period 2π

β , natural frequency β
2π and

(1) If α < 0, it's a asymptotically stable spiral point.
(2) If α > 0, its a asymptotically unstable spiral point.
(3) If α = 0, its a center.

So the previous example was a asymptotically unstable spiral. Let's see other examples.
Example2: A center

We convert d2y
dt2 = −2y into

dx

dt
=

(
0 1
−2 0

)
x

and get characterisitc polynomial of λ2 + 2 and get λ = ±i
√

2.

• Phase Portrait:
� The period is 2π√

2
and frequency is

√
2

2π .

� One thing the theorem doesn't tell us is if the spirals are clockwise or counter-clockwise.
� So �gure out the vector image at (1, 0) and (0, 1) and get A(1, 0) = (0,−2) and A (0, 1) = (1, 0).
This is thus clockwise.

� Since α = 0 then this is center and a graph looks like:
• The solution would be

x(t) = c1

(
cos
√

2t

−
√

2 sin
√

2t

)
+ c2

(
sin
√

2t√
2 cos

√
2t

)
.

• The solutions are ellipese. By we don't know if the major and minor axis are in the y and x axis.

Example3: asymptotically stable spiral.
Suppose

dx

dt
=

(
−2 −3
3 −2

)
x

and get characterisitc polynomial that λ2 + 4λ+ 13 = 0 and get λ = −2± 3i.

• Phase Portrait:
� The period is 2π

3 and frequency is 3
2π .

� One thing the theorem doesn't tell us is if the spirals are clockwise or counter-clockwise.
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� So �gure out the vector for at (1, 0) and (0, 1) and get A(1, 0) = (−2, 3) and A (0, 1) = (−3,−2).
This is thus counterclockwise.

� Since α = −2 < 0 then this is spiral sink.
• The solution would be for λ = −2 + 3i get eigenvector of v = (i, 1) and solution of

x(t) = c1

(
−e−2t sin 3t
e−2t cos 3t

)
+ c2

(
e−2t cos 3t
e−2t sin 3t

)
.
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7.8. Repeated and zero eigenvalues

Repeated roots:
Suppose

dx

dt
=

(
1 −2
2 5

)
x.

Let's �rst the the eigenvalues:

det

(
1− λ −2

2 5− λ

)
= 0 ⇐⇒ (1− λ) (5− λ) + 4 = 0

⇐⇒ λ2 − 6λ+ 9 = 0

⇐⇒ (λ− 3)
2

= 0,

⇐⇒ λ = 3.

So it turns out that we will guess. Our guess is going to be similar to the guess to what we did in a
previous section. The solution will be of the form:

x(t) = eλtv0 + teλtv1.

where Y(0) = v0 is the initial condition. So what will v1 be? Let's �gure it out. For this solution to work
we check that the LHS equals to RHS for

dx

dt
= Ax,

for this speci�c Y.
The LHS: Do calculus like we would normally do:

dx

dt
= λeλtv0 + eλtv1 + λteλtv1

= (λv0 + v1) eλt + (λv1) teλt

The RHS: We have

Ax = A
(
eλtv0 + teλtv1

)
= Av0e

λt + (Av1) teλt

So matching the coe�cients we get that we must have

λv1 = Av1 and λv0 + v1 = Av0.

This means either v1 is an eigenvector or the zero vector. We also have that we can explicitely get

λv0 + v1 = Av0 ⇐⇒ v1 = Av0 − λv0

⇐⇒ v1 = (A− λI)v0.

Thus we have the following theorem:
METHOD #1

Theorem. Suppose dx
dt = Ax is a system with λ being a double root. Then the general solution is of the

form:

x(t) = eλtv0 + teλtv1

where v0 in the initial condition and

v1 = (A− λI)v0.
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If v1 6= 0 then it is an eigenvector, and if v1 = 0 then v0 is an eigenvector and Y(t) is a striaght line
solution.

• (Warning) Never think that eλtv0, te
λtv1 are solution by their own. It doesn't work that way

here. This is a completely di�erent way to solving this problem.

So what do we do? Can we �nd some eigenvectors:
Example1:
We consider

dx

dt
=

(
1 −2
2 5

)
x

with initial condition x(0) =

(
2
1

)
.

• Step1: Recall we found λ = 3 to be an eigenvalue. Our theorem gives us that v1 will be an
eigenvector. But we can �nd it directly by putting λ = 3 into

det

(
−2 −2
2 2

)
= 0

and getting x = −y so v =

(
1
−1

)
is an eigenvector.

• Step2: Suppose v0 =

(
x0
y0

)
is the initial condition then what is is v1?

v1 = (A− λI)v0

=

(
−2 −2
2 2

)(
x0
y0

)
=

(
−2x0 − 2y0
2x0 + 2y0

)
.

• Step3: Write the solution

x(t) = e3tv0 + te3tv1

= e3t
(
x0
y0

)
+ teλ3t

(
−2x0 − 2y0
2x0 + 2y0

)
and pluggin the inital condition we have

x(t) = e3t
(

1
2

)
+ te3t

(
−6
6

)
.

• Step4: We plot the solutions by plotting the straight line solutions �rst (y = −x) and then making
the following graph (an almost spiral, but a asymptotically unstable improper node) putting
outwards (because λ = 3 > 0) (still check clockwise/counterclockwise):
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�

Example 2
For

dx

dt
=

(
−2 1
0 −2

)
x

and get λ = −2 and get

Y(t) = e−2t
(
x0
y0

)
+ te−2t

(
y0
0

)
wih the following graph (note the sink):

• This would be an asymptotically stable improper node because λ < 0.

METHOD #2 - For general solutions:

• Suppose we have repeated eigenvalue λ to

dx

dt
= Ax

then we can always write a general solution like this:

x(t) = c1e
λtv + c2

(
teλtv + eλta

)
where v is any eigenvector:

(A− λI)v = 0,

and a solves the following system

(A− λI)a = v.

• Example1 (revisited): Find general solution of

dx

dt
=

(
1 −2
2 5

)
x

� Solution:

∗ Step1: Not hard to check that λ = 3 is an eigenvalue and v =

(
1
−1

)
is an eigenvector.
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∗ Step2: We just need to �nd the vector a that solves

(A− λI)a = v ⇐⇒
(
−2 −2
2 2

)(
a1
a2

)
=

(
1
−1

)
⇐⇒

{
−2a1 − 2a2 = 1

2a1 + 2a2 = −1

⇐⇒ a1 = −1

2
− a2,

⇐⇒ a =

(
a1
a2

)
=

(
− 1

2 − a2
a2

)
choosing a2 = 0 we have

a =

(
− 1

2
0

)
is a solution hence: the general solution is

x(t) = c1e
λtv + c2

(
teλtv + eλta

)
= c1e

3t

(
1
−1

)
+ c2

(
te3t

(
1
−1

)
+ eλt

(
− 1

2
0

))
Every vector is an eigenvector:
Suppose

dY

dt
=

(
a 0
0 a

)
Y

then λ = a and then every vector is an eigenvector. Because every vector is an eigenvector, then every
solution is a ray the either aproaches or leaces the origin. Here is a graph:

Systems with a zero eigenvalue:
Example1:
Notice that when detA = 0 then from before must have in�nitely many equilbrium solutions. Notice for

all the other examples we always had the origin as the equilibrium point. So when detA = 0 then we know
that there exists

λ1 = 0.

Consider
dx

dt
=

(
−3 1
3 −1

)
x.

Since detA = 0 then this will always tell us that one of the eigenvalues is λ1 = 0. But since traA = −4 and
using the fact that λ1 + λ2 = −4 then λ2 = −4.

• The eigenvector for λ1 = 0 is the line y1 = 3x1 so choose v1 =

(
1
3

)
• The eigenvector for λ1 = −4 is the line x2 = −y2 so choose v2 =

(
−1
1

)
.

• The solution is like before in the discussion of distinct eigenvalues:

x(t) = c1e
0t

(
1
3

)
+ c2e

−4t
(
−1
1

)
= c1

(
1
3

)
+ c2e

−4t
(
−1
1

)
.
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• First thing: There is a line of equilibrium solutions at y = 3x.
• All other solutions are iether point outwards or inwards. Here inwards becasue of the λ = −4
• Here is a graph:
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7.9. Non-homegeneous Linear Equations

• Suppose we have a non-homogeneous system

x′ = Ax+ g(t)

where g(t) 6= 0.
• Methods:

� diagonalization
� Laplace transforms
� variation of parameters
� method of undetermined coe�cients - we'll learn this today

∗ A is constant
∗ g(t) consists or polynomial, sin, cos, or exp.

• MOUC:
� Step1: Find xc which is the general solution to the homogeneous equation

x′ = Ax.

� Step2: Make guess for xp, which is a particular solution to

x′ = Ax+ g(t)

based on g(t).
� Step3: Adjust if there are any repeats with xc. By multiplying by t.

• Example1(MOUC): Find general solution of

x′ =

(
0 1
−2 −3

)
x+

(
2et

−et
)
.

� Solution:
� Step1: Find xc: which solves

x′ =

(
0 1
−2 −3

)
x

∗ Eigenvalue λ1 = −2 has an eigenvector v1 =

(
−1
2

)
∗ Eigenvalue λ2 = −1 has an eigenvector v2 =

(
−1
1

)
.

∗ So the homogeneous solution is

xc = c1

(
−1
2

)
e−2t + c2

(
−1
1

)
e−t.

� Step2: We make our �rst guess xp:based on g(t) =

(
2
−1

)
et

∗ 1st guess: xp = aet =

(
a1
a2

)
et where a =

(
a1
a2

)
is some vector.

· Since aet is not part of xc then we made the right guess.
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� Step3: Then plug xp into the ODE:

x′p
?
= Axp + g(t) ⇐⇒ d

dt

(
aet
) ?

= Aaet +

(
2
−1

)
et

⇐⇒ aet
?
= Aaet +

(
2
−1

)
et

⇐⇒ a
?
= Aa+

(
2
−1

)
⇐⇒ −

(
2
−1

)
?
= Aa− a

⇐⇒
(
−2
1

)
?
= (A− I)a

and since A− I =

(
−1 1
−2 −4

)
then we need to solve(

−1 1
−2 −4

)(
a1
a2

)
=

(
−2
1

)
∗ You can row reduce or solve using regular algebra to obtain

a1 =
7

6
, a2 = −5

6

∗ Thus the general solution is

x(t) = c1

(
−1
2

)
e−2t + c2

(
−1
1

)
e−t +

1

6

(
7
−5

)
et.

• Variation of parameters:
� Step1: Find xc which is the general solution to the homogeneous equation

x′ = Ax

in terms of

xc(t) = c1x
(1)(t) + c2x

(2)(t),

and de�ne the Fundamental matrix:

Ψ(t) =
(
x(1)(t),x(2)(t)

)
.

� Step2: Then the solution to x′ = Ax+ g(t) is given by

x(t) = xc(t) + xp(t)

where

xp(t) = Ψ(t)u(t)

where u(t) is a vector that satis�es

Ψ(t)u′(t) = g(t).

• Example2:(Variation of Parameters) Use variation of parameters to solve

x′ =

(
2 1
1 2

)
x+

(
0

4et

)
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� Step1: We �rst need to �nd xc which solves

x′ =

(
2 1
1 2

)
x

and by doing the work we get that

xc(t) = c1e
t

(
1
−1

)
+ c2e

3t

(
1
1

)
hence the fundamental matrix is:

Ψ(t) =

(
et e3t

−et e3t

)
.

� Step2: Now we need to �nd the u vector which solves:

Ψ(t)u′ = g ⇐⇒
(

et e3t

−et e3t

)(
u′1
u′2

)
=

(
0

4et

)
⇐⇒

{
etu′1 + e3tu′2 = 0 =⇒ u′1 = −e2tu′2
−etu′1 + e3tu′2 = 4et

plugging u′1 = −e2tu′2 into the second equation we get

−et
(
−e2tu′2

)
+ e3tu′2 = 4et = 4et =⇒ 2e3tu′2 = 4et

=⇒ u′2 = 2e−2t

and plugging this back into the �rst equation we get

u′1 = −e2tu′2 = u′1 = −e2t
(
2e−2t

)
= −2

� Step3: Now we have that by integrating{
u′1 = −2 =⇒
u′2 = 2e−2t

{
u1 = −2t

u2 = −e−2t

so that we can compute xp with our formula:

xp = Ψ(t)u(t) =

(
et e3t

−et e3t

)(
−2t
−e−2t

)
=

(
−2tet − et
2tet − et

)
=

(
−2t− 1
2t− 1

)
et

Hence the general solution is x = xc + xp:

x = c1e
t

(
1
−1

)
+ c2e

3t

(
1
1

)
+

(
−2t− 1
2t− 1

)
et.

• Example3(MOUC) Find general solution of

x′ =

(
0 1
−2 −3

)
x+

(
2e−2t

−e−2t
)
.

� Solution:
� Step1: Find xc:which is the same as Example 1:
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∗ So the homogeneous solution is

xc = c1

(
−1
2

)
e−2t + c2

(
−1
1

)
e−t.

� Step2: We make our �rst guess xp:based on g(t) =

(
2
−1

)
e−2t

∗ 1st guess: xp = ae−2t =

(
a1
a2

)
et where a =

(
a1
a2

)
is some vector.

· Since ae−2t is part of xc then we need to reguess
∗ 2ns guess: xp = ate−2t+be−2t (note that this is di�erent than in the non system
case)

� Step3: Then plug xp into the ODE:

RHS = Axp + g(t)

= Aate−2t +Abe−2t +

(
2
−1

)
e−2t

= Aate−2t +

[
Ab+

(
2
−1

)]
e−2t

while the LHS is equal to

LHS =
d

dt

[
ate−2t + be−2t

]
= ae−2t − 2ate−2t − 2be−2t

= −2ate−2t + (a− 2b) e−2t.

� Collecting terms we have:

te−2tterm :− 2a = Aa (?)

e−2tterm :a− 2b = Ab+

(
2
−1

)
(??)

� Using (?) we have

−2a = A ⇐⇒ (A+ 2I)a = 0

⇐⇒
(

2 1
−2 −1

)(
a1
a2

)
=

(
0
0

)

hence a1 = − 1
2a2 or

a =

(
− 1

2r
r

)
.
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� Back to (??) we have

a− 2b = Ab+

(
2
−1

)
⇐⇒

Ab+ 2b = a−
(

2
−1

)
⇐⇒

(A+ 2I) b =

(
− 1

2r − 2
r + 1

)
⇐⇒(

2 1
−2 −1

)(
b1
b2

)
=

(
− 1

2r − 2
r + 1

)
⇐⇒[

2 1
−2 −1

∣∣∣∣ − 1
2r − 2
r + 1

]
⇐⇒

[
2 1
0 0

∣∣∣∣ − 1
2r − 2

1
2r − 1

]
and this is consistence if and only if

1

2
r − 1 = 0 =⇒ r = 2.

� Thus

2b1 + b2 = −1

2
2− 1 ⇐⇒ 2b1 + b2 = −3

⇐⇒ b2 = 3− 2b1

hence

b =

(
b1

3− 2b1

)
and since b1 can be anything choose b1 = 0 to get

b =

(
0
3

)
� Recall

a =

(
− 1

2r
r

)
=

� Step4: Recall that

x(t) = xc + xp

= c1

(
−1
2

)
e−2t + c2

(
−1
1

)
e−t

+

(
−1
2

)
te−2t +

(
0
3

)
e−2t

as needed.
• Example4: Suppose

g(t) =

(
− cos t
sin t

)
and

xc = c1

(
5 cos t

2 cos t+ sin t

)
+ c2

(
5 sin t

2 cos t− cos t

)
Find the correct xp guess.
� Solution:
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� First guess: Our �rst guess is based on g(t) online and since

g(t) =

(
− cos t
sin t

)
= g(t) =

(
−1
0

)
cos t+

(
0
1

)
sin t

then
xp = a cos t+ b sin t

∗ But since this is part of xc we need to make another guess.
� Second guess:

xp = at cos t+ bt sin t+ c cos t+ d sin t.


