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CHAPTER 1

Introduction

1.1. Modeling via Diff Eqs, some solutions and definitions

e What is a differential equation? What is a solution to a differential equation? (This is hard concept
to understand at first) Let’s compare and contrast concepts that we already know in Algebra with
that of Differential Equations:

— Algebraic equation:
x 22 —1=0o0ra2+1=0
x What are solutions? Are there even any solution? If so how many?
- Solutions are numbers in Algebra.
- We can always check if a number is a solution: Note that z = 1 a solution of
2?2 —1=0since 1! — 1 =0.
- But notice that there is another solutions, x = —1 too! So solutions are not unique
in this case.
— Differential equations: Are equation that have derivatives of functions in them.
* %:2yor %:4y+et
x What are solutions to differential equations?
- They are functions! Tricky because functions are more complicated than num-
bers. Functions have domains, ranges, etc.
- Solutions to differential equations are not equations!
* Is there even a solution? (Existence?) If so, how many? (Uniqueness?)
- These two questions are the two main questions one asks in the subject of differential
equations!
x Check: We can always check if a function is a solution to a differential equation:
+ Example: Show y(t) = 9¢% is a solution to % = 2y.
- Solution: Plug y(t) into the Left Hand Side (LHS), and then plug y(¢) into the
Right Hand Side (RHS), and then check if they are equal!

LHS = RHS
2 (9e2) L2 (9e2)

dt
v

18e%t = 18¢2

- What about y = 9e%* +1? Is this a solution? Take a pencil and paper and try this
yourself by hand. You will see that y = 9e? + 1 is actually NOT a solution to the
example above.
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* Check that y(t) = 1+t is a solution to
dy B y? -1

dt 2 +2t
- Take a pencil and paper and try this yourself by hand! The answer will be yes!

Studying first order differential equations.

e What are diff eqs used for? This is class is about modeling/predicting the future.
— Example: Meteorologists try to do it all the time with the weather, and they get it wrong
all the time. This means modeling is hard.
— Example: For example the solution to the equation
dP
— =k P,
dt
models the population P(t) of a species at time ¢.
e The standard form of a first order different equation (meaning it has only first derivatives in
the equation) is

dy
A CEO
Recall that y is really a FUNCTION. Like y = y(t).
— t is the independent variable.
e An initial value problem (IVP) is a diff. eq., with an initial condition:

dy

T fty).  ylto) = yo

— Example:
% =2y y(0)=9
* Question: Is y(t) = 9¢*' a solution to this IVP?
- Yes. remember we already checked earlier that y(¢) = 9¢2! is a solution to the ODE
and clearly y(0) = 9¢20 = 9.
e A particular solution to an ODE is simply one of the functions y = y(t) that satisfy a diff. eq.
y'(t) = f(t,y(t)) for all ¢.
e A General Solution is one that includes all possible solutions to any IVP involving a specific
ODE parametrized by parameters.
— Example:
* To find the general solution to ‘;—f = 2y, we can separate the y’s and ¢’s to one side and
then integrate

@:2@/ = d—y:Zdt

dt Y
d
— /—y:/th
Y
<~ Inly|=2t+C
— |y| = ¥tY = Ke?, where K = ¢

— y = ce?, where c = £K.
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* Thus the general solution must be of the form

y = ce?t.
x There will be a whole section on this technique!
e An equilibrium solution y(t) = yo are the constant solutions of an ODE. That is

dy(t)

dt

Example: Find the equilibrium solutions of the following equation
Suppose we have

=0 for all ¢t.

y' =y’ +y* —6y
for what values of y is y(t) in equilibrium, increasing, decreasing? Get
v =yly-2)(y+3),
and create a sign chart as we used to do in calculus. Equilibrium solutions are y = —3,0,2. and get
decreasing for (—oo, —3) U (0, 2) and increasing for (—3,0) U (2, c0).
Solutions to some differential Equations.
e A Linear Diff Eq.: Pick your favorite real numbers a, b, yo and consider the IVP

d
£=ay—b, y(0) = o

— The general solution to this diff eq is
b b
v =5+ (- 7) e
a a

— I will show you how one can get this very soon!
e Example: Find the solution to

dy
— =-2y+38 0)=5
7 y+38, y(0)=5,
— Solution: The mysterious formula I gave you says that a = —2,b = —8 and yg = 9 so the

solution is

y(t) =4+ <5 - 2) e =44

Studying general differential equations.

e In this class, we will only study ordinary differential equations (ODE): contains only ordinary

derivatives;
e There is a whole separate course where one can study partial differential equations(PDE):
. DPuly) | Pumy) _
— Ex: o7 T o - = -1
e System of equations:
dx
=zr—=
dt Y
dv
=y — 3z

dt
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e The order of the equation speaks to the highest derivative in the equation

y 4+ 3y =0 1st order
y" + 3y’ = 2t 2nd order

d® d
dity + di: =y 5th order

Ugz + Uyy = 0 2nd order
e An ODE is called linear if it is linear in y, i.e. it is of the form
an(t)y(”) + an,l(t)y("*l) +-Fap(t)y = g(t)

— Linear:
x y +4y =0,
x t2y" + costy = 1,
* and L —y =12

— Nonlinearg:
(@) +y=1,
«yy +y=1,
* Y + 3evy,
+and , —y' = 1.

¢ Nonlinear ODEs are of the hardest equations to solve! In fact, most of the time, one won’t be able
to find an exact formula for the solution of a differential equations.
— But one nice this thing about studying ODEs is that we can always check if a function is really
a solution to a differetial equation or not.

1.2. Slope Fields/Direction Fields

In this subsection we learn a qualitative technique.
Often there are three main ways to study ODES

(1) Analytically: This mean, one actually finds a formula for the solutions of a differential equations.

(2) Numerically: But often, it is very difficult to find an actual formula for the solution, even though
there may be a solution. Thus one can use computers and algorithms to numericall approximate
the solution.

(3) Qualitatively: Maybe we don’t need the full solution of a differential equation. Maybe you just
need some qualitative information about the solution. We can use our knowledge of ODEs to have
an idea of how the solution behaves. For example, maybe the only thing you want to answer about
the solution is what the following limit is: lim;—, o y(¢)?

When we have an equation of the form % = f(t,y). We can always make a direction field/slope field.

A slope field contains minitangets at several points of a graph.

Examplel: We want to make a 9 point slope field for % =y—t.

Make a table:
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[ty fty)=y—t

-1 1 2

-110 1

-1-1 0

0|1 1

010 0

0 (-1 -1

1|1 0

110 -1

1|-1 -2

A bigger slope field with more points would look like this:
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e What does a slope field tell us?
— What it says is that, if a solution were to go through a particular point, then the slope at the
point must be the one given in the slope field.
— This means, slope fields allows us to sketch what the solution might look like. This is a
qualitative technique.
e Dfield: This is an applet you can find on the main course webpage.
— Here is a link: https://math.rice.edu/"dfield/dfpp.html
— This is an applet that makes slope fields/direction fields for you.

Two important cases:
They are of the form

Typel: & = f(1)

e The slopes are always the same in each vertical line. Draw picture!
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e Draw slope field of ‘fi—-’t’ = 2t and get

ce?t, which makes sense.

e The explicit solutions are of the form y(¢)

L = f(y)

Type2:

e These are called autonomous equations.

e The slopes are always the same in each horizontal line. Draw picture!

e Draw a slope field of %’ =4y(1 —y).

— Always begin with the equilibrium solutions, y = 0, 1.

— Then check slopes between there equilibrium solutions. Like:



1.2. SLOPE FIELDS/DIRECTION FIELDS

and sketch something like this:

— Try to sketch a curve!
Matching slope fields:
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Equation : 4y({1-y)

When trying to match slope fields you should always follow these steps:

(1) Factor!
(2) Find the equilibrium solutions

(3) Test points between equilibrium solutions.

Do Worksheet given in class!

Draw behavior given different initial conditions on the worksheet.

Look at Long term behavior!







CHAPTER 2

First Order Differential Equations

2.1. Linear Equations/Integrating Factors

Integrating Factors Method:
Lets start with the linear diff eq:

dy
— =al(t b(t
U oty + (1)
and rewrite it as

Yt plt)y = g(1)

where I let g(t) = b(t) and p(t) = —a(t). Then notice that % + p(t)y looks awefully like a product rule
of some sort. In the product rule, there are two functions. Clearly one function will be y(¢), but what will
the second function be. We call u(t) the integrating factor that makes the LHS into a product rule. Let’s
multiply both sides by u(t) and get

p(t) o+ p®p(t)y = ut)g(t),
then if we want the LHS to be a product rule then

d[p®)y@®)] dy

LHS = ———%= = pu(t)—

dt O G

Let’s just assume this works for now and then find out what the 1(¢) needs to be later. Setting the LHS to
RHS we get

+ p(t)p(t)y.

d[u(;iy(t)] — (g
Then integrating we get
/ Wmﬁ: / 1(t)g(t)dt.

But we know integrating cancels differentiation thus the LHS equals p(t)y(¢) so that

u(ole) = [ gt +

and dividing by u(t) we get that

)= s | [ gt ¢

is our general solution.
Find the integrating factor:

11

This
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So recall that for the product rule to work we have

OO _ )2 1 gty
but then this only happens if the derivative of u(t) is u(t)g(t) (by product rule!!!!) thus
d[Zit)] = p(®)p(t)
Rewrite this as
dp
a kp

which is a separable equation and thus

[ = [ovar = wi= [ o

= p=elr®d
Thus p = e/ P4 and we don’t need a constant here because we only need ONE integrating factor.

Sumimarize:
So basically if we know how to integrate [ u(t)g(t)dt then the general solution of

Wt plty = gl

will be

- [ / u(t)g(t)dt + C} where p(t) = e/ P4t

Examplel(without formula): Find general solution of ‘é—%{ = %y + 5.

e Step 1: Rewrite as
t5

dy 3 _
dt  t7

so that p(t) = —2 and g(t) = ¢°.
e Step 2: Find an integrating factor:

—34 —31n — 1
,u(t):ef rdt — g=3Int —y¢ 3:t—3.
Note we only need an integrating factor, not a general integratin factor. So we never need to have
a +C in this step !l In the next step we will that we also don’t need the asbolute value inside

the In.
e Step3: Multiply BOTH SIDES of the equation by u(t) and get

ldy 3 _ 4

[EF T
and notice that
ldy 3 9
—_ 2 Tuy=t
B 1Y
1
d[7y] 42
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e Step4: Integrate and solve for y(t) (don’t forget the constant C' in this step, very important)

d[tsy] 1 t?
t2dt = Sy =—
/ gt / +C BY=73 +C

6
— yt)= % + C3.

Examplel (with formula): Solve the IVP: % = %y + 5 with y(1) = %. In this eaxmple we’ll skip the

previous steps and go straight to using the formula.

e Step 1: Rewrite as

so that p(t) = —2 and g(t) = ¢°.
e Step 2: Find an integrating factor:

N(t) _ ef—%dt e B3It _ =3 _

e Step3: I can just plug in the formula and get

o = [/ (Datoyi. + C|

|
-+
w

e Step4: Since y(1) = 5 then

so C' =1 so that

1
y(t) = §t6 + 1.

Example2 (using formula): Find general solution d” =y + 9cost?.

e Step 1: Rewrite as

so that p(t) = —1 and g(t) = 9 cos t2.
e Step 2: Find an integrating factor:

,u(t) — effldt — eit.

Note we only need an integrating factor, not a general integratin factor. So we never need to have
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e Step3: I can go through the process again, or I can just plug in the formula and get
1

yt) = o) [/u(t)g(t)dt.-i—C]

Lt {/ e t9cost?dt + C]
o
= ¢ {/ e t9cost?dt + C’]

Can’t integrate, so we write the answer this way.
t

Example3: Find general solution of t3y’ + 4ty = e~

e Step 1: Rewrite as
y/ + %y — ;t
t t3

so that p(t) = % and g(t) = et;gt

e Step 2: Find an integrating factor:
u(t) _ ef%dt — ednft] _ 44

Note we only need an integrating factor, not a general integratin factor. So we never need to have

1
W) = | [ g+ ]
1 et
1 —t
1 —t t
= tj[*te —e JrC]
1 _ 1 _ C
_ _?36 t_tj t+t7'

where I used integration by parts.
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2.2. Separable Equations

One of the easiest method to solve a first order ODE is called separation of variables. In the previous
section, we focused on Linear equations, which cover a good deal of first order ODEs. But we want to be
able to solve at least some nonlinear equation.

The technique we’ll use in this section will only work if the first order ODE is separable. We say a first
order ODE is separable if you can write it in the following form:

Y~ g(ohn). (1)

If you can write it this way, then separate the variables to get (put all the y’s on one side and all ¢’s on the
other side)
dy
h(y)
and then integrate both side with respect to their respective variable. This is legal by a u-substitution

argument. (This is informal algebra!)
Sometimes you’ll see it written in the following form

= g(t)dt,

M (z)dy + N(y)dy = 0.

Examplel: Notice that % =y +t is not separable

e But we can solve this using the methods of the previous section.

dy _ ¢t

Example2: Find the genera; solution of 7 = E
Separate variables the equation, integrate and then solve for y:

dy_i
dt o2

— yidy=tdt

We can then rename C' = 3¢; and get

3t2
General Solution: y(t) = {/ > +C.

If you are able to solve for y exactly, then this is called an explicit solution, because we can solve exactly
with a formula.
Example 3: Find the general soltuon for % = y? (Missing solution)

e First let’s find the equilibrium solutions: y(t) = 0 is the only one.
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e Then use the general separation of variables procedure

dy 9 1
— = —dy =dt
i Yy <~ 5 Yy

Yy
1
— /y—zdy:/dt
1
— —=t+C.
Yy

But notice that
1

t+C

does NOT solve the IVP with y(0) = 0. Thus we have to include the equilibrium solution y(¢) = 0,
to get the complete General Solution. In this case we say the general solution is:

y:

y(t) =0
y(t) = — e

General Solution: {

Moral of the story: Always find the equilibrium solutions first in case there are any missing solutions from
separating variables. !!!!!!!!
Example 4: Solve the IVP (Clever quadratic formula trick)

dy 2x+1
dr  y+1

y(0) =1

e Note there are no equilibrium solutions
e Then do use the general separation of variables procedure

dy 2x+1
A — Ndy= [ 2z+1)d
i /(y+)y/(w+)x
y?
— ?—I—y:an—l—x—i-C
y?
— ?—I—y—xQ—x—Fc:O

= P 4+2y—222—224+C=0
Then we can use the quadratic formula on
ay? +by+c=0

where
b=2
c=—-22%-2x+C
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hence an explicit solution is given by

_ —b+Vb? —4dac

- 2a

2+ /4—4(-222-22+O)
N 2

1+V1+222 422+ C
-1+ /222 +2z+ C.

Thus
General solution: y(z) = -1+ v/222+ 22+ C

e Now to solve the IVP use the initial condition: y(0) =1
1=y(0)=-1+VC

so that
2= +/c
since the LHS is Positive we choose the positive sign in the 4+ so that
2=/c
hence
c=4
so that
Particular solution ro IVP: y(z) = —1 + v/ 222 + 2z + 4.
Example 5: Find the general solution for ‘;—? = lny (Implicit Solutions (when we get stuck))

In this example, we would get
2
In |y| + % =t+C

and leave it that way as there is no nice way to solve this. But any function y(t) that satisfies the equation
above is a solution to our ODE. Thus when we write solutions this way, we call this an implicit solution.
Some more examples:
e Example 5:Solve the IVP
dy 4
— =t 0)=1.
o =ty o)
— Solution:
Start with equilibrium solutions y = 0.
— Get |y| = Ce!”/> but notice that by choise of C this shortens to y = Cet’/5.
.Note that this includes the equilibrum solution y = 0 by setting C = 0, thus

General Solution: y(t) = Cet’/5.

To solve the IVP we use the initial condition
1=y(0)=Ce=C
thus C' = 1, hence the particular solution to the IVP is

Particular solution to IVP :y(¢) = e’/
o H=(+1)(y+5)
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Solution:

Start with equilibrium solutions y = —1, -5 .

Use Partial fractions to get 14 14

Solution is

1 _
(y+1)(y+5) — y+1  y+5

1 1 y+1
21 1= =1 — In|=——| =4t
4n|y—|— | 4n|y+5| +C = n‘y+5‘ +Ch
y+1 at
= |——|=0C
’y+5 ?
y+1 4t
—— =(Cse
y+5  °
Skett — 1
1 — ket ”
— This yields all solutions but the equilibrium solution y = —5. Note that y = —1 can be found
by taking k = —1. Thus

— Y=

¢ 5kett—1
General Solution: {y( ) = e

y(t) = —5.
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2.3. Separable Homogeneous Equations and the Substitution Method

e Consider an ODE p
oy

and suppose we can rewrite it in the form

uor) o

e An equation fo the form () is called homogeneous.
— To solve this equation. We will define a new variable

v="Y (Important)
T

and write everything in terms of only v and z!
— Solve for y: And get

Yy = av.
— Implicit differentiate both sides:

d d

ﬁ = mé +1-v. (Important)

e The two important equations we come up with are:

v=4¥
Homogeneous Equation substitution:{ , *
dy _ pdv + o
dx dz
e Examplel: Consider
dy 2?2+ xy + 12
de x? '
— Part(a): Show that this ODE is homogeneous and rewrite the entire equation by only v and

x.
* To see this we divide the numerator and denominator by x2? and get
2
ay_1+2+(2)
de 1

and replacing % = x% +wvand v = £ we get a new equation
dv
r— +v=14v+0%
dx

— Part(b): Solve the ODE in terms of v and then return everything into terms of y, z.
* We rewrite

dv dv 1
— =1 2 — = [ —=d
zdm +v <:>/1—|—v2 /x:c

< tan"'(v) =In|z| + ¢

< tan* (g) =In|z| +ec
X

then
% = tan (In |z| + C)
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and
General Solution:y(z) = ztan (In|z| + C)

e Example2: Find the solution to
y=24+% x>0
r Yy

— Stepl: First check if you can apply any of the method of the previous sections (linear?
separable?). The equation is neither linear, or separable. But notice that this is homogeneous

for if T let v = £ then

dy vy 1 1
da:_a:—'—y/a:_v—'—v'

— Step2: Recall that % = J;Z—Z + v , so plug this into the LHS, and get

dv 1 1
T—F+v=0+—- <= vdv = | —dx
dx v x
02
= 5= In|z|+C
— y? =227 In|z| + kz*.
and we get
General Solution: y(z) = ++/222In|z| + Ca?
e Example3: (not always the same substitution) Rewrite the equation
dy _ y—=x
de c

in terms of only v,z by letting v = 9y — .
— Solution: Using v = 9y — z, then solve for y and get

1 n 1
= v+ -z
Y799
then using implicit differentiation,
dy _1dv 1
der  9dxr 9
hence
dy  gy_z ldv 1
dr € 9dzx + 9 ¢
dv
— =9’ — 1.
dx €

and this can be easily solved by separating variables.
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2.4. Modeling with Differential Equations

What are Differential Equations used for?
This is class is about predicting the future. Meteorologists try to do it all the time with the weather,
and they get it wrong all the time. This means modeling is hard.
Three aproaches
— Analytic: explicit solutions
— Qualitative: Use geometry to see long term behaviour. For example, to check ifthe population
is increasing or decreasing.
— Numerical: Approximations to actual solutions.
Model Building:
— 1. State Assumptions (science step, Newton’s law of motions, etc, ...)
* 2. Describe variables, parameters: Independent variables (¢, x), depedent variables (y, u),
parameters (k, ) (do not change with time)
* 3. Create Equations:
- Rate of change=slope= Derivative.
- the word “is” means equal.
- A is proportional to B means A = kB.
Example: Population growth
— Goal: Want to write a differetial equation that models population growth of say Zebras.
— Assumption: The rate of growth of the population is proportional to the size of the popula-
tion.
— Problem: Write a differential equation that governs this
* Let P(t) be the population of zebras at time t.
So for now we have

dP
—=k-P
dt
* Note here that k is a parameter that can be changes once we know more information.

x For example if we know the proportion is k = 2, then
dpP
Z _k.P
dt
and we already saw earlier that P(t) = Ce* is a solution to this.

Mixing Problem1:

PROBLEM. A vat contains 60L of water with 5 kg of salt water dissolved in it. A salt water solution
that contains 2 kg of salt per liter enters the vat at a rate of 3 L/min. Pure water is also flowing into the
vat at a rate of 2 L/min. The solution in the vat is kept well mixed and is drained at a rate of 5 L/min,
so that the rate in is the same as the rate out. Thus there is always 60L of salt water at any given time.
How much still remains after 30 minutes? What is the long term behavior?

Solution:

Stepl: Define variables

Let y(t) =amount of salt at time ¢t. Let y(0) = 5 kg.

Step2: Find Rate in/ Rate out

Note that for anything that comes in you can always find the Rate In as

concentrarion

Rate in = ( of stuff coming in

) x Rate.
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Similarly you can always find the Rate out as

concentrarion

Rate out = < of stuff going out

> x Rate.

Using the information from the problem we have

k L k L
Rate in = (2g> (3) +(og> (2)
L min L min

-salt water solution —pure water
k

65
min

and

concentrarion

Rate out = of stuff going out

) x Rate

Step 3: Write the IVP
Always recall that for mixing problems we have

d
A Rate in — Rate out
dt
Yy
6 — —=.
12
and the initial condition is
y(0) = 5.

Step 4: Find the common denominator and solve using separation of variables.
Write

dy 6o Y _ 72—y
d 12 12
and using separation of variables we get
dy 72—y dy dt
7 = — —
dt 12 72—y 12
t
= —-h2-y|=—-+C
n| Yl 12 +C1
—1
In|72 —y| = —
<~ In|72 —y| 15 + Cs
= |12—yl=Cse T
— T2-—y= ke 12
= y=T2—ke 12.

Solving the IVP by using y(0) = 5 to get
y(0)=5 = T2-ke®=5
= k=T72-5=067



2.4. MODELING WITH DIFFERENTIAL EQUATIONS

so the final solution is
y(t) =72 — 67e 1.
Step5:
After 30 minutes there is

y(30) = 72 — 6712 = 66.5 kg.

The long term behavior is simply the limit:
30

lim y(¢t) = lim 72— 67e" 12 =72 -0 ="T72.
t—o0 t— o0

23
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Mixing Problem #2:
e The difference here is that now we allow the total volume of fluid to vary, when before it was kept
fixed.

PROBLEM. A 400-gallon tank initially contains 200 gallons of water containing 3 pounds of sugar
per gallon. Suppose water containing 5 pounds per gallon flows into the the top of the tank at a rate of
6 gallons per minute. The water in the tank is kept well mixed, and 4 gallons per minute are removed
from the bottom of the tank. How much sugar is in the tank when the tank is full?

Solution:

Stepl: Define variables

Let y(t) = amount of sugar at time ¢, which is in minutes. Let y(0) = 3 x 200 = 600 pounds.
Step2: Find Rate in/ Rate out

Note that for anything that comes in you can always find the Rate In as

Rate in = ( concentrat.i on ) x Rate.
of sugar coming in
Similarly you can always find the Rate out as
Rate out = ( concentrarltion ) x Rate.
of sugar coming out
We have
ounds allons
Rate in = <5p ) (Gg - )
gallon min
-sugar water solution
pounds
gallon

To find the concentration of sugar coming out we have know that the amount of water at time ¢.

11 11
Water at time t = 200 gallons + (Gga ons B 4ga Ons) ;

min min

200 + 2t,

So

concentrarion
Rate out = (

of stuff going out
( y(t) pounds) « 4gall.0ns.

> x Rate

200 + 2t 9ation min
y(t) pound
200 + 2t ™in
Step 3: Write the IVP
Always recall that for mixing problems we have
dy
dt

Rate in — Rate out

4

= 30 oY
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and the initial condition
y(0) = 600.
Step 4: Solve using the Method of integrating factors:

Write J A
Y _
at Ta0g2tY =%

so that g(t) = and b(t) = 30. Thus the integrating factor is

4
200+2t
p(t) = et ot = 2 wire = 2(100+) — (100 4 )%

Thus using the formula I have that

1
y(t) = u(t)[/,u(t)b(t)dt.—i—C]
1 [ 2
T (100 + 1) _30/(100+t) dt'+c}
B 1 [ (o0+1t)?
(100 + t)? _30 30
= [0+ ]
(100 +£)%

+C

using y(0) = 600 we get that

1 3
600 = 553 [10 - 100° 4 C]
so that

C = —4,000, 000
thus
~10(100 + t)* — 4,000, 000

y(t) = (100 + t)*

Step5: Answer the question
Since the amount of water in the tank is 200 + 2¢ then it fills up when

200 + 2t = 400
so that t = 100. Thus the amount of sugar is
10 (200)* — 4,000, 000
(200)*
= 1,900 pounds.

y(100) =
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2.5. Modeling with differential equations - More Problems

e Newton’s Law of Cooling:
— Newton’s Law of Cooling states that the temperature of an object changes at a rate
proportional to the difference between its temperature and its surroundings.
— That is, let T'(t) be the temperature of the object, while T is the surrounding temperature.
Then by Newton’s Law of cooling there is some constant k, such that

dT
i E(T-Ty).

e Examplel: Suppose there was a murder in a room that is 70° F. Assume the victim had a
temperature of 98.6° when murdered. Let . be the time it took for someone to finally discover the
corpse since its death. As a detective, your goal is to find out how long ago the body died. Here is
the given information

— Fact 1: At the time time someone discovered the body, the temperature of the corpse was
72.5.

— Fact 2: One hour after the body was discovered, the temperature of the corpse was 72.

— Find the critical value of ¢, ?

— Solution: One needs to solve the following IVP: Let T'(¢) be the temperature of the victim,

then
% =k(T-"70), T(0)=098.6
and need to use the information
T(t.) = 72.5,
T(t.+1)="72.

to solve for k.
— First solving for T'(t) we get
T(t) = 70 + (98.6 — 70) e**
=70 + 28.6¢".
— Then using
72.5 = 70 + 28.6eM<,
72 = 70 + 28.6¢k e+

— Solving the first equation for k we get
1 2.5
= — 1 _—
b= ke

and plugging this into second equation we get
72 = 70 + 28.6¢7% M 56 (te 1)
and hence
t. ~ 10.92 hours.

and k = —0.223.
e Physics Problem:
e We will consider problems involving either
— free-fall or
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— throwing up an object straight up in the air
e We will also consider when there is some “air resistance of magnitude R(v) directed opposite
to the velocity v”.
e Setting our equation
— Since we know that F' = mass x accelaration = m‘f;t’ This will always be our LHS=left hand
side of our equation.
— The RHS depends on the problem given (e.g. free fall, throwing object up? is there resistance?)
— Thus our Equations will be in the form

m% = +R(v) £ mg
*x Suppose positive direction is up
- We'll have —R(v): If object is going up, i.e. v > 0. (Since air resistance R(v) is
directed opposite to the velocity v)
- We'll have +R(v): If object is going down, i.e. v < 0 (Since air resistance R(v) is
directed opposite to the velocity v)
- We'll have —mg: If the object was thown up. (Which means the force is going
opposite the natural free fall state)
x We’ll have +myg: If the object was released in free fall. (Because we’ll assume the positive
direction is down)

e Example2: Suppose a rocket with mass 10 kg is launched upward with initial velocity 20 m/s from
a platform that is 3 meters high. Suppose there is a force due to air resistance of magnitude |v|
directed opposite to the velocity, where the velocity v is measured in m/s. We neglect the variation
of the earth’s gravitational fields with distance. (Since it’s not going very high anyways)

— Part (a): Find the maximum height above the ground that the rocket reaches.
* Solution: Suppose we consider when the rocket is going up in the air before it has
reached the maximum height. Let R(v) = |v| be the resistance, then using what’ve
discussed above we have

mo = —R(v) —myg,

and we have —R(v) since the rocket is still going up, and —mg since the rocket was
launched upwards (the negative because the force is going againsts its natural gravita-
tional pull). Thus since the rocket is going up then v > 0. Recall that

v v >0
v| =
—v v<0

then

Hence
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* Solving this we have that

d —dt t
/ v :f <~ Injv+mg|=——+C
v+ mg m m

— |v+mg|=Cet/™

— v4+mg=Ce t/™
s v=Ce ™ —my.
* Since v(0) = 20 Then we can solve for C' and obtain (using g = 9.8 m/s"2)
v(t) = (20 + mg) e~/™ — mg,
=118¢"/10 — 98

and this equation is valid only when the rocket is going up.
* The maximum happens when velocity is equal to zero. Thus set v(¢1) = 0 and we get

that
98

< t1 ~ 1.86.

0=118¢"110_98 «— ¢,

* Solve for position: We get

z(t) = /v(t)dt +C
= —1180e~t/10 — 98t + C.
Since z(0) = 3, then
3=-1180e" —98-04+C < 3=-1180+C
— (C =1183.
x Thus
z(t) = —1180e /10 — 98¢ + 1183.
Then

maximum height = 2:(1.86)
~ 21.

— Part (b): Find the time that the rocket hits the ground. Assuming it missed the platform.
x Solution: We need to find the equation of when the rocket is falling down.When the
rocket is falling down we thus have the following equation:

dv
mo = R(v) —myg,

and we have R(v) since the rocket is going down, and —mg since the rocket was launched
upwards (againsts its natural gravitational pull). Thus since the rocket is going down
then v < 0. Recall that

v v>0
lv| =
—v v<0
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then |v| = —v so that
dv
mo = |[v]| = mg = —v —myg
hence
dv
Gy

% Solving this we have that vy(t) = Ce™*/™ — mg with initial condition v(0) = 0. Thus

t/m

va(t) = mge™ "™ —mg
= 98¢~ '/10 — 98
* Then
xo(t) = /Ug(t)dt+ C
= —980e /10 — 98t + C
since

22(0) = maximum height = 21

then solving for C' we have
zo(t) = —980e /10 — 98¢ + 1001.

* To find out when x2(t) hits the ground we need to find ¢» such that zo(t2) = 0 thus
(using a calculator)

0 = —980e /10 — 98¢y + 1001 < t5 ~ 2.14.

x Thus the ball hits the ground by adding the time it takes to reach its maximum plus
the time after that:

to =t1 +ty = 1.86 + 2.14 = 4 seconds.

e Example3: Consider the same scenario as before. A rocket with mass 10 kg is launched upward
with initial velocity 20 m/s from a platform that is 3 meters high. Except, there is a force due to
air resistance of magnitude v?/5 directed opposite to the velocity, where the velocity v is measured
in m/s.

— Part(a): Write the differential equation for velocity, when the rocket is still going up:
* Solution: Let R(v) = v?/5 be the resistance, then

d
md—z = —R(v) —my,
and we have —R(v) since the rocket is still going up, and —mg since the rocket was

launched upwards (againsts its natural graviational pull). Thus

m@*—v—z—m <:>m@*fv—2798
a5 it~ 5

— Part(b): Write the differential equation for velocity, when the rocket has already reched
maximum and is already going down.
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* Solution: Let R(v) = v?/5 be the resistance, then using the above we have

mo = R(v) — myg,

and we have R(v) since the rocket is going down, and —mg since the rocket was launched
upwards (againsts its natural graviational pull). Thus

dv  v?
m il 98.

e Exampled: Suppose we fly a plane at an altitude of 5000 ft and drop a watermelon that weighs
64 pounds vertically downward. Assume that the force of air resistance, which is directed opposite
to the velocity, is of magnitude |v| /128. (Use g = 32 ft/sec”2)

— Question: Find how long it takes for the watermelon to hit the ground?
— Solution: Here we assume the positive direction is down. Thus v > 0 as the object falls,

hence p
v
mo = —R(v) + myg,
and we have —R(v) since the watermellon is going down (which is in the positive direction),

and +myg since the rocket is being dropped by freefall. Now recall that

weight = mg
then m = % =2
— Then since the watermelon is going down then v > 0, so that R(v) = |v| /128 = v/128,
dv  —v dv v
g — 25 = 164
Mo 18 ™M T % 128 "0
dv v
= +32
dt 256 +3

— / o / Lo
v — 256 - 32 256
— v(t) = Ce /%6 1 256 - 32.
and since v(0) = 0 then
v(t) = —256 - 32e /256 4256 - 32.
— Solving for the distance traveled z(t) from the ground we have
z(t) = (256)° - 3271?50 4 32. (256)t + C
and letting x(0) = 0, then
z(t) = (256)% - 32e~1/250 4 32 (256) t — (256)° - 32
Then
z(tg) = 5000 <= to ~ 17.88 seconds.
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2.6. Existence and Uniqueness of Solutions

We want to know if solutions even exists to an ODE.

e If this models a physical phenomona and no solutions exists, then there is something seriously
wrong about your model.
— Why spend time trying to find a solution, and doing all the things in previous sections if no
solutions exist.
¢ Example: Suppose we have
22° — 10z + 3 = 0.
Plugging x = +1 into f(z) = 22° — 10z + 5 we get f(1) = =5 and f(—1) = 11.
— We draw a continuous sketch of this graph, and show it must cross the r—axis.
— By the intermediate value theorem we know that at least one solution exists.Since somewhere
in between it must have x = —1 and = = 1 the function f(z) must have crossed the x— axis.
— There could be more than one, we’d like to know if we should stop searching for more solutions.
— No “quadratic formula” for 5th degree polynomials.
¢ Example: No solutions for 22 +1 = 0.

THEOREM. 1 (Linear 1st order ODE FExistence and Uniqueness Theorem) If the function p and g are
continuous on an open interval I = (a,b) containing the point t = ty, then there exists a unique function
y = ¢(t) that satisties the IVP

y +pt)y=9g@1), y(to) =yo
for each t in I and where yq is an arbitrary initial value.

e This theorem guarantees the existence and uniqueness of solutions under the assumption of the
theorem.

e This is only for IVP, nothing to do with separate solutions to ODE’s. (which we already know
there are many)

e Important: This theorem allows you to know the domain before even solving for the solution

e Examplel:
— Part (a): Without solving the problem, what is the largest interval in which the solution of
the given IVP is certain to exist by the Existence and Uniqueness Theorem?

(t— 1)y +costy = y(3) = —4

t—6
— Solution: We rewrite as

,  cost et

VI T Y Ty
(‘;O_Slt) and i t—ﬁi =1y are only both continuous for every ¢ ## 1,6. The intervals are:
(=00, 1) U (1,6) U (6,00).

— But since the interval I = (1,6) is the only one that contains the initial point ¢y = 03 is in I.
Then we know there exists a unique solution y = ¢(t) on the interval (1,6).
— Part(b): What if T change the initial condition to

y(8) =T,

Since

then what is I7?
* Solution: Then I = (6, c0).
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e Example2:
— Part (a): Without solving the problem, what is the largest interval in which the solution of
the given IVP is certain to exist by the Existence and Uniqueness Theorem?
In(t—1) t—5

t*y = 3) =
v etz Y sin(t — 4) yB) =

Solution: We rewrite as
;o In(t—1)  t—5
fet2 VT 2 sin(t — 4)

The function 1;\;;12| is continuous when ¢ # 0 and ¢t — 1 > 0. So continuous on (1, 00)

— The function % is continuous when t # 0 and when t —4 # nr = t # 4+ nn. So
the problem points aret =0 and t =...,4 - 27,4 — 7w, 4,4+ 7,4+ 27
* Note that 4 + 7 ~ 7.14 hence

— Both functions are simultaneously continuous on
(LAHu 4, 44+m) U4+ m4+2m)U---

since to = 3 falls inside (1,4) then the solution to this IVP must have domain

I=(1,4).
— Part(b): What if I change the initial condition to
y(8) = 10,

then what is I7?
* Solution: Then [ = (4 + 7,4 + 27).

THEOREM. 2 (General 1st Order ODE) Suppose f(t,y) and % are continuous functions in a rectangle
of the form
{t,y) |a<t<be<y<d} (draw pic)
in the ty—plane.. If (to,yo) is a point inside the rectangle. then there exists a unique € > 0 and a unique
function y(t) = ¢(t) defined for (to — €,to + €) that solves the initial value problem

dy

E = f(t’y)a y(tO) = Yo-

e Warning: Unlike Theorem 1, Theorem 2 does not tell you what domain the solution will be valid
for. In this case, you really do have to solve for the solution to figure out the domain of the function.

COROLLARY. Moreover assuming the same conditions as Theorem 1, if (to, yo) is a point in this rectangle
and if y1(t) and y2(t) are two functions that solve the IVP
dy
AR to) =
o = &), y(to) = o,
for allt € (tg —€,to + €), then
yi(t) = y2(2)
fort € (to —€,t9 + €).
o Restatement of Uniqueness Theorem: If two solutions y;,y2 to an ODE that satisfies the

condition of the uniqueness theorem, then if they are in the same place at the same time, then they
must be the same function!
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— Important: The uniqueness condition says that if 41,y are two solutions to some ODE and
y1 and ys are equal at some point ty. Then y;(t) = y2(t) for all ¢ in some interval.
— Its either all or nothing.
— Rephrase as this: “If two solutions to a 1st order ODE (satisfying assumptions) are ever in
the same place at the same time, then they are the same function”
e Example3: Consider

Y- =1
— Part (a): Is this a Linear or nonlinear equation? Can you use Theorem 1 from Section 2.7?
* Solution:
+ This is a nonlinear equation, due to the (y — 1)
x Theorem 1 from section 2.7 only applies to Linear equations, thus we can’t use Theorem

1 for this IVP.
— Part (b): Using Theorem 2 from Section 2.7 (the general theorem), can you guarantee that
there is a unique solution to this IVP? Why?
* Solution:
* To apply Theorem 2, we need the right hand side equation

flty) = (y— 1)
to be continuous and we need
of _ 1
oy 2y —1
to be continous around the point (¢o,y0) = (0,1). But since ﬁ is not conintuous

when yg = 1, then we cannot guarantee uniqueness of the solution.
e Moral: There could be multiple solutions to this IVP. Solution may not be unique!

1/2

Summary at this points:
e Theorem 1: Allows to check if there exists a unique solution for Linear Equations. Also tells us

what the possible domains is.
e Theorem 2: Allows to check if there exists a unique solution for general first order equations. Does

not, tell us about possible domains.

2.6.1. More Examples. The Domain of solutions:

e Remember what a partial derivative means? For example, take the partials of y? + 2, yt and y%¢t .
e Notice that the Theorem only gives you a function y(t) defined for some interval (tg — €,tg + €).
— the € > 0 may be super small,
— so it may not be valid for big ¢t. So effects how we can apply this real world solutions.

e Example4: Consider

dy 2

—_— = 1 O = 0.

i A ()

— Part (a): Find where in the t-y plane the hypothesis of Theorem 2 is satisfied:

* Solution: Note that f(¢,y) =1+ y* and % = 2y are always continuous, thus satisfied

in all of R?.
— Part (b): Find the actual interval in which the IVP exists uniquely:
— What if the solution blows up? Solve using separable equations and get y(t) = tan(t + ¢) but
with initial condition you get y(t) = tan(t). But this solution is only valid for t € (-5
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Equation : 1+y"2

— Graph: :
— Moral: Unlike Theorem1, Theorem 2 does not says it needs to exits in the entire rectangle,
it just says that there exists some interval in which it exists.

Exampleb5: (Lack of uniqueness)

e Take % = 3y%/% and y(0) = 0.
— Questionl: Show that y;(t) = 0 and y2(t) = t3 are two solutions to this IVP. Why does this
not contradict Theorem 27
* Solution:We know the equilibrium y; () = 0 which solves the IVP is one solution.. Use
separation of variables to get y(t) = (¢ + ¢)? so that ya(t) = 3.
x* NOT UNIQUE!
* The reason being that if we compute %ch = 2y‘é = yf/g. Not continuous at (o, yo) =
(0,0)! Can’t use Exitence/Uniqueness theorem.
dy

— Question2: Take % = 3y?/3 and y(1) = 1. Find where in the t-y plane solutions exist

uniquely.
* Solution: Unique solution exist uniquely in any rectangle not containing (0, 0).

Applications of Uniqueness

e Important: The uniqueness condition says that if y;,y> are two solutions to some ODE and ¥
and y, are equal at some point tg. Then y(t) = y2(¢) for all ¢ in some interval.

e Its either all or nothing.

e Rephrase as this: “If two solutions to a 1st order ODE are ever in the same place at the same time,
then they are the same function”!

Example6: (Comparing solutions)(if time permits)
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d 1+t)?
o Take % = ﬁ
— Easily check that y (¢) = ¢ is solution.
— Then if y,(¢) is the unique solutions to the IVP
dy 1+1)?
@ _ (7)2 y(0) = —.1.
dt (1+y)
* Really hard to solve
* But then yo(t) can’t cross the other solution y; (t) = t.

Summary:

e We must check continuity conditions to have uniqueness and existence.
e Uniqueness implies, that solutions can’t cross each other.
e Uniqueness implies, that solutions can’t cross equilibrium solutions.
e We can use uniquess, to say that solutions are between other solutions.
— Say y1(t) =t + 5 and y2(t) = —t? then uniquess shows
* An IVP with y(0) = 1 must have —t2 < y(t) <t+5
* limy, o y(t) = —00
* Draw a graph.
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2.7. Autonomous Equations and Population dynamics

e An autonomous differential equation is of the form

dy
at = f(y).

— We will only deal with autonomous for this section.
— Autonomous are preferable for some physical models are autonomous (self-govering), For ex-
ample a compressed spring the same amount has the same force at 4:00am and at 10:00pm.
e Here are some examples of autonomous equations:

Population growth/decay

e Assumption: The rate of growth of the population is proportional to the size of the population.

Thus if k£ = proportionality constant (growth rate) we have

But here P= dependent variable, ¢ =time=independent variable. Thus P = P(t) is actually a function! This
is a ODE. We can also write it P’ = kP, or the physics way, P = kP.

Logistic Growth:
Assumption:
— If population is small, then rate of growth is proportional to its size.
— If population is to large to be supported by its resources and environment. Then the population
will decrease, that % < 0.
We can restate the assumptions as
(1) 28 ~ kP if P is small.
(2) If P> N then 22 <0.
In this case,

Another Example: Suppose ‘C%’ =y(l—1y):
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— Since the slopes is the same at each horizontal direction we can compact this information to

something easier to draw.

x This will be called the phase line:

— Rope Metaphor:

+ Start with IVP % = f(y) and y(0) = yo.

* Draw a rope at start at yqg.

* At each y write f(y) on this rope to indicate the slope at that y.

- Directions: If f(y) = 0 stay put, If f(y) > 0 then climb up the rope, if f(y) <0

then climb down the rope

- Bigger values for f(y) means climb faster as ¢ moves through time.
+ If you let y(¢) your location on the rope, then y(¢) is a solution to the IVP.

Phase Line:

e This rope is the Phase line, but instead of numbers we use arrows to represent the slope.
— Draw Phase Line (2.equilibirium points, 3. arrows)

k4

*

— Use phase line to show that as ¢ is close to y = 1 from below, then the function keeps increasing,

and thus must approach assymtptically to the equilobrium solution.

— Sketch a graph:
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\h_—_*

I

—

Sketching curves: (skip in class)
From our first sketch we can always notice the following things about sketching curves:

N1/

(1) If f(y(0)) = 0 then y(0) is an equilibirum solution and y(t) = y(0) for all ¢.

(2) If f(y(0)) > 0 then y(t) is increasing for all ¢ and either y(y) — oo as t — oo or y(t) tends to first
equilibirum point larger than y(0).

(3) If f(y(0)) < 0 then then y(¢) is decreasing for all ¢ and either y(y) — —oo as t — oo or y(¢) tends
to first equilibirum point smaller than y(0).

Examplel (Curve Sketching)

o We let

% = (2 —y)siny.

e Find equilirium points y = 2 and y = n7 (so infinite amount)
e Plug points and get that the phase line is :

o

[ ]
e Talk about what happens when things are getting close to the equilibrium solutions.
e Sketch curve (with more equilibriums though)
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Example (We don’t know how quickly things jump)

e Show that the graph %2 = (1 — £)3(£ — 1)P7 has Phase line [620 & 5 © 0]

20 but 5 jumps to

>o< o> B«

20 very quikly
— like 0.00001 quick.

Example (Not all solutions exists for all ¢, (asymptotes could exist))

o Take & = (1 +y)?
A
— Phase Line: [& —1¢] —1 Sketch a curve:
N
— These increasing/decreasing behavioe could be assymptotes. (Phase LINE DOES NOT TELL
US THIS INFO)
— ACTUAL SOL: y(t) = —1 — =—. Asymptote at t = c.

t+c
« If y(0) > —1 then draw possible curve.

Example (Cusps)

o Take dy = %

— Phase Llne would be:
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S
L
.

*
— Sketch cusp like curves:
— It has fallen into a hole once it reaches the dotted line.

Role of Equilibrium points:

e Solutions to Autonomous equations either
— (1) Tend to +oo
— (2) Tend to the equilibrium solutions.
— (3) stay the inreasing/decreasing within equil soltuion

Classification of Equilibrium Solutions

e Recall what asymptotic means.

(1) Asymptotically Stable
(a) yo is a Assymptotically stable if any solution with initial condition sufficintely close to g
is asymptotic to yp as t incresase

V
(b) Phase Line looks like this: [©yo®] o
A
(c) Graph looks like: ( reminds you that it is faling into something)
d) In f(y) vs. y graph we have f'(yo) < 0.
(2) Asymptotically Unstable:
a

(
(

) yo is a Asymptotically unstable if any solution with initial condition sufficintely close to
yo tend torward yq as t decreases
A
(b) Phase Line looks like this: [®y00] o
V
(c) Graph looks like: ( reminds you that it is coming from one place)
(d) In f(y) vs. y graph we have f'(yo) > 0.
(3) Semistable:
(a) o is a semils thstable if it doesn’t fit the category of a sink or source

A V
(b) Phase Line looks like this: [®y0®] wyo or [SyeS] vo
AN \Y

(c) Graph looks like:
Examplel: (Drawing solution from the f(y) vs. y graph)

o« W2y 6= (y+3)(y—2)




2.7. AUTONOMOUS EQUATIONS AND POPULATION DYNAMICS

A

2
— Phase Line [#2 5 -3®] V
-3
A
— Classify them!

Example2: (Using f(y))

e We can figure out classification from just the graph of f(y).

3  Node

1 Source
_1\_, / ' i

-1 sink

— Here Node means semistable, Sink means stable, Source means unstable.
— These are just different names for the same thing.

e Example3: Suppose we only know the graph of f(y) not the actual formula.

N\

N N

e Then draw Phase line : [©c® b © ad)]

> <> o0 K

e from this information and sketch curve.

41



42 2. FIRST ORDER DIFFERENTIAL EQUATIONS

2.8. Exact Equations

e Consider an equation
M(z,y)dz + N(z,y)dy =0,

we say this equation is exact if

oM  ON
oy Ox
— Example: Suppose
dy —2x—1?
dr 20y

We can rewrite this as
(2;10 + y2) dxr + 2zydy =0
then M = 2z + y? and N = 2zy. Computing the partial derivatives,
M, =2y
N, =2y
are M, = N,! Thus this equation is exact.

THEOREM. If M, N, M,, N, are all continuous and Mdx+ Ndy = 0 is exact then there exists a function
1 such that

Vo (z,y) = M(x,y) and Yy(x,y) = N(z,y)
and such that
Y(z,y) = C,
gives an implicit solution to the ODE.

PrOOF. We only show if ¢ satisfies ¢, = M and ¢, = N such that ¢(z,y) = C defines a function
y = ¢(x) implicitely. Then we show ¢(x) solves the ODE. Note that if

L % + %@ — i
9z Oydr dx
by the multivariable chain rule. Thus if we integrate both sides

O:%(i[)(l‘,¢($))) — /dez/dix(fﬂ(%(ﬁ(x)))dx

= c=9(z,6(x))
as needed. O

0= M(z,y) + N(z,y)y (@ (z,6(x)))

e Solving exact equations: If Mdx + Ndy = 0 is exact then

VYo = M(z,y) = ¢ = [ M(z,y)dz + h(y)
I
% = N(x,y) = wy = % (fM(l‘,y)dl‘) + h/(y)

and then solve for h(y).




2.8. EXACT EQUATIONS 43

— Another way: One may also solve it by starting with the second equation:

Vo = M(z,y) Ve = & ([ N(z,y)dz) + ¢'(z)
f
Yy =N(z,y) = =¢=[N(zy)dy+g(z)
e Examplel: We know
(22 + y°) dz + 2zydy = 0
is exact.

— Stepl: Show it’s exact(done earlier) and and complete the follow the arrows until you close
the diagram:

Start here: 1, =2z+y> = = [(2z+y?)dz+ h(y)
¢ =x? + y*z + h(y)
U
Wy = 2y — Wy = 2xy + W' (y)

— Step2: Solve for h(y) by noting that since
2zy =2xy + W (y) = KW (y)=0
= h(y) =C.
— Step3: Put it all together and get
Y(z,y) =2* +y*2+C
and hence the implicit solution is
22 +yx = C.
e Example2: Solve
(ycosx + 2ze¥) + (sinx + z2%e¥ — yz) y =0.
— Stepl: To show it’s exact note that
(ycosz + 2ze?) dz + (sinz + z?e¥ — y2) dy =0,
and not hard to see that
M, = cosz + 2zeY
N, = cosx + 2zeY
and they are equal, thus this ODE is exact. Follow the arrows until close the diagram:

Start here: 1, = ycosx + 2xeY = ¢ = [(ycosz + 2ze¥)dx + h(y)
Y = ysinz + z2e¥ + h(y)
4

Yy =sinz +2%e¥ —y? Y, = sinz + z%e¥ + h/(y)
— Step2: Solve for h(y) by noting that since

sina + 2%e¥ —y? =sinz + 2%V + 1/ (y) = W' (y) = —¢*

3
— h(y) =~
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— Step3: Put it all together and get

Y(x,y) =ysinz + z%e¥ —y

and hence the implicit solution is

Y3
ysinx + z2e¥ — 3= C.
e Example3: Find the value of b for which the given equation is exact, and then solve it using that
b:
(zy? + bz?y) do + (z + y) 2°dy
— Stepl: If this equation is exact then M, = N, but
M, = 2zy + ba?
N, =32 + 2yz
and are only equal when b = 3. Follow the arrows until close the diagram:
Start here: ¢, = zy? +32%y = ¢ = [ (xy®+ 32%y) dx + h(y)
¥ = 3a°y* + %y + h(y)
Yy =342ty = Yy = 2%y + 2° + b/ (y)
— Step2: Solve for h(y) by noting that since
2+ a?y =2y + 2 +h(y) = k' (y) =0
= h(y) =C
— Step3: Put it all together and get

1
Y(z,y) = 59621/2 +a2’y+C

and hence the implicit solution is
1
ixzyz + 23y =C.

e Example4 (advanced, if time permits): Solve

(zcosx + €Y) dx + xe¥dy

— Stepl: If this equation is exact then M, = N,, and
M, =¢e¥
N, =¢Y

Now note that it is eactualy easier to integrate N with respect to y: Thus we can start the
diagram in the other direction

Yy =xcosT+e¥ <= =, =e¥ +¢'()
) = ze¥ + g(x)
f
Start here: 1y = ze¥ =y = [(we¥)dy + g(x)
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— Step2: Solve for g(x) by noting that since
zeosx +e¥ =e¥ 4 ¢'(z) = ¢'(x) = zcosx

but at the end of the day we can’t avoid the harder integration, as we still need to integration
by parts to
g(x) = zsinx + cosx

— Step3: Put it all together and get
Y(z,y) = xze¥ + xsinz + cosx
and hence the implicit solution is

ze¥ +xsinx + cosz = C.
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2.9. Euler’s Method

e We explore a numerical technique to solving a differential equation.
e Suppose we are given an Initial Value problem

Y_rtw) w0 =

e The idea is to plot a slope field on top of it and use the slope field to take tiny steps dictated by
the tangents on te slope field. Draw a picture (Start at initial point and drawing a line until we
approach the next tg, then pretend you already a slope at that point and continue. Do it the way
they do it on DEtools) (Use Document camera)

e Define: h=step size. These are our t—axis increments.

e Define: ty = is our starting point, then our next point will be t; = tg + h, then to = ¢; + h.

— For example suppose tg = 1 and h = .5, then ty = 1,t;1 = 1.5,to =2,....
e Draw a picture showing what the y—values would be.

How do we find the explicit values for yj other than just guessing. Plot the points (txyx) and (tg+1, Yr+1)
on a graph and show that the secant must equal f(t, yx)-
We know that

Yk+1 — Yk
= f(tr,ur)
te+1 — tk

so solve for yj1 using the fact that h = t11 — ¢ and get

Yk+1 = Yk + f (te, yx) he

Euler’s Method:
Given an initial condition y(ty) = yo and step size h, compute (txi1,yg+1) from the preceding point
(tg, yr) as follows:

tke1 = txth
Ykr1 = Yk + [ (e, ye) he

Example:
Suppose we have the autonomous equation

o =2 ,y(0) =1,

with h = 0.1 and 0 < ¢ < 1. Then

e Our first point is (¢9,yo) = (0,1).
e We can compute the formula for this and get tx+1 = tx + .1 and notice that f (t,y) =2y — 1.

Yks1 = Yk + f (tesye) b=y + 2y — 1) (1).

e Make a table:
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= 4.195 and our approximation is y(1) =& 3.596, which is a

[kl te | we=wra+ -1, 6-1)h | J (e, ur) =2y, — 1
0] 0 1 1
1101 pn=1+1-(1)=11 f(t1,y1)=2(1.1) —1=1.20
202 ya=11+(1.20)- (1) =1.22 | f(ta,y2) = 2(1.22) — 1 = 1.44
3103 ys=122+(1.20)-(.1)=1.364 | f(ts,y3) =2(1.22)—1=1.73
4104 1.537 2.07
b 1.744 2.49
.6 1.993 2.98
.7 2.292 3.58
.8 2.65 4.3
0.9 3.080 5.16
1.0 3.596 3.596
e Notice that actual value is y(1) = %
little short, but it makes sense all the slopes are always below the graph.
Example2:
Our previous example didn’t have any ¢'s which requires more inputing of information. So suppose we
have J )
d—zz =2ty%, y(0)=1, h= 3
e Our first point is (tg, yo) = (0,1).
e We can compute the formula for this and get ¢4, = t; + .5 and notice that f (t,y) = —2ty>.
Y1 = Y + f (teoyr) h =y + (—2t,y37) (%).
e Make a table:
(k] tk Juw=wyr—1+ f (o1, y6—1) h ] f (i, y) = —24y7
0 0 1 0
1 3 y1=1+0-(3)=1 f(t,y) = —231T = -1
2 1 =1+ -(5)=1 f (2, y2) = —2(1)(5)* = -2
3/15=3] ys=2+(-3)-(3)=1 S (ts,y3) = —23)(1)* = —3%
4 1+ (=) (3) = 15625

02

e You can easily plot this as
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e If you have extra time, log in the computer and show them DE tools and how it works.



CHAPTER 3

Second Order Linear Equations

3.1. 2nd Order Linear Equations - Homogeneous Eqs with Constant Coefficients

e A general second order ODE is of the form

d*y dy

A 2"? Order Linear ODE is of the form
a(t)y” +b(t)y' + c(t)y = d(t)

which can be rewritten as
y" +p(t)y +a(t)y = g(t).
e A 2nd Order ODE is called Homogeneous if
at)y” +o(t)y + c(t)y=0
and Nonhomogeneous if
a(t)y” +b(t)y" + c(t)y = d(¢)
for some d(t) that is NOT identically zero.
e An IVP for a second order ODE needs to have two initial conditions:
y(to) = Yo,
y'(to) = Yo-
e The first part of this Chapter we will focus on 2nd Order Linear homogeneous ODEs with
constant coefficients:

ay’ +by +cy=0
where a, b, ¢ are real constants.
— Example: Consider y’/ —y =0 or
y' =y

— Can you think of a solution to this ODE from Calculus 17 A function where its second
derivative is equal to itself?
« Two Solutions: y;(t) = e’ and yo(t) = e~ .
+ But also not hard to check that c;e! and coe™* are also solutions.
e In General: Consider the ODE

ay” + by +cy = 0.
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and plugging this into the ODE we have
LHS = ar?e™ + bre™ + ce"t 20
et (ar2 +br + c) Zo.
and since €™ # 0 then
ar? +br+c¢=0,
solve this EQ and get r = ry,rs.

— This is called the characteristic equation of this ODE.
— Assume the roots are real and distinct, then the general solutions is of the form

y(t) = cre™t + coe™t.

* Why though? We will justify this in the next section:
Examplel: Let’s find the general solution of

y" + 5y + 6y = 0.
e Stepl: We'll guess that the solution to a solution is y(t) = €™ for some r. Then get
(7“2 + 57 + 6) et =0

so that we must have r2 4+ 57 + 6 = (r +2) (r + 3) = 0 so that r = —2, —3.
e Step2: So y1(t) = e~ 2" and ya(t) = e3¢ are solutions and

is the general solution.
[ ]

Example2: Let’s find the solution to the following IVP
'+ 5y +6y =0 y(0) =2,9'(0) = 1.
e Stepl: Solving for the particular solution. We have y(0) = 2 and 3/(0) = —1. Differentiating

y(t) = cre™ + coe ™3 we get 3/ (t) = —2c1e7 2 — 3coe ™3 and set up the following system:
c1+c = 2
—2c1 —3ca = -1
and get ¢; = 5,co = —3. So the particular solution is

y(t) = 5e 2 — 373",
Example3: Let’s find the general solution of

Py | dy
208 Y 7y —o.
az Tl W
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e Stepl: We'll guess that the solution to a solution is y(t) = €™ for some 7. Then get
(22 +Tr—4)e™ =0
so that we must have 2r2 + 7r —4 = (2r — 1) (r +4) = 0 so that r = §, —4.
e Step2: So y1(t) = e/? and ya(t) = e~** are solutions and
y(t) = c1et’? 4+ coe™H

is the general solution.

51
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3.2. Solutions to Linear Equations; the Wronskian

e In this section, we will consider equations of the form

Y +p)y +qt)y =0, ylto) =yo, ¥ (o) = vp.

where a, b, ¢ are constants.
e This is a second order, linear, homegeneous equation.
e Our goal is again to find the general solution of these equations.

THEOREM. (Ezistence and Uniqueness for 2nd order linear ODES) Consider the IVP

Y+ )y +qt)y = g(t), ylte) =vo, ¥'(to) =10

where p,q,g are continuous on an open interval I that contains tg. Then there exists a unique solution
y = ¢(t), and the solution exists throughout all of I.

e Recall that this theorem implies solutions to this IVP
— 1. exist
— 2. is unique
— 3. the solution ¢ is defined throughout all of I. In fact it says more, ¢ is at least twice
differentiable on I.
e Examplel: Find the longest interval in which the solution to the IVP is certain to exist by the
Existence and Uniqueness Theorem:

(t* —4t?) y" +costy —ely =0, y(1)=2, y'(1)=1.

e Solution: Rewriting as

g cost et
— =0.
Yiere—al Tre—aY
so that p(t) = % and ¢(t) = —% which are both continious on (—oo, —2) U (—2,0) U

(0,2) U (2,00). Since to =1 € (0,2) then I = (0,2) is the longest interval where p(¢) and ¢(t) are
both continuous that contains tg.
e Fact: (Principle of Superposition) If y; and y» are two solutions to an ODE

¥ +pt)y +q(t)y =0,

then the linear combination y(t) = c1y1 () + cay=2(t) is also a solution for any values ¢y, .
— Warning: This only works if equation is linear and homoheneous.
e Summarizing the Principle: Combining solutions gives another solution.
— Examplel: Suppose y;1(t) = et and y,(¢) = ¢! are two solutions to y” —y = 0. Since this is
a linear homogeneous ODE then the principle of superposition says that the function

y(t) = 2e7" + 3¢

is also a solution.
. 1 .
— Example2: It is not hard to check that y;(¢) = 1 and y2(¢t) = t2 are solutions to

vy + (y')2 =0, t>0.

« Part (a): Show y(t) = 1 + 2¢2 is not a solution to this ODE:
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- Solution: First compute
y(t) =1+ 2t7

y(#) =12
y'(t) =~

To show this simply check if the LHS equal to 0:

2
7 N2 _ i _ 1 1
LHS =yy" + ()" = (1+2t2>( 2t3/2) + (té)

1 1 1 1
TR T R
thus it isn’t a solution.
+x Part (b): Why does this not contradict the Principle of Superposition?

- Solution: To apply the principle the equation needs to be linear, the term (y’)2
in the ODE makes this nonlinear, hence we can’t even use the principle in the first
place.

e Question we want to answer in this section: Suppose y;(t) and y2(t) are two solutions to a
linear homogeneous equation. When do we know that

y(t) = cryi(t) + caya(t)

is the general solution to the ODE? Meaning when do we know that we can obtain every single

solution to an IVP? To answer that we need to define a couple of things.
b

e Definition: The determinant of a matrix < Ccl d is

-3

DN =

a b
c d

e Definition: The Wronskian of the solutions y;(¢) and ya(t) to a linear homogeneous ODE
yi(t)  wa(t)
ni(t)  wa(t)
THEOREM. (General Solution Theorem) Suppose y1 and ys are two solutions to the ODE
y' +pt)y +alt)y =0
in some interval I, where p,q are continuwous. Then the family of solutions
y(t) = ciyr (t) + caya(t)

for arbtitrary ci1,co is the general solution (meaning includes every solution to the ODE) if and only if the
Wronskian W (y1,y2) is not zero for at least one point to in I.

’:ad—bc.

W= W(ylva) =

e Examplel: Find the general solution to
y" + 4y’ — 5y =0.

— Solution: In the last section we showed that to find solutions to this ODE we simply need to
solve the characteristic equation

2 4+4r —5=(—1)(r+5) =0
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and get r = 1, —5 so that

y(t) = cre’ + coe™!

gives other solutions to the ODE. To show this gives all of them, we simply need to show the
Wronksian is not always zero:

et e—5t

et _56—5t

_ t t
e =] o |
— _pe—dt _ gt
— _6674t
# 0.
e Restate the theorem: To find the general solution of y” + p(¢)y’ + ¢(t)y = g(t), we only need to

find two (y1,y2) solutions whose Wronskian is nonzero:
(1) First find two solutions y1, ya.

(2) Then check W(y1,y2) # 0 for at least one point in the interval.
e Definition: The solutions y; and ys are said to form a Fundamental set of solutions to

Yy +pt)y +qt)y=0

if W(y1,y2) # 0. .
e Examplel: Verify that y;(t) = t2 and y2(t) = t~! form a fundamental set of solutions of

262" + 3ty —y =0, t>0.

— Solution:

— Part(a): First we verify these are indeed solutions by plugging them into the LHS and checking
that they equal zero. First computer some derivatives

yi(t) = t2 ya(t) = 1
ya(t) = 3172 yp(t) = —t72
a(t) =578 () =172
Plugging y; into LHS we get

LHS = 2%y + 3ty —

o2 1,3 1 1\ /1
=2t 4t2 + 3t 2t2 t2

Y ot
2 2

=0.
Thus y; is a solution. It is very similar to show ys is a solution.
— Part (b): To show y;y» form a fundamental set of solutions, we simply need to show that

W (y1,y2) is nonzero:
1
—t2

3
- —it_S/Q 7é O

~
Nl

W(yh y2) =

SIS

N

— which is nonzero for ¢ > 0.
e Question: Given an ODE, when do you know there exists a fundamental set of solutions?
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— Fact: Assume p, g are continuous and find a solutions y1,y, with different values of their
initial conditions. Then they form a fundamental set of solutions.
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3.3. Complex Roots of the Characteristic Equation
Complex numbers:

— i2 = —1. Remenber this.

e Here are some facts. Complex numbers are of the form a + bi where a,b € R and i = /—1
e Also we'll need to know Euler’s Formula: e

b — cosb +isinb. So
e@ti = e — ¢ (cosbh + isinb) = e® cosb + ie® sinb.
e Complex roots to the Char. Eq.
— Suppose we are solving

ay’ +by +cy=0
and we solve the characteristic equation

ar? +br+c=0
and get that the roots are

r=A+ipand r=X\—ipu.
Remenber that complex roots always come in conjugate pairs.

— Choosing the first root » = A + iu then (just like the previous section) one solution is of the
form

y(t) et — e(AJri,u)t

— Mint
= e (cos (ut) + isin (ut))
= e cos (ut) + ieM sin (ut)
= u(t) + iv(t)

where u(t) = e cos (ut) is the real part and v(t) = e

tsin (ut) is the imaginary part.
+ But this is an imaginary solution! We like real solutions!
* The following theorem will help us!

e Theorem: If y(t) = u(t) + év(t) is a complex solution to an ODE of the form ay” + by’ + cy = 0.
Then so are u(t) and v(t)!

eMsin (ut) are
solutions we can compute (after some tedious work) that the Wronskian of v and v are:

W (u,v) (t) = pe®* # 0 as long as p # 0.

— What does this imply? Therefore since u(t) = e cos(ut) and v(t)

Hence by the General Solution Theorem (from last section), because the Wronskian is not

zero then u(t) and v(t) form a fundamental set of solutions. Meaning their linear combination
gives us the general solution!

Summary of Shortcuts:
So if you have

d*y o dy
— +b— =0
adt2 + a +cy
then find the roots of

ar? +br +¢=0.
The general solutions are the following;:
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’ roots: \ The general Solution \ Example
1,72 =real, distint y(t) = cre™t + coe™t r+1)(r—-1)=r*-1=0
r = A+ ipimaginary | y(t) = c1e cos ut + coe  sin ut r2+1=0
Examplel: Let’s find the general solution of
d*y | dy
g + 4% +13y =0
e Stepl: We can jump straight to the characteristic equation:

r?4+4r+13=0
— We can solve this using the quadratic formula:

—44+16-4-1 1
= 26 3:—215 4(4—13)=—24+v/—-9=-2+3i

r

— Or you can use completiting the square trick (add/subtract (b/2)?) to get r = —2 =+ 3i.

e Step2: The general solution is

y(t) = cre” % cos 3t 4 coe™?! sin 3t.

Example2: Let’s find the particular solution to the IVP:
y'+9 =0 y(0)=-2 y(0)=1
e Stepl: We can jump straight to the characteristic equation:
r?4+9=0

and get r = £3¢
e Step2: The general solution is

O cos 3t + e sin 3t.

y(t) = cre
= ¢1 cos 3t + ¢9 sin 3t.
e Step3: Using the initial conditions y(0) = —2, 3/(0) = 1 we need to first take a derivative
y(t) = ¢1 cos 3t + ¢o 8in 3t

y'(t) = —3cy sin 3t + 3¢ cos 3t

hence
—2=y0)=c¢;+0
1=19'(0) =0+ 3c2
so that
L =—2,c0 = 1
3

hence the solution is )
y(t) = —2cos 3t + 3 sin 3t.

e Example3: Suppose we get that the general solution comes out to

3t cost + 6263t sint.

y(t) = cre
Then just remenber that you need to use product rule to find the derivative of y(¢):

y'(t) = 3cie® cost — cre® sint + 3coe® sint + cpe3t cost.
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3.4. Repeated Roots; reduction of order
3.4.1. Repeated Roots.

e Suppose we have
ay’ +by +cy=0
and we only have one root r = 7| to the characteristic equation ar? + br + ¢ = 0. Then we only
have one solution y(t) = c;e™*. We need a second different solution to get the general solution.

Final Summary of Shortcuts:
So if you have

ay’ +by +cy=0
then find the roots of
ar® 4+ br + ¢ = 0.

The general solutions are the following;:

’ roots: \ The general Solution \ Example
r1, 7 =real, distint y(t) = cre™t 4 coe™? r+1)(r—1)=r-1=0
r = X\ £ ipimaginary | y(t) = cie* cos ut + cae t sin ut r?4+1=0
r = r1,real, repeasted y(t) = cre™t + cotem™?, (r—2%=0

e Examplel: Consider
y" + 6y +9y = 0.
— Then the characteristic equation is 72 4+ 6r + 9 = (r + 3)2 = 0, gives the repeated root of

r1 = ro = —3. Hence we only have one solution so far:
m (t) _ e—3t
but we need another solution y,(¢) that is not a multiple of y;.
— Solution:

— By the Table, we have that
y(y) = cre™® + cote 3.
e Example2: Find the general solution of
y" — 10y’ + 25y = 0.

— Solution: Note that the characteristi equation is 2 — 107 + 25 = (r — 5)2 = 0 so that we
have a repeated root r = 5. Hence the general solution is

y(t) = c1e + cote®.

3.4.2. The Method of Reduction of Order.

e The Method of Reduction of Order

e In the previous examples, why was it when we had only one solution y;, yo = ty;! All we needed
to do was to multiply by t.

e This method works in general for repeated roots. We summarize it here:

e The Method of Reduction is suppose you know that y; (¢) is already a solution to

a(t)y” +b(t)y + c(t)y = 0.
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Then if you want to find y, such that y = c1y1 + cay2 is the general solution. Then the technique
is to guess the solution is of the form
y2(t) = v(t)y1 (1)
e Example3: Consider
y" + 6y + 9y = 0.

— Then the characteristic equation is 7% 4+ 6r + 9 = (r + 3)2 = 0, gives the repeated root of
r1 = ro = —3. Hence we only have one solution so far:

n(t)=a e 3

but we need another solution y,(t) that is not a multiple of y;. [We know the answer is, but
we will illustrate the method of how we for to ys]
— The Method of Reduction is to guess the solution is of the form
y2 = v()y (1),
Yo = v(t)e 3t

— Solution:
— Stepl: After making guess. We need to simply put our guess into the ODE and find out what
v(t) is! First let’s take some derivatives:

yh = v (t)e 3 — 3u(t)e 3
"(H)e? — 30/ (t)e 3" + Ju(t)e
e 3 — 60/ (t)e 3 + Ju(t)e 3.
— Step2: Now plug this into the LHS of the ODE: y” + 6y’ + 9y = 0, like this
LHS =y + 6y5 + 9ys = v"(t)e ™" — 60/ (t)e > + Ju(t)e ™
+6 (v'(t)e 3 — 3v(t)e ™)
+9 (v(t)e ™)
= do simplification
=" (t)e” ™
Since e 3! # 0, therefore
V() =0 = J(t) =k
= v(t) = kit + ko
We got it! Pick the somplest nontrivial v, that is let k&; = 1 and ko = 0, then
v(t) =t
— Step3: The general solution must be of the form

yo(t) = te 3.
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— Side note: To check that y;(t) = e 3! and y2(t) = te~3 really do give the General solution
we simply need to check the Wronskian is not zero: Note

e—3t te—?)t

W (y1,y2) (t) = _3e-3t o3t _ g3t | = e % £ 0.

by the general solution theorem we know that y = c1y1 + coys is the general solution!
e Exampled4:(More on Method of Reduction) Suppose we know that y;(¢) = ¢ is a solution to

t2y" + 2ty — 2y =0, t>0.

Find the second solution ys(t) of this ODE.
— Solution:
— Stepl: Recall we guess

ya2(t) = v(t)y(t) = v(t)t
and we are going to figure out what v(t) is supposed to be. Take derivatives:

y2(t) = v(t)t

ya(t) =v'(t)t +v(t)

Y1) = " (Ot + 0 () + (1)

=" ()t + 20 (¢).
— Step2: Plug y» and its derivatives into the LHS of the ODE:
LHS = 12y} + 2tyh — 2yo = t* (v ()t + 20/ (1))

+ 2t (V' (1)t +v(t))
—2(v(t)t)

= simplify
= 30" (t) + 2620 (t)
+ 2620/ (t) + 2tv(t)
— 2tw(t)
=30 +4t%0 =0
and setting equal to zero means
vt 40 = 0.

Step3: Solving the ODE t3v” + 4t?v’ = 0 we do the substitution w = v’ (sub-technique:
when a(t)v” + b(t)v" = 0 use substitution w = v’) and get

, 4
w —&—zw:O

e4lnt

hence we can use integrating factors to get u(t) = el Tt = = t* hence the solution is

w(t):;[/t4~0dt+0]
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Thus
v =w =kt
hence
v =kt + ky.
— Step4: To finish we have that yo = vt = (c1t7 + c2) t = c1t72 + cat. Since yy(t) =t and
we want a different solution we can make ks = 0 and ky = 1. Thus
ya(t) = 2
is a different solution.
— Hence the general solution is given by
y(t) = ayi(t) + caya(t)

=cit+ cztfz.
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3.5. non-Homogeneous - Method of undetermined Coefficients
e Consider the nonhomogeneous equation
y" +p(t)y" +q(t)y = g(t), (non-hom)
where p, ¢, g are (continuous) functions on some open interval I. Consider the corresponding ho-
mogeneous equation
v +pt)y +q(t)y =0. (hom).

whose general solution we’ll call y,.

THEOREM 1. (General Solution for non-hom EQs) The general solution of the Non-homogeneous
EQ above is given by

y(t) = crya(t) + caya(t) + yp(t)
where y1,y2 are a fundamental set of solutions of the corresponding Homogeneous Equation, and y,(t) is
a particular solution to the Non-homogeneous equation.

e Steps to solving ¢y’ + p(t)y’ + q(t)y = g(t)

— Stepl: We already know how to find the fundamental set of solutions y;,ys for the homo-
geneous equation. We have that y, = c1y1 + coy2 is the gen solution to the corresponding
homogeneous equation.

— Step2: Find a particular solution y, using the method of undertermined coeflicients.
(T’ll show this in a minute. It’s a bit compliated but we’ll work it out step by step)

— Step3: The general solution is when you add them together: y(¢t) = v, +y, = c1y1 +cay2 + yp.

The Method of Undetermined Coefficients (MOUC):
e Main Idea: The idea of MOUC is to guess what the solution y, based on what g(t) looks like.

— Our guess of y, will always be the general form of g(¢).

— The following chart explains that if you see g(t) as in the Left column, then your guess will
be in the right column:

y If g(t) looks like \ Then y, (t) is |
Po(t) = ant™ + an1t" '+ Fag | 7 [Apt™ + A1 t™ T+ + Ag]
eath(t) 1S et [Amtm ¥ Am,ltm_l T F AO]

15 [(Apt™ + -+ + Ag) e“t cos Bt

+ (Bnt™ + - -+ + Bg) e“ sin Bt]

e Here s = the smallest nonnegative integer (s = 0, 1,or 2) such that no term of y, is a solution to
the corresponding homogeneous equation. Meaning we don’t want repeats!

Examplel: Find the solution to the following IVP:

P, (t)e®t cos Bt or P, (t)e®t sin Bt

_ 1
y'+5y +6y=e y(0)=1,5'(0) =3
e Stepl: Find y,(t) , which is simply the general solution of
Y +5y +6y=0

but we learned that we must solve the charateristic polynomial r% + 57 + 6 = (r + 2)(r + 3) = and
get r = —2, —3 so that the solution is

yn(t) = cre ™ + e,
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o Step2: We find y,(t) by making our guess and to find the undertermined coefficient. So we let
yp(t) = Ae~" and plug y, into the LHS:
yy + 5y, + 6y, = Ae ' —5Ae " 464"
= 24e7!
e Step3: Set the LHS equal to the RHS and solve for A to get
2A4e P =7t

so that A = %
e Step4: Plug A back in and get y;,(t) = 3¢~ and a general solution of
1
y(t) = cre ™ + coe 3t + §e_t.

e Final IVP Step: Now we need to find ¢; and ¢y using y(0) = 1 and ¢/(0) = § and set up the
following system of equations:

1
c1+co+ 5 = 1
1 1
_201 — 302 — 5 = 5
which comes from y(t) = cre™2! 4+ coe 3! + le7 and y/(t) = —2kie” % — ke 3! — Le~t. Solving
this we get ¢; = % and ¢, = —2 thus the solution to the IVP is
5 o 3 Loy
t)=— -2 —e .
y(t) 5¢ et + 5¢
Example2: Find the general solution of
d’y L dy 4
—2 5= 4y = e,
a Car T
e Stepl: Find y,(t) , which is simply the general solution of
Py _dy
— —5— 44y =0
a Car T

but we solve > —5r +4 = (r — 1)(r —4) = 0 and get r = 1,4 so that the solution is

yn(t) = cre! + coet.

e Step2: Wrong Guess y,(t) = Ae'" because

d%y, _5 dyp

dt dt

But we should have known that this wouldn’t work. Because he term e*! is part of the homogeneous

solution then plugging it the LHS will of course give us zero. Thus whenever you see this second
guess by multiplying by .

— Second Guess should ways be y,(t) = Ate*" . Find y,, and y/(t) on the side and plug into

+ 4y, = 16Ae — 20A4e? + 44" = 0.

LHS and get
Py, o dﬂ _ 4t 4ty 4t 4t 4t
o 0 T = (84e™ +16Ate™) — 5 (Ae* + 4Ate™) + 4Ate

= 3Ae*
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— Set LHS equal to RHS and get 3Ae® = e*’ so that A = 1.
e Step3: Plug A back in and get y,(¢) = 3¢ and a general solution of

1
y(t) = cre’ + coett + §t€4t'

Example3: Find the general solution of

d’y | dy
e Stepl: Find y; which is the general solution to the unforced equation
d*y

d
2o 10y =0

which since 72 + 2r + 10 = 0 gives r = —1 & 3i must be
yn(t) = cre” " cos 3t + coe ' sin 3t.

e Step2: Now as long as the RHS ¢(¢) is not part of y. then we can use that as our guess. So we let
Yp(t) = Acos2t+ Bsin2t.
e Step3: Plug into the LHS and set equal to RHS

Py, . dy
9P
dt? + dt

+10y = [—4Acos2t — 4B sin 2t
+2[—2Asin 2t + 2B cos 2t] + 10 [A cos 2t + B sin 2t

which gives us
LHS = [-4A + 4B + 10A] cos 2t + [-4B — 4A + 10B] sin 2t = 4 cos 2t + 0 - sin 2t = RHS
so that
6A+4B = 4
—4A+6B = 0

: _ 6 4
givesus A= 13, B = 13.

e Step4: Plug into general solution of y(t) = yn(t) + y,(t) and get
y(t) = cre " cos 3t + coe Fsin 3t + % cos 2t + % sin 2t.
Example4: Find the general form of a particular solution of
y" — 2y — 3y = 5te” .
e Stepl: Find y, which is y;, = cie™ + coe.
e Step2: Using our table our first guess will be
yp = (At + B)e™?

since At + B is the general form of a one degree polynomial. But this doesn’t work because Be™
is included in the y. as cie™*
e Second Guess:

t

yp =t (At + B)e™"
now both At?e~* and Bte~* are different than the terms in y.. Thus this is our correct guess.

Example5: Find the general form of a particular solution of

Y’ + 6y + 9y = —Tte 3t + 13
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e Stepl: Then the characteristic equation is 2 4+ 6r + 9 = (r + 3)? = 0, gives the repeated root of
ry = re = —3. Hence

yn(t) = cre 3" + cote™3

e Step2: Using our table we make our first guess as
yp=(At+B)e ' + Ct3 + D* + Et + F
but this is wrong since (At + B)e 3! is included in the y.. So our second guess is to multiply
only that part by t, and get
yp=t(At+B)e " +Ct* + D* + Bt + F
but this still doesn’t work since Bte ™3t in included in the v, as cote 3t
— Our Third guess is to multiply again only that part by ¢ and get
yp =t (At + B)e ' + Ct* + D* + Et + F
this works since none of the terms in the y, are included in the yj,.
e Example6 (past exam question): Find the general form of a particular solution of
y' +y=1t-+tsint
e Stepl: As in Example 3 we know yy,(t) = ¢ cost + cosint.
e Step2: Our first guess would normally be y, = At+B+[(Dt + E) cost + (F't + G) sin t] but notice

that since E cost and Gsint is included in the y. we need to muiltiply by ¢ and get our final guess
of

yp = At + B+ t[(Dt + E) cost + (Ft + G) sint]
Example7: Find the general form of a particular solution of
y" +2y + 10y = 4e P cos 3t + 17

e Stepl: As in Example 3 we know yp,(t) = cie” ! cos 3t + coe ! sin 3t.
e Step2: Since e~ cos 3t is already inside our y. we need to multiply by ¢ .

yp =t (Ae " cos 3t + Be 'sin3t) + C.
Note that 17 is a zero degree polynomiall , which is why we have the C' in the y,,.
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3.6. Variation of Parameters
e Consider the equation

3
y' +4y =3csct = —
sint

— MOUC doesn’t work with quotients, only products.
e We will learn a general formula to solving more general linear non-homoheneous 2nd order ODEs

THEOREM. (Variation of Parameters) If p,q, and g are continuous on an open interval I, and if the
functions {y1,y2} form a fundamental set of solutions to the corresponding homogeneous EQ

y" +p(t)y +q(t)y =0.
Then a particular solution to
y" +p(t)y +a(t)y = g(t),
is given by

y2(s)9(s) yi(s)g(s)
to W (y1,92) (s) to W (y1,y2) (s)
=— 7y2(t)g(t) _NGY) (H)g(®) if an antiderivative exists
=) | [ i S| )| [ 2 ] i n ansderiotive st

where to is any value in I. Then general solution to the non-homogeneous solution is
y(t) = c1ya(t) + coy2(t) + 4 (1)

PROOF. See proof in the book. Or see Example 1 in the book for an explaination for this method. But
the idea is this: Suppose

Yp(t) = —y1(t) ds + y2(t)

yn(t) = c1y1(t) + caya (t)
is the general solution to
y" +p(t)y +q(t)y =0.
Then the idea is to use the following guess:
Yp(t) = ua (D)yr (t) + ua(t)y2(t)
for non-homogeneous equation. and also make the extra assumption that
uy (H)y1(t) + us(t)y2(t) = 0. (%)
Then take derivatives, simplify and put them back into ODE. Which will always reduce to
LHS =y, +p(t)y, + a(t)yp
= work
= uiyy (1) + uy(t)ys(t)
and set LHS to RHS which is g(t) hence we get equation, that is
uy ()1 (1) + up D)y (t) = g(t). (%)

Putting (%) and (%x) together we have the two equations:

i ()y1(8) + up(t)ya(t) = 0
ury (1) + un(t)ys(t) = g(t)
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which boils to solving for «)(¢) and u)(t) and getting

_ y2(t)g(t)
— _ynly)g
u2(t) T Wiy1,y2)(t)

which by integrating we have

_ y2(t)g(t)
{u1 (t) = W(,tiyl ty)2)(t) dt
Y1
t) f W)@ U

e Example 1: (previous Exam Q.) Find a particular solution to

11
4y = :
vt cos (2t)

— Stepl: First find y, if possible. In this case y,will be given by solving 72 + 4 = 0 so that
r = £2¢ hence
yn(t) = c1 cos(2t) + co sin (2¢) .
Thus y1(t) = cos(2t) and yo(t) = sin (2t).
— Step2: Find the Wronskian:
| cos(2t) sin (2t)
Wiy p2)(t) = —2sin(2t) 2cos(2t)
= 2cos?(2t) + 2sin?(2t)
= 2 [cos?(2t) + sin®(2t)]
=2-1=2.

— Step3: Use our formula with g(t) = and get

co@(Zt)

w0 =it | [ e S <o | [ 025

= — cos(2t) [ / %CS;:(%) dt] + sin(2t) [ / COSQ(%) 1 dt}

(2t) cos (2t)
— —cos(2t) B / :(‘):(é’?) dt] + %sin(Zt)

now you can remenber the antiderivative of [ tan(2t)dt ot use u-substitution with u = cos(2t)
and get du = —2sin(2¢)dt so that

in(2¢ du 1 1
/ sin(2t) dt — — = w_ —=1In|u| = —= In|cos(2t)]
cos (2t) 2/ u 2 2

hence ) .
yp(t) = I cos(2t) In |cos(2t)| + 3 sin(2t).
¢ Example 2: Find the general solution to
t2y" + 2ty — 2y = 6t

given that
yi(t) =t yo(t) =172
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forms a fundamental set of solution for the corresponding homogeneous differential equation.
— Solution:
— Stepl: Since y;(t) =t, y2(t) =t~ 2 forms a fundamental set of solution, this means that the
general solution for the homogeneous equation is

Yyp = c1t + 02t72.
— Step2: Find the Wronskian:

W(y1,y2)(t) = 1 943
=272 7%= _3t72+£0,

‘t t—2

— Step3: Rewrite the equation in the form y” + p(t)y’ + ¢(t)y = g(t) and hence

np 2,2 6
vy eYT T

Use our formula with g(t) = ¢ and get

B y2(t)g(t) y1(t)g(t)
v() = =5 () { W (y1,92) (t) dt] To(t) { W (y1,y2) (t) t}

][] ]
1]

=—t[2Int]+¢2 [—it?’]

2
= —2tlnt — —t.
3
hence the general solution is
y(t) = yn + yp
o 2
=cit+cot™ % —2tInt — §t'
e Example 3: Find the general solution to
t2y" =3ty + 3y =8t>, t>0
given that
yi(t) =t, ya(t) =t
forms a fundamental set of solution for the corresponding homogeneous differential equation.
— Solution:

— Stepl: Since y;(t) =t, y2(t) = t3 forms a fundamental set of solution, this means that the
general solution for the homogeneous equation is

Yp = c1t + 02t3.
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— Step2: Find the Wronskian:

t 3
W(yla y2) (t) = 1 3t2

=32 -t =213 #£0,

— Step3: Rewrite the equation in the form y” + p(t)y’ + ¢(t)y = g(t) and hence

/.

3 3
TSy 4+ Sy =8t
Y ty + to )
Use our formula with g(¢) = 8¢ and get

B y2(t)g(t) y1(t)g(t)
v() = =5 () { W (y1,92) (t) t] To(t) { W (y1,y2) (t) t}

][] ]
- fus] [ ]

=—t[2t*] +1° [41n]
= 2t + 4t3Int
hence the general solution is
y(t) =yn +yp
= c1t + cot® — 2% + 4% Int.
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3.7. Modeling Harmonic Oscillators

e It turns out that second order ODE model harmonic oscillators. The simplest example of a harmonic
oscillator are the motions of a spring.

Spring-Mass System:

e Suppose a mass m hangs from a vertical spring of original length [.

A F, = -kL T
l
|

EE
L
T !

m

, ) YWwW=mg
e Consider a spring

e We will study the motion of a mass when it is acted on by an external force (forcing function)
and/or is initially displaced.
— u(t) =displacement of the mass from its equilibrium position at time ¢, measure downward as
being positive.
e What kind of motion, do you get?
— Some kind of trig motion, right?
e The motion of u(t) is modeled by the following:

ma” (t) + yu' (t) + ku(t) = F(t)  u(0) = ug,u’'(0) = vo.

where m, 7y, k are positive.
— m is found from w = mg
— « is given in units of %.
— k is found using Hooke’s Law, mg = kL
e Examplel: A 4 Ib mass stretches a spring 2 inches. The mass is displaced an additional 6 in. and
then released; and is in a medium with a damping coefficients v = 2”%%. Formulate the IVP that
governs the motion of this mass:
— Solution:
x Find m: w = mg which implies
w4 1 Ibs?
g 32ft/s"2 8 ft

x Find v: Given

_ ,1bsec
T
* Find k: (Hooke’s Law)
mg 4 Ib  41b b

= T (1/6) ft It
x Thus

1
gu” +2u' +24u =0
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hence )
o’ +16u" +192u =0, u(0) = 3 u'(0)=0
since u(0) = 6in 4t = 1.

x Solving this
u(t) = ie_gt (2 cos (8\/515) +v/2sin (8\/57&)) .
i

06

4t

0.6 0

. 0zt

e Natural Frequency:
— When

u(t) = Acoswot + Bsinwgt = R cos (wot — J)

— Then wy = natural frequency.

Undamped Mass-Spring:
When the damping coefficient v = 0 (nothing stopping it from oscilating forever) we have

mau” +ku =0
so that mr2 +k = 0 gives r = +1i4/ %.This is a special number, so we’ll denote it wy = ,/%. We get
u(t) = Acoswot + Bsinwot

with period %’“
e wy = natural frequency.

Damped Harmonic oscillator:
When damped,

mu” (t) + yu'(t) + ku(t) = 0.
In general we’ll have the following characteristic equation
mr2 +yr+k=0

solving for the roots we get

—y /7?2 —4km
r= .
2m

Things change when the b? — 4mk =, >, < 0. We'll classify in the following way
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o If v=0,
— the oscillator is undamped.
— Mass oscillates forever
— The natural period is 27/
If ¥ > 0 and 2 — 4km < 0 happens when there are r = o £ j3i.

— The oscillator is underdamped. The mass oscillates back and forth as it tends to its rest
position. Most Important Case. Th Solutions are

u = Re~ /™) cos (ut — §)

and u is bounded between +Re~Y Re~7t/(2m)

e If v > 0 and % — 4km > 0 happens when there are two distinct rq, 7.
— The oscillator is overdamped. The mass tends to its rest position but does not oscillate.

u=cre™t +ce™t i, <0

o If v > 0 and 2 — 4km = 0 happens when there is one negative .

— The oscillator is critically damped. The mass tends to its rest position but does not oscillate.
— Solutions tend to the origin tangent unique line of eigenvectors. Graphs looks like

w = e e M) | oo pe=t/(2m)

-0.51

e Graphs:
— Underdamped: Blue
— Overldamped: Green:
— Critically damped: Red/Black
Electric Circuts:

e The flow of charge in certain basic electrical circuits is modeled by second order linear ODEs with
constant coefficients:

LQ" (1) + RQ'(1) + Q1) = B0, Q(0) = Qs, Q'0) = @

where @) = charge. (coulombs).
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Resistance R Capacitance C
M i€

(1 Inductance L

o /Mmpressed voltage E(t)

Forced Vibrations
e We consider equations of the form
mu” +yu' + ku = F(t)

where m > 0,7 > 0,k > 0 are mass, damping coefficients, and spring constant. Here F'(¢) represents
external force done to the mass-spring system. (e.g wind or cars driving on a bridge)

e Forced Vibrations

e We consider the case when the force is F'(t) = Fy coswt.

mu’ +yu’ + ku = F(t)
e Recall that we can write the solution as
u(t) = crui(t) + coua(t) + A coswt + Bsinwt
= Up + Up.

and it turns out that lim; ,oc un(t) = 0. (See examples above)
— We call up(t) the transient solution.
— up(t) = Acoswt + Bsinwt is called the steady-state solution.
e Example2: Consider a undamped harmonic oscillator (spring-mass, or bridges)

u" 4 2u = cos (wt), w#V2.

Find the general solution w(t). What is the natural Frequency?
— Solution:

— Stepl: Recall that 72 +2 = 0 so 7 = +1/2i, so that
up(t) = ¢1 cos (\/525) + co sin (\/i)f) .
— Step2: We make our first guess
up(t) = Acos (wt) + Bsin (wt)

and there are no repeats with uy as long as w # 0, hence we have the correct guess. Thus

u,(t) = —Awsin (wt) 4+ Bw cos (wt)

u))(t) = —Aw? cos (wt) — Bw” sin (wt)
hence plugging this into the LHS we have
LHS = u)) + 2up = [~ Aw” cos (wt) — Bw” sin (wt)]
+ 2A cos (wt) + 2B sin (wt)

= A (2 —w?) cos (wt) + B (2 — w?) sin (wt)
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setting LHS = RHS =1 - cos (wt) + Osin (wt) we have
A2-w?) =1, B(2-w?)=0
1

A:
2 —w?’

B=0

so that

u(t) = ¢; cos (\/Et) + co8in (\/§t> + b cos (wt) .

2 — w?
e Possible behaviors:

y y

4+ 20
10
| ; !
o —10
4L —20
w=12 w=+2

e Possible Solutions:

— Beating happens when: natural frequency of spring system is approximately equal to
frequency of the force:

wo w

N — — Wy R Ww.
2 2
u
u=277718sin0.1z
= / u=277778sin0.1 tsin0.9¢
I” T f’ -“‘\
o “\ L S
2 fins
/fl kY I’ \\
ra '\ 7 \
;f \ fl \\
1 —’_, \\ : \‘
1 1 [\a{\ 1 L1 ‘ﬁ\f
IS 10 2 30 40 0 g0/t 1
\\ }!’ \\ ;1
-1 f \\ ’.t
\\ f/ \\ f{l
-2 X, #
2 - v \ o L
e~ u==-277778SN01F Smr_-
— The solution looks like this:

x This example had zero intial conditions.
— Resonance: happens when they are equal:

Wy = Ww.
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— But we need a new u, to solve for when resonance happens, since can’t plug w = V2, into
cos (wt).

1
2—w?

m
\
X =
—\
w7
(=]
ra
\ w
i
\/
\
A
\
'
\

o
|
|
o
P
w

x We will see that solution looks like this:
e Example3: Solve the following undamped harmonic oscillator:

v’ + 2u = cos (\f%) , u(0) =0, ¥ (0)=0.

What is the natural frequency? What is the frequency for the external force? What kind of behavior
of the solution will you get get?

— Solution:

— Stepl: Recall that 72 + 2 = 0 so 7 = ++/2i, so that

up(t) = ¢ cos (\@t) 4+ ¢9 sin <\@t) .

— Thus the Natural Frequency is wy = /2.
The External Frequency is w = v/2. Since they match, then we will get Resonance!
— Step2: We make our first guess

up(t) = Acos (\/ﬁt) + Bsin (\/51&)

but we know there are repeats so we choose instead our second guess (by multiplying old
guess by t)

up(t) = At cos (\/ﬁt) + Btsin (\/ﬁt)
— Thus
wl(t) = Acos V2t — Av2tsin V2t

+ Bsin V2t + BVv/2t cos V2t
w)(t) = —V2Asin V2t — AV2sin V2t

— A2t cos V2t

BV2cos V2t + Bv/2cos V2t

— B2tsin V2t
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hence plugging this into the LHS we have
LHS = uy + 2u, = simplify

= 2v2B cos (\@t) — 2v2Asin (\@f)
setting LHS = RHS = 1 cos (v/2t) + Osin (v/2t) we have

V2B =1, —-2V24=0

B = %, A=0
so that
u(t) = ¢ cos (\@t) + co8in <\@t) + %tsin (\/575) ,

using initial consition we have ¢; = 0,¢ = 0.

u(t) = 2\%1& sin (x@t)

— Hence we get the picture similar to the one above since

1 t
——tsin (\@t) ~ +—— when ¢ is large.
2V2 2v/2 &

7
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3.8. Mechanical and Electrical Vibrations

Recall Summary of Shortcuts:
So if you have

av” +bu' 4+ cu=0
then find the roots of
ar? +br+¢=0.
The general solutions are the following:

] roots: \ The general Solution \ Example \
r1,re =real, distint y(t) = cre™t + coe™t r+1)(r—-1)=r>-1=0
r = A+ ip,imaginary | y(t) = c e cos pt + cae t sin ut r?+1=0
r = rq,real, repeasted y(t) = cre™t + cote™?. (r—2)"=0

e Goal: The equation
ay’ +by +cy=0
models a Harmonic oscillator: In particular, we will study the motion of a mass attached to a
vibrating spring.
Spring-Mass System:

e Suppose a mass m hangs from a vertical spring of original length [. The mass causes an elongation
L of the spring.
e The force F¢ of gravity pulls the mass down. This force has magnitude mg, where g is acceleration
due to gravity.
e The force F; of the spring stiffness: always acts to pull spring to natural position. Force is upward.
— For small elongations L, this force is proportional to L. That is, Fs = —kL (Hooke’s Law).
Thus the mass is in equilibrium when the forces balance out:

mg=kL (%)
— We use this EQ to solve for k = units of (force/length)

A F, = -kL T
l
|

EE
L
T !

m

_ , YyWw=mg
e We have the follwing scenario:

e We will study the motion of a mass when it is acted on by an external force (forcing function)
and/or is initially displaced.
— u(t) =displacement of the mass from its equilibrium position at time ¢, measure downward as
being positive.
e Using Newton’s second Law:
mal" (£) = £(2)

where f is the new force acting on the mass.



3.8. MECHANICAL AND ELECTRICAL VIBRATIONS 79

— The forces are:

* Weight: w = mg (downward force)

* Spring force: Fs = —k (L + u(t)) (up or down force)

* Damping force: Fy(t) = —yu/(t) (up or down): may be due to air resistance, friction,

machanical device:
- It acts in the opposite direction as the motion of the mass
* External force: F'(t) (up or down)
e Putting it all together

mu” (t) = mg + Fs(t) + Fa(t) + F(t)
=mg —k (L +u((t)) —yu'(t) + F(t)

which using mg = kL and simplifying we have
mu” (t) + yu'(t) + ku(t) = F(t) u(0) = ug, v’ (0) = vy.

where m, 7y, k are positive.
— m is found from w = mg
— « is given in units of %
— k is found from mg = kL
e Examplel: A 4 Ib mass stretches a spring 2 inches. The mass is displaced an additional 6 in.
and then released; and is in a medium that exerts a viscous resistance of 6 b when the mass has a
velocity of 3 ft/sec. Formulate the IVP that governs the motion of this mass:
— Solution:
*x Find m: w = mg which implies
w 4 1b 11bs?

m= —

g 32ft/s°2 8 ft

* Find 7: Using yu’ = 61b we have

~ 61b  _Ibsec
773 ft/sec  ~ ft
+ Find k:
pomg 4 4B b
L 2in  (1/6) ft It
x Thus
1
§UN +2u +24u =0
hence

1
v’ +16u" +192u = 0, u(0) = 3 ' (0) =0

ft 1

12in = 2°

since u(0) = 6in
Solving this

u(t) = %e*&f (2 cos (8\/51&) +V/2sin (8\@2&)) :

*
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Undamped Mass-Spring:

When the damping coefficient v = 0 (nothing stopping it from oscilating forever) we have

mu” +ku=0

so that mr? +k = 0 gives u r = =i,/ %.This is a special number, so we’ll denote it wy = g/%. We get

u(t) = Acoswpt + Bsinwot

with period 2=.
w

Phase plane of (u(t),u(t)) look like ellipses.
Mass either oscillates forever or stays at rest.
Using trig:
u(t) = Acoswot + Bsinwgt = R cos (wot — J)

A= Rcosd,R=+/A% + B2

B
B = Rsind,tand = —.
sin d, tan 1

where

T= i—: = QW\/%. The Period:
wo = natural frequency.

R = amplitude of the maximum displacement of mass from equilibrium

6 = phase angle. measures displacement of the wave from its normal position corresponding to
0 = 0. (note that the firs extrema happens at t = w%)

Example2(popular exam question): Determine wy, R and 0 and rewrite as a cosine the expres-

sion
u(t) = 3cos(2t) + 4sin(2t).
— Solution: We have that
u(t) = Rcos (wot — 0)
where R = /32 +42 =5 , wy = 2 and tan§ = 3 hence § = tan™!(3) and we obtain

u(t) = 5cos <2t —tan™! (g)) .
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— Something like this:

Vo
ATSCATe

T=0.453

— Example: 7 L

Damped Harmonic oscillator:
In general we’ll have the following characeteristic equation

mr? +yr+k=0

solving for the roots we get

_ —y£/7? —4km
N 2m '

Things change when the b? — 4mk =, >, < 0. We'll classify in the following way
o If v=0,
— the oscillator is undamped.
— The equilbrium point at the origin is a center (i.e. ellipse,circles). Possible Graphs:
Mass oscillates forever
— The natural period is 27/7.
e If v > 0 and % — 4km < 0 happens when there are r = a & 3i.
— The oscillator is underdamped. The mass oscillates back and forth as it tends to its rest
position.
— Possible Graphs:
— The most important case is y? — 4km < 0:
* Then

r

u = Re~ /™) cos (ut — §)

and w is bounded between +Re~7Re~7t/(2m)
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x p =called the quasi-frequency:

\4km — ~2

= 2m

x Ty = (2m)/p is called the quasi period.

* % = <0
”w
e If v > 0 and % — 4km > 0 happens when there are two distinct rq, 7.

— The oscillator is overdamped. The mass tends to its rest position but does not oscillate.
— The equilbrium point is a real sink Possible Graphs:

u=Ae" + Be™', ri,r9 <0

o If v > 0 and 2 — 4km = 0 happens when there is one negative .
— The oscillator is critically damped. The mass tends to its rest position but does not oscillate.

— Solutions tend to the origin tangent unique line of eigenvectors. Graphs looks like

uw= Ae 7/ 2m) L Bte—t/(2m)

-0.51

e Graphs:
— Underdamped: Blue
— Overldamped: Green:
— Critically damped: Red/Black
e Example3: ASuppose the motion of a spring-mass system is governed by

u’ +.125u" +u =0, u(0)=2,u'(0) =0.

— Part(a): Find the quasi frequency and quasi period.
x We can get

V2 2 V2
u(t) = et/ | 2cos 55t + sin 55t
16 V255 16
_ 32 o—t/6 \/255t 5
V255 16
now tand = % = \/% so that 6 = .06254
* Quasi Frequency: p = 7w =/255/16 = .998
* Quasi Period: Ty = 27/pu = 6.295
— Part(b): Find time at which mass passes through equlibrium position
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x We set
2 V2
32 e [ V255, S)
V255 16
and get
\/255t s ™
16 2
so that

t ~ 1.637 sec
— Part(c): Find 7 such that |u(t)] < .1 for all t > 7

Solution u(f)
orf—)

TAIWY
YA

o

-0.08

01

+ Use a computer /calculator: '™

x Get 7 = 47.515.
Electric Circuts:
e The flow of charge in certain basic electrical circuits is modeled by second order linear ODEs with
constant coefficients:

LQ (1) + RQ'(1) + Q1) = E1), Q(0) = Qs, Q'0) = @

where @) = charge. (coulombs).
Resistance R Capacitance C

M i€

(1 Inductance L

o |mpressed voltage E()
e Or
e The flow of current in certain basic electrical circuits is modeled by second order linear ODEs
with constant coefficients:
1
LI"(t)+ RI'(t) + 6I(t) =FE'(t), I(0)=1I, I'(0) =1

where I(t) =current (amperes)
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3.9. Forced Vibrations

e Forced Vibrations with damping:
— We consider equations of the form

mu” +yu' + ku = F(t)

where m > 0,7 > 0,k > 0 are mass, damping coefficients, and spring constant. Here F(t)
represents external force done to the mass-spring system.
— We consider the case when
F(t) = Fycoswt.
— Recall that we can write the solution as
u(t) = crui(t) 4 cous(t) + Acoswt + Bsinwt
= Uc + Up-

— To find, u.: we solve mr? +~r + kr = 0 and get
—y £ /72 —dmk
T =
2m

x Since m,y, k > 0 then
- 11,79 =, real, negative: lim; oo ue(t) = limy_ o0 (€17t + c2e™t) = 0, or limy s o0 ue(t) =
lim; o0 (€17t + cote™t) = 0.
- r1,79 = imaginary, negative real part: lim;_, o u.(t) = limg— o0 (cle
0.
- In either case:

M cos pt + coeM sin pt) =

lim wu.(t) = 0.

t—o00
e Summary:
— If solving: mu” + ~vu' + ku = Fy cos wt
— Solution: u(t) = uc(t) + Acoswt + Bsinwt where lim;_, o u.(t) = 0) = 0.
* We call u.(t) the transient solution.
% u,(t) = Acoswt + Bsinwt is called the steady-state solution.

- This means that in the long term, the solution u(t) ~ u,(t) and u,(t) has the same
frequency as the force F.
- Without damping, the effect by intial conditions would persist for all time.
— Solutions look like this:

i

(¥ 5

E 5 10 15
ol |

e Studying Amplitude: (if time permits)
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Using trig identities we have that the steady state solution can be rewritten

up(t) = Acos (wt) + Bsin (wt)

= Rcos (wt — 9)
where
F,
R= 0 = amplitude
\/m2 (W2 — w)® + 72w?
where
m (W — w?
cosd = (b ) and siné = had .
\/m2 (wg — w)2 + y2w? \/m2 (wg — w)2 + v2w?

and w? = £,
m

e Examplel:

A mass of 3 kg stretches a spring 5 cm.

The mass is acted on by external force of 7cos (3t) N

It moves in a medium that imparts a viscous force of 3 N when the speed of the mass is 2
cm/s.

If the mass is set in motion from its equilibrium position w/ initial velocity 3 cm/s, formulate
IVP:

Solution:
Recall 1 N =1 1;%"“ = need to convert cm/s to m/s
gcm _gem _lm _ _ gom
s s 100cm : s "
gem — (3o
5¢t = .05%
Recall

ma” + yu' + ku = 7cos (3t) .
Remenber: mg=kL = 3-9.8=F-.05 so
3.9.8 kg
k= —— =588—.
.05 52
Damping Force= 3N when |v/| = .02, so

N -
3= (.02) = ~y=150—".
m

Thus
3u’ + 150u’ 4 588u = 7 cos (3t) .

e Forced Vibrations without damping:

e Example2: Consider

u" + 2u = cos (wt), w# V2.

Solution:

Stepl: Recall that 72 +2 = 0 so r = £+/2i, so that

up(t) = c1 cos (\/515) + c9sin (\/i?f) .
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— Step2: We make our first guess
up(t) = Acos (wt) + Bsin (wt)
and there are no repeats with u. as long as w # 0, hence we have the correct guess. Thus

uy,(t) = —Awsin (wt) 4+ Bw cos (wt)

w))(t) = —Aw? cos (wt) — Bw” sin (wt)

hence plugging this into the LHS we have
LHS = u} + 2u, = [~ Aw® cos (wt) — Bw” sin (wt)]
+ 2A cos (wt) + 2B sin (wt)
= A (2 - w?) cos (wt) + B (2 — w?) sin (wt)
setting LHS = RHS = 1 cos (wt) + 0sin (wt) we have
A2-w?)=1, B(2-w?) =0
1

A:
2 —w?’

B=0

so that
1

2 —w?

u(t) = ¢1 cos (\/§t> + ¢ sin (ﬁt) +

e Possible Solutions:
— Beating happens when: natural frequency of spring system is approximately equal to fre-
quency of the force:

cos (wt) .

i / u=2777785in0.1 tsin0.9¢

[ \ / \

/
LV AA LT,
10 20 30"\ 40 50 60,0 !
Fi \\ ;l
!
f \\ ’f
; A
~ \\
/\ 5\

i
\\ 7
N ’
AY

n
I

#
~ ’ ’
™ s ~ o

S’ W==277778sin0.1¢

— The solution looks like this:
*x This example had zero intiial conditions.
— Resonance: happens when they are equal (this will be very interesting!):

Wop = Ww.

— But we need a new u, to solve for when resonance happens, since can’t plug w = V2.

52 08 (wt)
—w
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w=025rsint
= ] 02.:;
— 17\ /\

tn

o
|
|
o
P
4
I
I

*x We will see that solution looks like this:
+x Notice that all of the physical phenomena we’ve observed so far either
- stayed oscillating forever (when undamped, not outside force),
- converged to zero (when damped, when no outside force happens),
- or the solution converges to a oscillating steady state solution (with outside force)
- Resonance, was the only one that blew up!
*x Resonance can be either good or bad, depending on circumstances; for example, when
building bridges or designing seismographs.
- Go on youtube and search: Tacoma Narrows resonance.
e Example3: Consider

v’ + 2u = cos (\/it) , u(0) =0, ¥ (0) =0.

— Solution:
— Step1l: Recall that 72 + 2 = 0 so r = +1/2i, so that

u.(t) = ¢1 cos (\/§t> + cosin (\/it) .
— Step2: We make our first guess
up(t) = Acos (\/515) + Bsin (\/it)

but we know there are repeats so we choose instead our second guess (by multiplying old
guess by t)

up(t) = At cos (ﬁt) + Btsin (\/ﬁt)
— Thus
wl(t) = Acos V2t — Av2tsin V2t

+ Bsin V2t + BV2t cos V2t
uy (t) = —V2Asin V2t — AV2sin V2t
— A2tcos V2t

BV?2cos V2t + BV2cos V2t
— B2tsin V2t
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hence plugging this into the LHS we have
LHS = uy + 2u,, = simplify
= 2v/2B cos V2t — 2v/2A sin V2t
setting LHS = RHS =1 cos (v/2t) + Osin (v/2t) we have

V2B =1, —-2V24=0

1
B=—  A=0
2v/2

u(t) = ¢ cos (\@t) + co8in <\/§t) + %tsin (\/575) ,

so that

using initial consition we have ¢; = 0,c¢ = 0.
1
u(t) = —=tsin <\f2t)
(t) =3 7
— Hence we get the picture similar to the one above since
1 t

——tsin (\@t) ~ +——= when t is large.

2V/2 2v/2 &
e Other applications of 2nd Order ODEs:

— What are some applications of 2nd order ODEs in your major? What are some applications
of Differential Equations that you find interesting?




CHAPTER 4

Higher Order Linear Equations

4.1. Higher Order Systems

e Everything we did in Chapter 3 can be extended to higher order systems.
— Suppose we have the equation

an()y™ + a1y + -+ ar(t)y + ao(t)y = g(t)

— We assume that a,(¢),...,ao(t) are continuous functions on an interval I, and that a,(t) # 0
inside the interval: so that we can write it as

Y™ 4 o1 ()Y 4 i)y +po(ty = g(t). (%)

with initial conditions

y(to) =to, y'(te) = v -y V) = 55" V. (%)

— Uniqueness/Existence Theorem: If p,_(t),...,po(t) are continuous functions on an open
interval I (containing tg), then there exists a unique solution y = ¢(t) throughout all of I to
the IVP in (%).

e Examplel: Consider the ODE

(t —2)y™ +sinty” + Inty =Vt + 5.

Find the intervals where you are guaranteed a unique solution to this ODE by the Uniqueness and
Existence Theorem.

— Solution: Rewriting we have

y(4)+ Sint y”/+ lnt y = \/t+5
(t—2) (t—2) (t—2)

and
(i‘f;) is comtinuous when t # 2

* (gﬂg) is continuous when ¢ > 0 and t # 2, and

* ﬁ is continuous when t > —5 and t # 2.

x Making a number line we see that all three functions are continuous when either on the
interval (0,2) or (2, 00).
e Consider the Homogeneous EQ with constant coefficients:

;

any(n) + an—ly(nil) + -+ aly/ + apy = O

89



90 4. HIGHER ORDER LINEAR EQUATIONS

— As we did in the 2nd order case, the first thing we do is guess that the solution will look like
y =ec"t and

Y™ = prert
and plugging into the LHS and setting equal to zero we have
LHS = a, (r”ert) +--+a (Te’"t) + ag (e”)
=e"" (apr™ + -+ +ag)
=RHS =0
hence
e (anr™ +-+-+ag) =0
but since €™ # 0 then
apr+---+air+a9=0.
— As before the characteristic equation is given by:
anr”™ + -+ ag
Z(r)

where we call Z(r) the characteristic polynomial.
x How do we solve n—degree polynomials? By factoring!

Zt)=an(r—r)(r—ro)--(r—ry).
* General Solution: Solutions to the ODE are built exactly like in the 2nd degree case.
- If there are any repeat solutions, then keep multiplying by ¢ until you don’t have
any more repeat solutions.
e Examplel: Find general solution and the particular solution to the IVP
y" —2y" —y' +2y =0. y(0) =0,y'(0) = 1,4/(0) = 2.
(Hint: Suppose you know 7% —2r2 —r +2 = (r —2)(r + 1) (r — 1))
— Solution: Characteristic equation is 213 — 412 — 2r + 4 = 0 and by the hint we have

r=2)(r+1)(r—-1)=0

hence the general solution is y(t) = ¢; e?t + coe~t + czet. To find the particular solution to the
IVP we start by:

y(t) = cre® + coe™t 4 czet

Y (t) = 2c1€?" — coe™! + c3et

y'(t) = dcre?t + coe™t + coet.
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then we have to solve the following system of equations:
0 = C1 + C2 + C3
1=2c1 —co+c3
2=4c1 +co +c3

and get ¢; = 2, co = —¢ and c3 = —3, hence
2 1 1
y(t) = gezt — 66725 - §et.

e Example2: Find general solution of
y(4) + 8y/// + 16y// = 0.
(Hint: 74 4 873 + 16r2 = r2 (1 4 4)°)
— Solution: Characteristic polynomial
rt+8r% +16r* =0
which by the hint we know
2 (r+4)* =0.
— Note that since this a 4th degree polynomial we need to have 4 roots: 0,0, —4, —4. So we use

the same method we do when we have repeats and get

y(t) = c1€® + cote® + cze™ M 4 cyte™

=c; +cot + C3€74t + C4t€74t.

e Example3: Solve
"

y Wy =5y +y — 6y =0.

(Hint: Suppose (r —2) (r +3) (r? + 1))
— Solution: The characteristic equation is given by
4 =5 +r—6=0
and by the hint
Z(r)=(r-2)(r+3) (7"2—|-1) =0
which gives
r=2,-3,+i
hence
y(t) = c1e®® + coe ™3 4 c3cost + casint.
e Example4: Solve
y" =3y + 3y —y=0.
(Hint: 73 —3r2 +3r—1=(r—1) (r — 1)%)
— Solution: The characteristic polynomial is 3 — 3r2 4+ 3r — 1 = 0 and by the hint,
(r—1°=0

— So that r=1,1,1
y(t) = cre’ + cote! + cat?el.
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e Example5: Solve
y@ +8y" —9y =0
(Hint: 7 +8r2 =9 = (r2 —1) (r*+9))
— Solution: By the hint
rt 482 — 9= (r2 —1) (r2+9)
=(r—-1)r+1)(r—23i)(r+3).
then
y(t) = cre’ + coe ™" + 3 cos(3t) + ¢4 sin(3t).
e Example6: Suppose the roots of the characteristic equation are
2,3,3,3,2+3:,2 £ 3i
then the general solution is
y(t) = 12t + e + este® + cqt?edt
+ cse®! cos(3t) + ce?! sin(3t)
+ cste? cos(3t) + cote? sin(3t).
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4.2. The Method of Undetermined Coefficients

e We consider
Y™ 4 ppa By 4 i)y + po(t)y = g(t)
where ¢(t) can be a polynomial, sin, cos, exp or products of these.

— Recall the General solution is of the form: y = y;, + vy, where y;, is the general solution of the
corresponding homogeneous equation and y, is a particular solution to the non-homogeneous
equation.

e Examplel: Find the general solution of

y///_y//_y/+y: 2¢~t + 3.
(Hint: > —r2 —r+1=(r—-1)(r—1)(r+1))
— Stepl: We find y,: Solve 3 — 72 —r + 1 = 0, but by the hint
r—=1)(r-1)(r+1)=0
so that y, = cief + catel + cze™.
— Step2: Find y,: We first guess y, = Ae~ ' + B, but there are repeats with y, hence we get
a second final guess of

yp=Ate”' + B
y, = Ae”" — Ate™?
Yo = —Ae " — Ae! + Ate™! = —24e~" + Ate™!
Y, = 2Ae™ ! + Ae”t — Ate™! = 34e ! — Ate™!
Hence
LHS =3Ae™" — Ate™!
+ 24t — Ate™?
— Aet 4 Ate™?
+ Ate™" + B
=4Ae '+ B
— Step3: Set LHS=RHS so that
LHS =4Ae "+ B=2¢'+3=RHS

hence
4A=2,B=3
1
A=
2
hence
1
Yp = ite_t +3

so that the General Solution is

1
y = cre’ + cote’ +cze”t + ite*t + 3.
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e Example2: Consider
y" + 4y =t + sin(4t).
Find the general form of y,.
— Stepl: We find yp: Solve

3+ dr =0
r (r2 + 4) =0
so that y, = ¢1 + c3 cos 2t + c3 sin 2t.
— Step2: Find y,:
* First Guess: y, = At + B + C cos(4t) + Dsin(4t). But B is already in y. as c;.

* Second Guess: y, =t (At + B) + C cos(4t) + D sin(4¢) which is correct.
e Example3: Consider

y W — 2y 4y = et +te .
Find the general form of y,. (Hint: r* —2r% +1 = (r? — 1)2)
— Stepl: We find yp: Solve
rt—2r*+1=0
(P =1)* =0
so that yp, = cie! + cate? + cze ™ + cyte™.
— Step2: Find y,:
* First Guess: y, = Ae' + (Bt + C)e™".
* Second Guess: y, = Ate' + (Bt* + Ct) e™".
* Third Guess: y, = At?e’ + (Bt3 + Ct?) e,
e Example4: Suppose

y(5) = tsa
find the general form for y,,.
— Stepl: We find y,: The roots to > = 0 are
r=20,0,0,0,0
so that
Yo = C1 + cat + 03t2 + C4t3 + 04154

— Step2: Find y,:
* First Guess: y, = At> + Bt> + Ct + D
+ Final Guess: y, = t° (At3 + B2 +Ct + D)




CHAPTER 5

Series Solutions of Second Order Linear Systems

Let us consider a Linear homogeneous equation
a(z)y” +b(x)y + c(x)y = 0.

When we do not have constant coefficients, recall from the last chapter that we had very limit
techniques in solving such equations in full generality. Sometimes we can’t find a solution in terms
of elementary functions (polynomials, trig, In, etc). But sometimes such ODEs are very important
and we’d still like to solve them in some way if possible.

One important example (which is even useful in my research of Probability Theory) is the so callled
Bessel Differential Equation:

2y +zy + (2 —1*)y=0, x>0

where v is some constant.
For sake of simplicity, let us pick v = 0, so that
2y +ay +2°y=0 x>0

and we can rewrite this equation by dividing by 2?2 to get
1
y”+;y’+y=0, z > 0.

This seems like such a simple equation, there’s gotta to be a solution we can write down! But it
turns out there is no nice solution in terms of elementary functions!
— But, recall that for any linear homogeneous equation

y' +p@)y +a(z)y =0,
when p, ¢ are continuous then we know there are solutions y;, y» that gives the general solution
Yy = C1y1 + Cayo.
Thus we know that there is a general solution to
y”+%y’+y=0, >0

given by
y(z) = c1y1 (@) + coy2(x)!
— How do we find y; and yo ?
— In turns out that one way to solve this Bessel ODE, we need to use power series!
— Recall that we can write differentiable functions y(x) by a power series of the form

y(@) = an(z—a)"
n=0
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for some x.
— Using the Power Series method one can find out that

y1(x) = Jo(z),
y2(z) = Yo ()
where
_ - (_1)71 n
Jo(x) = nz::O WxQ .

— Jo(z) is called the Bessel function of first kind of order v = 0.
— Yo(x) is called the Bessel function of second kind of order v = 0.
— And Yj(z) can also be represented by a series, but more complicated.
— Actually, another way to write Y} is as an integral,
Yo(z) = —g/ cos (t) dt, >0
™ J1 t2 —1
e Thus the general solution to Bessel Equation

1
y'+ Y +y=0 >0
is given by
y(z) = ando(x) + c2Yo(2)

S D e [T 2cos(t)
= 12 ) 2/ dt.

(n!)? 220 1 TVEE -1

n=0



CHAPTER 6

The Laplace Transform

6.1. Definition of the Laplace Transform

e We define £, the Laplace transform.

e Before defining the Laplace Transform we review improper integrals since its definition depends
on it.
Improper Integrals:

/aoo f(t)dt = lim /aB F(t)dt.

B—oo

— If the limit converges then the improper integral converges.

— If the limit diverges, then the improper integral diverges.
Definition: f is piecewise continuous on o < t < § if it is continuous there except for a finite
number of jump(or removable) discontinuities
Example: Are the following functions piecewise continutions?

t? 0<t<1
f@) =<1 l<t<2
4—t 2<t<3

and
t? 0<t<1
gt)y=< -1t 1<t<2
1 2<t<3.

— Solution: Sketch the graphs

— f(t) is piecewise continuous since it only has a jump discontinuity.
— ¢(t) is not since it has a discontinuity that is not jump or removabl

e How do we integrate piecewise functions?

o Example: Consider

I | | L
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e Goal:

ODE Equation N Algebraic Equation

I
Turn it into an ODE Solution Zf Solve the Algebrac EQ

Thus the Laplace transforms a function f(¢) into a function F(s)

F(t) 55 F(s).

A transform of f(t) turns f(¢) into a different function.
— We will transform functionsf(t) of ¢ into functions F'(s) of s.
Definition: The Laplace transform of f is defined by

LU} = F(s) = / " f(t)e .

We assume s is real (though in general it can be complex).
Existence of L{f(¢)}:
— If f is piecewise continuous for [0, a] for all a.
— |f@t)] < Ke for large t.
— Then L[f(t)] = F(s) exists.
Examplel: Find the Laplace transform of f(t) =%, ¢ >0.
— Solution: We compute

L£{e”} :/ f(t)eiStdt:/ ede st dt
0 0

= / (9=t gy
0

1 t=00
(97s)t:|
9—s [6 t=0

lim e®=9) _ 0
9—35 |boo

but since

lim e
b—o0

(9—s)p _ JO© a—s>0
0 a-s5<0

then
1

E{egt}:{sg 8>9.

not defined s <9

e Example2: Find the Laplace transform of f(t) =e%,t>0.
— Solution: We can use the same computation as in Example 1, but change every 9 to an a
and get
1
L{e") = —— > a.
{e } T, 7@
e Example3: Find the Laplace transform of f(t) =1,¢>0.
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— Solution: Using a = 0 above we have that f(t) = €’ = 1 hence we can use the formula
above to get

C{l}z% s> 0.

e Eventually, we’ll make a table where we collect all of the Laplace transforms that we have computed,
so that we don’t have to redo the work everytime.
e Example4: Find the Laplace transform of f(t) = sin(at).

— Solution: We compute
o0
/ e sin(at)dt
0

B

lim e % sin(at)dt
B—oo /g

L {sinat} = F(s)

hence using integration by parts

u=sin(at) dv=e *'dt

—st

du = acos(at)dt v = - S
we have
—st o3 t t=B B _—st
F(s)= lim [_esm(a) —|—/ ¢ acos(at)dt
B—oo S t=0 0 S

B—oo S

—sB 4 B B —st
= lim l—esm(a)—i—O—i—/ ¢ acos(at)dt}
0 S

=0+ g/ e ' cos(at)dt. (%)
s Jo
— Integrating [~ e~** cos(at)dt again we get

u = cos(at) dv=e 'dt

67515

du = —asin(at)dt v=—

S

t=B B e—st
- / asin(at)dt
t=0 o S

—sB B —st B _—st
= lim l—e cos(aB) - g/ ¢ asin(at)dt]
0 S

[ee] —st t
/ e %' cos(at)dt = lim [_ecos(a)
0

B—oo S

B—oo S S S
t R
= [0 +- - g/ et sin(at)dt}
S S Jo
hence plugging this back into (x) we have
1
F(t) = L 3 st sin(at)dt}

®»w | »l|Q
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hence we can solve this equation using algebra for F'(s) and get
a
F(S) = m, s> 0.
e Properties of the Laplace Transform: Linearity
(1) If f, g are two function where £ exists for s > a; and s > as, respectively, Then

L{f@®) £9(0)} = L{f)} + L{g(®)}, s> max{ar,as},

and
(2) We have for ¢ € R,
L{cf)} = cL{f(1))}
e Example5: Find the Laplace transform of f(t) = 7 — e + 4sin(3t).
— Solution: Using what we have computed we get

L{T— e 4 4sin(3t)} = L{T} — L {e(_5)t} AL {sin(3t)}

_Z_ 1 +4. 3
s s5—(=5) 249
7 1 12

=4+ — 5>0
s S+5+82+9 y
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6.2. Solutions to Initial Value Problems
e In this section we will show the connection between ODEs and Laplace Transforms.

THEOREM. 1. Suppose f has a Laplace transform L{f} (see exact conditions in the textbook) then the
Laplace transform of f' is given by

L{f ()} =sL{f(t)} - f(0).
PROOF. Let 5
L) = Jim / F(t)etat

and we use integration by parts

we have
t=B B
/ I H —stt= —st
L4} = Jim [F0 T + [ f0sear
(0= SO+ [ f0e
0
= —f(0)+sL{f(D)},
here we use a condition from Theorem 6.2.1 that says |f(t)] < Ke for ¢ > M which implies that
limp_ o f(B)e™*B = 0 when s > a. Rearranging gives us the desired result. O
COROLLARY. Suppose f, f',..., f") are nice functions that have Laplace transforms, then

{5} =s"Lip) =570 = sFT(0) - £ ).

e Example:
—L{D)} = 2L} — s£(0) - £(0).
— L{)} = SLLF)} - $27(0) ~ 5£/(0) — £7(0).
— Do you see the pattern?
e Inverse Laplace Transforms:
— The Inverse Laplace transform £~! is the function that satisfies L1 {£[f]} = f. In other
words,

LYFy=f < L{f}=F
— I like to think of £~! of going backwords.

— Examples:
L=
e
e S (U E= S )

_ ape _ - Nii _ 6 g
e (st =oe { o = e { ol | = i (V)

-t
- Cos
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- and so on
x In general,

El{ 1 }—6‘”.
s—a

4

* Finally, let’s compute £* { )}. Whenever we have factor in the denominator,

(s—1)(s+1
we need to use partial fractions:
4 A n B
G-D+D) (-1 (s+1)
hence
4=A(s+1)+B(s—1),
0-s+4=(A+B)s+(A-B)
so that
A+B=0
A—B=14

and get A =2, B — 2. Thus
4 2 2

(s—1)(s+1) s—1 s+1’

- Therefore:

o) =¢ oo

:ﬁl{sil}_ﬁl{sil}

=2¢! — 27",
* You try: £} {ﬁ} First
6 A B
o) s G
so that
6=A(s+4)+ Bs
or
0s+6=(A+DB)s+4A
and get

0=A+ B,
6 =44
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so that A = —% and B = % hence

e e R ]

3,41 3 1
= o)
_3 3t
) 27 s —(—4)
:§.1,§e*4t

2 2

e Examplel: Solve
y' =y—4e”’, y(0)=1

using Laplace transforms.
— Solution:
— Stepl: Find the Laplace Transform of the ODE (The going forwards part):

Ly} =L{y} —4L{c"} < sL{y} —y(0) :g{y}_48%
= Lyt - 1=L{p -4

— Step2: Solve for £ {y} using algebra: and get

1 4
L = oo her

— Step3d: We want to go backwards and inverse this. But first let’s do partial fractions:

4 A B

G-De+]) G- G+

hence
4=A(s+1)+B(s—1),
0-s+4=(A+B)s+(A-B)
so that
A+B=0
A—B=14
and get A =2, B = —2. Thus
4 2 2

(s—1)(s+1) s—1 s+1°
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— Step4: Use the inverse Laplace transform to get

=t e = {5 - e o)

e (- (e e ()

_t_ 1) 2 1) 2
=e' - L {s—l +L P}

=el — 2! + 2¢7t

= —et + 271,
e Example2: Solve
y' +4y =6, y'(0)=0
using Laplace transforms.
— Solution:

— Step1: Find the Laplace Transform of the ODE (The going forwards part):

6
LAy +4L{y} = £{6} < sL{y} —y(0) +4L{y} = |
— Step2: Solve for £ {y} using algebra: and get

6
L =—.
v} s(s+4)
— Step3: Partial Fractions (We did this already)
6 3/2  —3/2

s(s+4) s | (s+4)
— Step4: Use the inverse Laplace transform to get

y=ct eon = {224 2

s (s+4)

e et le)

Il
—_

\
DO o
[
—

V2)
|
| =
|
=~
N2
——



6.3. SOLUTIONS TO HIGHER ORDER IVPS 105

6.3. Solutions to Higher Order IVPs
Recall

COROLLARY. Suppose f, f',..., ") are nice functions that have Laplace transforms, then
c{r™mw} =L}y - ) = sf7(0) = f ().

e Example:
— L{" W)} = L0} — s£(0) - £(0).
— L{f"(0)} = s*L{f ()} = s?£(0) — sf'(0) — f"(0).
e Table: We will use a table of Laplace transforms to perform more difficult Inverse Laplace Trans-
forms. See Page 321 in Boyce/DePrima book.
e More practice with Partial Fractions: To do partial fractions make sure you first factor the
denominator as much as possible
(1) The correct form of the partial fractions is

5s A Bs+C

G-DE+1) s—1 £+1

(2) The correct form of the partial fractions is

6541 A B C Ds+ FE

(s—17°(s243) s—1 (s—1* (s—1)° *+3
(3) The correct form of the partial fractions is
9s — 1 A Bs+C D

5(s24+9)(s—5) P s24+9 +s—5

(4) The correct form of the partial fractions is
s24+s—1 As+B Cs+D Es+ F G
3 -T2 2 3 T :
(21 (1) £+ (2417 (1) 51

(5) The correct form of the partial fractions is

9s+1 _ As®+Bs*+Cs+ D Es+ F
(s* +1)(s2+2s+10)s2 st+1 2 +2s+10°
G H
+ 24
s s

e More practice with taking Inverse Laplace Transform:

1
(1) F(s) = ; first let’s do partial fractions:

1 _é E Cs+ D

s2(s2+1) s+s2+32+1

hence
1=As(s*+1)+B(s>+1)+ (Cs+ D) s”
so that
0s* +0s*+0s+1=(A+C)s* +(B+D)s* + As + B
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and get the equations

A+C=0
B+D=0
A=0
B=1

and get B=1,A=0,C=0,D = —1. Thus

1 1 1

$2(s2+1) 82 $2+1
Using Formulas 3 and 5 in the Laplace Trasform table:

n! a

Use get the inverse Laplace transform:

LTH{F(s)} = £ {812} o {3211}

=t —sint,

1—-2s
(2) (Harder) F(S) = m

will complete the square.

— Completing the Square: Suppose we have s2+bs+c, then the trick is to ADD/SUBTRACT
(g)z, and the polynomials will become s + bs + ¢ = (s + 3)2 - (%)2 + c.
+ Example: Complete the square for s?+4s+5: Then b = 4 hence we add /subtract

N 2
()" = ()" =4 Thus

. Note that we can’t factor s2 + 4s + 5 with real roots, thus we

2445 +5=5>+4s+ 4+ (—4+5)
=(s+2)°+1

— Going back to the problem of find the Laplace Transform we have that

1—2s 1—2s

F = =
(8) 52+45+5 (S+2)2+1

and looking at Numbers 9, and Numbers 10 from the Laplace trasnform table:

at - b a s5—a
E{e tslnbt} = m and E{e tCOSbt} = m
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We can apply these by separating F'(s) into pieces like this:=

1 o 1—2s
LoFEy =L {(s+2)2+1}
:1;—1{ —2(312) }+£‘1{ +442-1 }
(s+2)"+1 (s+2)"+1

:_M_l{ (s=(=2) }+5£_1{ L }
(s—(-2))"+1 (s+2)"+1

—2¢ % cost + 5e 2t sint.

(3) (You Try) F(s) = % Note that we can’t factor s> — 4s + 5 with real roots, thus we
will complete the square.
— Completing the Square: Suppose we have s2+bs+c, then the trick is to ADD/SUBTRACT
(%)2, and the polynomials will become s + bs + ¢ = (s + 3)2 - (%)2 +c.
+ Example: Complete the square for s?—4s+5: Then b = —4 hence we add /subtract

(5)7 = ()" =4 Thus

s2—4s+5=s>—4s+4+1
=(s—2%+1

— Going back to the problem of find the Laplace Transform we have that

2s—8 _ 2(s—=2) 1
(s—2%+1 (s—2°4+1 (s—2)7°+1

F(s) =

We can apply these by separating F'(s) into pieces like this:=

LHFE) =L {25 ~ }

(s—2)° +1

262 ) 1
(s—2)%+1 (s—2)°+1

= 2e% cost — 4e* sint

(4) F(s) = 2523,

— Notice that this one looks like Numbers 7 and 8 from the Table of Laplace-Transforms:

52 —4

) a s
L {sinh(at)} = o and L {cosh (at)} = Tz

2 s> lal.
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— Hence we can separate F'(s) into pieces so that we can make it look like the formulas

above:
25 —3
LTHF(s)} =L
ey = {55
s 3 2
_op-1) 5 L2,
£ {5222} 2L‘ {5222}

3

= 2cosh (2t) — B sinh (2t) .
3
(5) (if time permits)F'(s) = ﬁ We want to use partial fractions

3s A B

(s=3)(s+2) s—3+s+2
and multiply both sides by the denominator of the LHS we get
3s=A(s+2)+B(s—3)
and rewriting we get
3s+0=(A+B)s+ (2A—-3B)
so that
3=A+ Band =2A-3B
and solving for A, B gets us
PRI
5 5
So that using our table we have that
_ _ 9/5 _ 6/5
LHF =L = L —L"
o=t {25 o { 2
9 6
_ geSt n gefzt.
e More Examples using Laplace Transforms to solve IVPs:
e Examplel: Use Laplace Transforms to solve:

Yy +y =1, y(0)=y'(0) =y"(0) = 0.

— Solution:
— Stepl: Find the Laplace Transform of the ODE (The going forwards part). Recall the

formulas £ {f'(t)} = sCL{f(t)} — f(0) and L{f"(t)} = s’L{f(t)} — s>£(0) — sf'(0) — f"(0).
Applying L to both sides we get

Ly +y'}=L{l}, =
1

(£ {y} — 25(0) — 59/(0) — " (0)] + 5L {y} — y(0)) = —, =

[s?’ﬁ{y}—s2~0—s-0—0}—l—[sE{y}—O]:l, =

L{y} (s*+s) =
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— Step2: Solve for £ {y} using algebra: and get

1
L{y} = EYENEE

— Step3: We want to go backwards and inverse this. But first let’s do partial fractions: But
remenber we did this in Example 1 of the Laplace transforms and got

v 11
s2(s24+1) 82 8241
— Step4: Using Formulas 3 and 5 in the Laplace Trasform table:

n! ) a
porsy L {sin(at)} = Tr g

Lt} =

Use get the inverse Laplace transform:

yﬁl{ﬁ{y}}ﬁl{;}ﬁl{SQil}

=t —sint,

e Example2: Use Laplace Transforms to solve:
y" — 4y + 5y = 2¢', y(0) =3,y(0) = 1.

— Solution:

— Stepl: Find the Laplace Transform of the ODE (The going forwards part). Recall the
formulas £{f/(t)} = sL{f(£)} — £(0) and £{f"(8)} = L {f(£)} — £(0) — /'(0). Applying
L to both sides we get

L{y" —4y +5y} =L{2'},
[s°L{y} — sy(0) — ' (0)] — 4[sL{y} — y(0)] + 5L {y} = % =

2
s?L{y} —3s—1—4sC{y} + 12+ 5L{y} = =

17
2
E{y}(52—48+5)=;+33—11, —

— Step2: Solve for £ {y} using algebra: and get

2 3s —11
L = :
{w (8—1)(52—4S+5)+52—48+5

— Step3: Do Partial Fractions and complete the square:
2 A Bs+C

(s—1)(s® —4s+5) S—1+S2—48+5
and get A=1,B =—1,C = 3 so that
2 1 —s+3

(s—1)(s?—4s+5) s—1+52—4s—|—5
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— Step4: The inverse Laplace transform:
y =L H{L{y}}

e L —st3 0 3o
- s—1 s2—4s+5 s2—4s+5

1 25 — 8
= [:71 _— £71 -
{s—l}+ {52—4s+5}
and recall that from an above example

25 — 8
£t {284+5} = 2¢% cost — 4e?t sint
52 —4s

(1 L 258
y==~L {8—1 +L s2—4s+5

= el + 2¢% cost — 4e? sint.

hence

e Example3(you do): Take the Laplace transform of the following equation:

y" +4y=3cost y(0)=1vy'(0) =0.

— Solution:

— Stepl: Find the Laplace Transform of the ODE (The going forwards part). Recall the
formulas £{f'(t)} = s£{f(t)} — f(0) and L{f"(t)} = s>L {f(£)} — (0) — f'(0). Applying
L to both sides we get

L{y" + 4y} = L{3cost}, <

[s°L {y} — sy(0) — ¥/ (0)] + 4L {y} = 523%
L{y}(s*+4) = Szgjl’ —

— Step2: Solve for £ {y} using algebra: and get
3s
LW =mineETy
— Step3: Do Partial Fractions and complete the square:
3s _As+B  (Cs+C
(s2+4)(s2+1) s2+4 s2+1
and get A=—-1,B=0,C=1,D =0 so that

3s —s s

(82+4)(52+1)_s2+4+82+1

— Step4: The inverse Laplace transform:

y=LTH{L{y}}

a1 s s
=L {52+4+52+1}

= —cos(2t) + cost.
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6.4. Step Functions

Step functions are often used in problems involving

— flow of electric circuts,

— discontinuous impulsive forcing, such as in vibrations of mechanical systems
Definition: The Heaviside function, or unit step function is defined by

uc(t):{o t<c

1 t>c¢’

— Though it really doesn’t matter, we will assume ¢ > 0.

T [ —

_— =
¢ t

Note that 1 — u.(t) looks like:
Examplel: Sketch the following function and describe it as a piecewise function:

f(t) = 2tus(t) — (t — 1)ug(t).
— Solution: We look at the critical points which are ¢ = 2,4 and consider different cases:
x t<2, f(t)=0+0=0
« 2<t<4, f(t)=2t-14+0=2t,
x 4<t, f(t)=2t-1—(t—1)-1=1t+1, hence

0 t<2
flt) =<2t 2<t<4
t+1 t>4.

e Example2: Write f(¢) in terms of step functions:

t 0<t<1
t—1 1<t<?2
t—2 2<t<3
0 3<t
— Solution: The discontinuity points are t = 0,1, 2, 3.
* When 0 < ¢ < 1, the function will be f(t) = tug(t) + ---. Our goal is to figure out the
rest.
* When 1 <t < 2, the function will be f(¢) = tug(t) + ?-us(t) +--- =t — 1, hence
t+7=t-1 =7=-1.
- Hence f(t) = tuo(t) —1-us(t) +---
* When 2 <t < 3, the function will be f(t) = tug(t) — 1 - ui(t) + 2uz(t) +--- =t — 2,
hence

ft) =

t—1+7=t—-2 =—=7=-1.
- Hence f(t) =tuo(t) — 1 - ui(t) — lua(t) + - --
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* When t > 3, the function will be f(t) = tug(t) — 1-u1(t) — Lua(t) + ?us(t) - - - = 0, hence
t—1-147=0 =7=2-1
x Thus
f(t) = tug(t) — ur(t) — ua(t) + (2 — t)us(t).
e We can compute the Laplace transform of w.(t):

LA{u(t)} = /OOO uc(t)e *tdt = /:O e Stdt

[ est:| t=o0
S t=c

—CS

e

s
e Example3: Find the Laplace Transform of

2 3
f(t){—s i§3

— Solution: First use the technique from the first two examples two write f(¢) in terms of w.,
and get

f(t) =2 = bus(t),

2 e~3s

Fls) = L{f ()} = - —5°—.

S

hence

THEOREM. 1. If F(s) = L{f(t)} exists for s >a >0 and ¢ > 0, then
LA{uc)f (t—c)} = e “L{f(D)} = e F(s),
Conversely, if f(t) = L1 {F(s)}, then
(ue®)f (= ) = L7 e F(s)}

e Remark: Note that u.(¢)f(t — ¢) translates a function to the right by ¢, and leaves everything to
the left as zero.

THEOREM. 2. If F(s) = L{f(t)} exists for s >a >0 and ¢ > 0, then

LA{ef(t)} =F(s—s), s>a+c
Conversely, if f(t) = L7 {F(s —c)}, then
elf(t)y =L {F(s—¢c)}.
e We’ll need the following formulas:
- L{t"} = s,ﬁ%, n positive integer.
« L{t} =%, L{t?} =2, and L {t*} = 5.
— L{sinat} = 2

raz
— L{cosat} = i
- L {Sinh at} = ﬁ

— L{coshat} =
— LA{uc(t)f (t —c)} = e"F(s)
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— L{ef(W)}=F(s—0)

e Example4: Find the Laplace transform of

0 t<?2
t:
1) {t2—4t+5 t>2

— Solution: First we complete the square by adding/subtracting (3)2 = (%)2 =4 and get
22— At4+5=12 -4t +4—-445=(t—2"-44+5=(t—2)2+1

0 t<2
f(t)_{(t—2)2+1 t>2

so that

= uy(t) [(t -2+ 1}
= us(t) (t —2)° + us(t),
hence using formulas £ {u.(t)f (t — ¢)} = e **F(s) and L{t*} = % and c =2,

—2s
L{f(t)} = e > F(s) + ——, where f(t—2) = (t - 2)°, f(t) = £*
2 6—25

__—2s

I S

6—23
e Example5: Take the Inverse Laplace Transform of:F(s) = po—
—_ s2 45—

— Solution: In this example we can actually factor

6—23 B 6—25
24+s5—-2 (s+2)(s—1)

—-1/3 1/3
— o2 (s +/2 + - 1 1) , by partial fractions

and use L{u.(t)f (t—c)} = e °*F(s) (use this whenever use see an e~ “ when taking in-

verses!)
1 _ L f e o
L {F(S)}—_g‘c {5_(_2)}+3£ {8—1}
- _%UQ(t)fl (t—2)+ %Uz(f)h (t—2)

— Use the fact that £L{f1} = L{e *} = -5 and L{fo} = L{e'} = 25 hence

1 1
E*l {F(S)} = 7§u2(t)€72(t*2) 4 §u2(t)e(t72).
9 (s — 3) 6755
e Example6: Take the Inverse Laplace Transform of:F'(s) = S e
Example6: o8
— Solution: In this example we can only complete the square since we can’t factor and get
9(s—3)e " _9(s—3) o= b5
$2—6s+13 (3—3)2+22
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* Now note that by £{e“f (t)} = F(s —c) and L {cosat} = 5z we have
3t _ (s=3)
== L {e cos (2t)} = G- 37+ 2
* (Need to take care of the e=%%) Now use L {u.(t)f1 (t —c)} = e *Fy(s) with fi(t) =
e cos (2t) and ¢ = 5 so that fi(t —5) = e3(*=5) cos (2 (t — 5)) hence

L {U5(t)63(t—5) cos (2(t — 5))} _ 655(8583)233_22

L{cos(2t)} =

S
32+22

Thus multiplying both sides by 9

L7HF(s)} = 9us(£)e* = cos (2 (t — 5)) .

e—?s

s2—4°
— Solution: We note £ {sinh2t} = 2 and use £ {uc(t)f1 (t — )} = e **Fi(s) where fi(t) =
sinh2t = f1(t —7) =sinh2 (¢ — 7) to get that

e Example7: Take the Inverse Laplace Transform of:F(s) =

6—75
C{ur(t)fi (= T)} = e Fi(s), = £ {us(t)sinh2(t —7)} = .
= %ﬁ {u7(t)sinh2 (t —7)} = :;__784

hence )
L7HE(s)} = §U7(t) sinh2 (t = 7).
6765
(s —2)°
— Solution: Weknow £ {t} = %, L{t?*} = Z and L{e“ f (t)} = F(s—c) and L {u.(t)f (t — )} =

e~ F(s) hence
R B O
L {F(s)}7t+2£ {(32)3}

1
=t+ —ug(t)e29(t —6)2.

1
e Example8: Take the Inverse Laplace Transform of:F'(s) = — +
- 5

2
1
e Example9: Take the Inverse Laplace Transform of: F(s) = 2105+
— Solution: (practice with using £{e“g(t)} = G(s — ¢))First we complete the square and get

1 1
s2—10s+26  (s—5)*+1
and use L {sinat} = ¥ with a =1 so that £ {sint} = ﬁ

+ Then use the fact that £ {e“g (t)} = G(s —c) with ¢ =5 and g(t) = sint, thus we know
that

1
L {eSt sint} =—
(s—=5)"+1
hence

L7HF(s)} = e sint.
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6.5. ODES WITH DISCONTINUOUS FORCING FUNCTIONS

6.5. ODEs with Discontinuous Forcing functions

e We will now do some examples involving intial value problems:
e Examplel: Solve using Laplace Transforms:

! —

Y =—y+us(t), y(0)=2.

Solution:
Stepl: Take L of both sides and solve for £

Ly} = L{-y} + L{us(t)}

so that

6738

sC{y} —y(0) = —L{y} +
Step2: Solve for £ {y},

s .

2 6738

E{y}:s+1+s(s+1)

— Step3: We do partial fractions on
1 1 1

s(s+1) s s+1
— Step4: Take the inverse Laplace transform: Using L [uq(¢) f(t — a)] = e"**F(s), and get

2 1 1
Zﬁ_l s —3s~ _ _—3s
Y {5+1+€ s C s+1

= 2et 4 ug(t) — us(t)e =3,

e Example2 (you try?): Solve using Laplace Transforms:

y' = =3y +6us(t)e” Y, y(0) =5.

— Solution:
— Stepl: Take L of both sides

L{y'} = -3L{y} +6L {u4(t)e*<t*4>}

and get
SL{y} — y(0) = =3£ {y} + 6£ {ua(t)e =V}
so that
— Step2: Solve for £{y} and get
5 64
L = .
W=t eeD
— Step3: We do partial fractions
6 =3 n 3
(s+3)(s+1) (s+3) (s+1)

117
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— Step3: Take the inverse Laplace transform: Using £ [u,(¢) f(t — a)] = e"**F(s), and
5 6e s
=L + }
Y {s+3 (s+3)(s+1)

5 1 1
:£—1 L—l _3 —45 3 —4S
{s+3}+ { © Gy3 T (s+1)}

= He 3t — 3U4(t)€_3(t_4) + 3u4(t)e_(t_4).

e Example3: Solve using Laplace Transforms:
y" + 4y = 3us(t)sin (t —5), y(0) =1,4'(0) =0.

— Solution:
— Stepl: Take L of both sides and solve for £

L{y"} +4L{y} = 3L {us(t) sin (t — 5)}

and recall L [u,(t)f(t —a)] = e”**F(s), hence a = 4, f(t —5) = sin (t — 5) hence f(¢) = sint
and L {sint} = '5 hence

6—55
s*L{y} — sy(0) —y'(0) + 4L {y} = 3o
—bs

(s2+4)£{y}—s:3e =

241’
e~ %8 " s
(s24+4)(s2+1) s2+4

L{y}=3

— Step2: We do partial fractions on
3 _As+B  Cs+D

(s24+4)(s24+1) 244 s2+1

hence
3=(As+B)(s°+1)+(Cs+ D) (s*+4), =
0-8°4+0-524+0-s+3=(A+0C)s*>+(B+D)s*>+ (A+4C)s+ (B +4D)

hence

A+C=0

B+D=0

A+4C =0

B+4D =3
and get

A=0 B=-1, C=0, D=1

hence

3 N
(2+4)(s2+1) s2+4 s2+1
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— Step3: Take the inverse Laplace transform: Using £ [u,(t) f(t — a)] = e"**F(s), and £ {sin(at)} =
7427 and L{cos(at)} = %> we have

7‘671 7675s+ 6755 N s
y= s24+4  s24+1  s2+44

1 f 2e70 [ e = s
2E {32+22}+£ {52+1}+£ {32+4}

— —%us(t) sin (2 (t — 5)) 4 us(¢) sin (¢ — 5) + cos (2t)

e Exampled: Solve using Laplace Transforms:

y W —y =i (t) —ua(t), y(0)=0,4'(0) =0,4"(0) =0.,y"(0) = 0.

— Solution:
— Stepl: Take L of both sides and solve for £

£{y @} - L4y} = L{w(®) - ua)}

hence
4 3 2,7 " " / e’ 6_28
s LAy} = 57y(0) = 7y (0) = sy"(0) = sy =4/ (0) =Ly} = — = —— =
—s —2s
Sy r _e’° _¢e N
(s" = 1) L{y} = — —
e~ s 8—25

— Step2: We do partial fractions on

1 1 1

s(s*—1) s(s2—-1)(s2+1) s(s+1)(s—1)(s2+1)

hence

1 7é+ B N C +D5+E
s(s*—=1) s s+1 s—1 8241

after doing the work to get the partial fractions you get

1 S U S SNE SO S S,
s(st—1) s 4s+1 4s—1 28241

putting it back we need to take the inverse of

1 1 11 15}_25{111
e _ _

1 n n 1 1 s
s 4s+1 4s—1 2s2+1

1
sTas+1 Tas—1 T2
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— Step3: Take the inverse Laplace transform: Using £ [u,(t) f(t — a)] = e”**F(s), and £ {cos(at)} =

a aty _— _1
4o and L{e*} = = we have

Y RS S S U S O S S
= e —— — — _
4 s Tds+1 " ds—1"22+1

1 11 11 1 s
—E_l —2s | _ — - - -
{e { 5+4s+1+451+252+1]}

1 1 1
_ —ul(t) + ul(t) |:46_1(t_1) + Zel(t—l) 4 5 cos (t _ 1):|

1 1 1
+ ug(t) — ua(t) {4el(t2) + iel(tfz) + 5 cos (t— 2)}

e Example5: Find the Laplace transform of
t 0<t<1
t) = - .
1®) {3t 1<t< oo

— Solution:
*x Stepl: First let us rewrite this in terms of unit step functions.
- When 0 <t < 1: the function is f(¢) =t
- When 1 <t < co: then function is f(¢) = t+7 - uy(t) = 3t hence 7 = 2t so that

F(t) =t + 2tuy (¢).

x Step2: Before we can take a Laplace transform, we notice that our fomula involves
LA{uc(t)g(t —c)} =e " L{g(t)}. Thus we will need to turn 2tu,(¢) into this form:

Ft) =t + 2tus (t)

hence
L)} = L{t} +2L{(t = Dua (D)} + 2L{w (1)}
1 L1 1
e We now introduce the following useful formula that is not included in the table:
Facrt. We have
LA{u()h(t)}=e " “L{h(t+0)}.

e Example 6: Take the Laplace transform of f(t) = uq(t)te’.
— Solution: Notice that we cannot use the formula £ {u.(t)g(t —c)} = e=“*L{g(t)} directly
since te! is not written as a function of (t — 1).
— Hence we'll need to use £ {u.(t)h(t)} = e L {h(t + c)} with h(t) = te' and ¢ = 1. Thus

h(t+1)=(t+ 1)t
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and we get
L{u(t)te'} = e L{h(t+c)}
— oL {(t+ 1)t
=e °L {tete + ete}
=e° (eﬁ {tet} +el {et})

s 1 . 1
=e o) TG

where we used formula 2 and 11 in the table.
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6.6. Impulse Functions
e We consider
ay” + by +cy = f(1),

where

large to—7<t<ty+T.
g(t) =
0 elsewhere

e Here g(t) is a force and

I(r) = /t T Syt = / Tt

0o—T —00
is the impulse of the force, or the amount of force in a short time period about ¢g.
— Example: If y =current in an electric circuit, g(¢) = is the time derivative of the voltage,
then I(7) is the total voltage impressed on circuit in the time interval I = (to — 7,t0 + 7).
e We will use the following particular example of a force with 7 = 0 (to simplify things):

1

= —T<t<T
)=d.(t)=42 "
9(t) ®) {O elsewhere

where 7 > 0 is small.
— Nice Properties of d.(¢):

(1) lirgl+ d.(t) =0, whenever ¢ # 0, and lim,_,¢+ d(0) = oco. i
T

(2) I(r) = |7, dt = [3=t]" =1 for every T,
y

1
]
|
|
|

|
|
|
~T T i

H lim I(7) =1
(a) Hence tim (1) ,

e We thus want to define a unit impulse function ¢, with the properties

5(t):{0 t#£0

oo t=0

/_ o; S(t)dt = 1.

and
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— This function doesn’t really exist, it is an example of a generalized function called the Dirac
delta function. But it can be “defined” as a limit of the d,(t) functions:

6(t) = lim d,(t).
(1) = Jim d:(0)
e In general: We can consider a unit impulse at an arbitrary point ¢ = ¢y, meaning ¢ (¢t — ¢), hence

S(t—to) =0, t#to,
/ 8(t —to)dt = 1.

—o0
e Let’s computer the Laplace Trasnform of o (t — tp):

£{6 (t — to)} = lim E{d-,— (t — to)}

=0t
t0+7'
= lim €_Std7 (t - tO) dt
7—0+ to—T7
1 [totT 1 [emst]i=lotm
= lim — e Stdt = lim —
T—0+ 2T to—T =0+ 27 t t=to—T7
e_sto es‘r _ e—ST
— lim ————, by algebra
S T—=0t 27
inh
= e~ lim w7 by fomrula below
T—=0t ST
h
— =50 lim M7 by L’Hopitals rule
70t S
= €_St0.
where I used the fact that
ST _ g7 ST
sinh(s7) = 5

e Summary:
L5 (t—tg)} =e " to>0.

e Examples:
— If ty =0, then
L{5(t)}y=e0=1.
— If tg = 9 then

L{6(t—9)}t =e%.

Important property of delta functions: Suppose f is a continuous function, then

| st — i = 1 w).

In the next example we show how the delta function is connected to the Heaviside function.
Example0: Solve the IVP

y' =0t —c), y(0)=1yo.
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— Solution: Take £ of both sides and
L{y'}=L{(t-c)} =
sC{y}t —y(0)=e™" =

cS

Yo , €
L ==
lyh ="+~
hence
y:£_1{y()}+£_1{e }
s s
= Yo + uc(t).
e Example 0 shows that the derivative of the Heaviside function ins the delta function.
e Fact:
d

Slu] =3 —0).
e Examplel: Solve the IVP
y' ' +4y=6(t—m) —5(t—2m), y(0)=0,4(0)=0.

— Solution:
Stepl: Take £ of both sides and solve for £ {y}:

LYY +4L{yy =L{5@t—m)}—L{6(t—27)} =
2Ly} — sy(0) — ' (0) +4L{y} = e ™ — 2™ —
(s +4) L{yt=e T e =
e~ TS e—27rs
S i
Step2: Notice that we don’t need to do partial fractions or complete the square here since
52 + 4 is already a sum of two squares.

— Step3: Take an inverse Laplace transform:
* Using L[ug(t)f(t — a)] = e F(s) and L {sin(at)} = ¥,z we get

—Ts —27s
_p-1) € -1 €
V=L {82+4} . {32+4}

7]‘ —1 —7s 2 1 —1 —27s 2
=3F {e 52—|—22} o~ {e 52 + 22

= %uw(t) fit—m) — %uzw(t)fz (t —2m)

1 1

iuw(t) sin (2 (t —m)) — §u27r(t) sin (2 (t — 2m))
where f1, fo = sin(2t).

x Now it turns out, that

sin (2 (t — 7)) = sin (2t — 27) = sin(2t)

and
sin (2 (t — 2m)) = sin (2t — 47) = sin(2¢).
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or in general
sin (z) = sin (z 4 27) .
*x Hence a possible multiple choice answer could be:
1 . 1 .
y= iuﬂ(t) sin (2t) — o Uan (t) sin (2t)

e Example2: Solve the IVP

y' +2y +3y=sint+4(t—3m), y(0)=0,9'(0)=0.

— Solution:
— Stepl: Take £ of both sides and solve for £ {y}:

[s*L{y} — sy(0) — ' (0)] +2[sL{y} — y(0)] + 3L {y} =

L{y} =

" / _ —37s

LA{y }+2£{y}+3£{y}_82+1+e
—37s

52+1+e

1

2 o —37s

sE{y}+23£{y}+3£{y}—82+1+e
2 D) — —37s

(s* +2s+3) L{y} 32+1+€

1 N e—?ﬂrs
(s2+25+3)(s2+1)  s2+2s+3

— Step2: First we do partial fractions:

1 As+ B Cs+D

(s24+2s+3)(s24+1) (s2+2s+3) (s241)

and do the algebra to get

1 1 1 1

A=-B=-C=—-,D=-=

4’ 4’0 4’ 4

— Also we need to complete the square:
2 +254+3=(s+1)"+2.
so that

1 1 s+1 n —s+1
(s2+25+3)(s2+1) 4 (s+1)°+2 (s2+1)

— Step3: Take an inverse Laplace transform:

el

« Using L [ug(t)f(t —a)] = e *F(s) , L{cos(at)} = = L {sin(at)} =

s2+4a?

__a
s2+4a?

125
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+ Also using £ {e* cos(bt)} = =58z L£{esin(bt)} = (Sfalw we get

y:iﬂ_l{(sfsiﬂ}+éll£_1{(;;:11)}
e—3ms

e {(s+1)2—|—2}

1 s+1 1.4 s

£ {(3+1)2+(\/§)2}_4£ {SQH}

_ 1 [P V2

e e e <s+1>2+<ﬁ>2}

(e_t cos (\/51?) — cost + sin t)

Uz (t) f1 (t —3m)

(e_t cos (\/515) — cost + sin t)

+ ——usy (t) e 13 gin (\/5 (t— 37r)>

V2

_ -1 V2 _ —t
x Where f1 =L {(SH)QJF(\@)Q} et cos /2t.

> =

+

g

+

Sl

o
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6.7. The Convolution Integral
e Suppose we want to take the inverse Laplace transform of a product: Is it true that

L7HF(s)G(s)} = L7 {F(s)} L7 {G(s)}. ,NO!

e In order to take the inverse of a product, we need to define the convolution integral: Let f(t), g(¢)
be two nice functions, then

(f*xg)( /ft—T dT_/f (t—71)d

— The function h = f % g is called the convolution of f and g.
Theorem: The Laplace transform of the convolution is

LAFrg) O} = LLFBO} L{g(D)} = F(s)G(s)

that is
LH{F(s5)G(s)} = (f % 9) /ft—T 7 dr

Convolutions have nice properties: We can treat x almost like real multiplication
— fxg=g* f (commutative)
— [x(g1+g2) = fxq1 + [ * g2 (distributive)
— (fxg)*h= f*(g=*h) (associative)
— fx0=0%f=0.
e However it doesn’t have all the properties of ordinary multiplication: (f *1) # 1 f.
— Consider f = cost.
Examplel: Find the Laplace transform of

¢
h(t) = / sin (¢t — 7) cos TdT
0

— Solution: Use f =sint and g = cost and we know that by the Theorem

c {/Ot sin (£ — 7) cos TdT} — [ {sint} £ {cost}

1 S

$2+1 s2+1
s

e Example2: Find the Laplace transform of

t
e / sinTcos (t — 1) dr.
0
— Solution: This question is testing if you know how to use formulas
L{ef(t)} =F(s—c)

hence we need to first take the Laplace transform of

ﬁ{/otsinTcos(t—T)dT} :L{/Otsin(t—T)COS(T)dT} :ﬁ
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from Examplel. Hence using the formula above we have

s—1

E{et/otsinTcos(t—T)dT} = m

e Example3: Find the inverse Laplace transform of

30
(s — 3)° (52 + 25)
— Solution: Split up H(S) = F(s)G(s) where F(s) = ﬁ and G(s) = 2= so that

H(s) =

52425
2! 5
Hs)=3-F5pa o1m
and since
2!
—1 _ pr—1 __ 42 3t
5

-1 —1 .

so that

t
£HHE) =3 [ St ngrdr
0
t
=3 / (t — 7)2e3 " sin (57) dr
0
but you also need to be prepared that one of the possible solutions is
t
£HHE) =3 [ f(rgle - rdr
0
t
= 3/ 23 sin (5 (t — 7)) dr.
0
e Example4: Solve the IVP in terms of the convolution integrals:

4y" + 4y’ + 1Ty = g(t), y(0) =0,y'(0) = 0.

— Solution:
— Stepl: Take £ of both sides and solve £ {y}:

4 (s*L{y} — sy(0) =/ (0)) + 4 (sL {y} — y(0)) +17L{y} = L{g(t)}
and plugging in the initial conditions we have
L{y} (4s* + 45 +17) = L{g(t)}
so that

L{g(t)}

L= o



6.7. THE CONVOLUTION INTEGRAL 129

— Step2: Instead of doing partial fractions we will use the convolution integral. But first let us
complete the square by first wrtiting

1
4s2+4s+17:4<32+s+47>

hence we want add/subtract (%) = (%)2 shence
17 , 1 1 17
4(8 +S+4> 4(8 +8+1_1 4)
1\ 16
=4 — _
((8+ 2) + 1 )
1\ 2
<(s+ 2> + )
hence
L{g(t)} 1

1
4s2 +4s + 17 4((S+é)2+4>£{g(t)}

— Step3: We take the inverse Laplace transform of

L S
4 ((s+ 1? +4)

hence we need to take the inverse of

-1

el p = {{L U010}

_ p-1 1
_ Ll 2
N ((s+3)7°+49)

1
= ie*%t sin (2t) .
Thus using the formula £~ {F(s)G(s)} = (f xg) ( fo f({t—7)g(7)dr we have

y=rc! {iz{m)}z{g(w}}

SN

~
—~
~
|
Bl

)g(7)dr

e 2= gin 2@t—=7))g(r)dr

SN

e 2" gin (2(t — 7)) g (7) dr.

ol = il

S— 55—
N |
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e Example5: Compute the following integral

5
/ e~ ¥ sinxdx
0
using only Laplace transforms.
— Solution:: First we want to write this as a convolution:

5 5
/ e Tsinxdr = 6_5/ e’ sin zdx.
0 0

¢
h(t):/ e! T sinTdr.
0

The Laplace trasnform of this is

L{h(t)} = z{/t - sianT}
g{/ftT }

= L{f()} L{g()}
=L {e'} L{sint}
1
BECE IR
Now do partiial fractions on this and get

and let

1 1 1 s+1
(s—1)(s24+1) 2\s—1 s2+1
— Hence we can now take the inverse Laplace transform of this:

T S S N s 1 1
h(t)*zﬁ {5—1} 2£ {52+1} 2£ {52+1}

Ly Lo 1.
= —€ — —COSUT— —sInt.
2° 2 2

Thus we computed that

W) /t RS ST DUV S
= e SINT7TAT — —€ — — COST — — SIn
0 2" T3 2

— Thus
5
6_5/ e’ sinadr = e °h(5)
0

=e? 165 — 1(:055— 1sin5
N 2 2 2 '

as needed



CHAPTER 7

Systems of First Order Linear Equations

7.1. Systems of First Order Linear Equations

Predator-Prey System
Let R(t) = prey population and let F(t)= predator population. Then the following is a system of first
order equations:

d—R = 2R—-12RF
dt

dF

— = —F+09RF.
dt +

Notice that the prey and predator population are dependent on each other, and thus we need a system
of equations.
Spring-Mass System

e Suppose we have mass attached to a spring which is attached to another mass attached to a spring.
e The behavior of one mass is affected the other (and vice versa)
e We need a system of ODE to solve such problems

Mixing Problem

e Example 1:
— Salt water with concentration 3 g/L of salt flows into tank #1 at a rate 4 L/min. at a rate of
4 L/min.
* The well mixed mixture from tank #1 flows into tank #2 at a rate of 4 L/min, and the
well mixed mixture of tank #2 flows out at a rate of 4 L/min.
Tank #1 initially has 30 L of salt water with 6 g of salt dissolved in it.
— Tank #2 initially has 20 L of fresh water.
Question: Write a system of ODEs representing this problem.
Solution:
— Stepl: First we define variables.
* Let x1(t) and z2(t) be the amount of salt in tank #1 and tank #2, respectively at time
t (minutes)
Step2: Use z; = Rate in — Rate out. We first get

I/1 (1) = concentra‘tion. « Rate — concentr?ution  Rate
of salt coming in of salt coming out

—38 .4L _ z1(t) .4L
L "min water in tank 1 @Qtime { min
but since
water @ time t =30+ (4 —4)t =30

131
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hence

44 (t)
30

— Step3: Use z; = Rate in — Rate out. We first get

x’Q(t) _ ( concentration > « Rate — ( concentration > « Rate

) (t) =12 —

5 :cl(()) = 6.

of salt coming in of salt coming out

30 L min 20+ (4—4)t min
- 4%1@) 4562(t) -
~ 730 50+ 220 =0

— Putting it together the system we have is

{x’l =12— 2z, 21(0)

o l‘l(t) g 4 L .Ig(t) L

6.
/ 4 1
Ty = 3571 — z T2 22(0) =0

e Overview of system of ODES
— We will be dealing only with 2 x 2 systems. But in general we can have n X n systems.
— The following is called a linear homogeneous system:

) = a(t)zy + b(t)xs
xh = c(t)zy + d(t)xs

— The following system is called non-homogeneous if
2y = a(t)zy + b(t)xs + g1 (t)
xh = c(t)zy + d(t)xe + g2(t)
where g;(t) or g2(t) # 0.
— As long as all the coefficient functions are all continuous then we have the existence and
uniqueness of a solution (z1(t),z2(t)).

— Any 2nd order ODE has a corresponding system of 2 equations.
x That is if

a(t)y” +b(t)y +c(t)y = g(t)
then we let 71 = y and 25 = ¢/, and obtain

Iy = X2,

c b g

/
Ty = ——y — —1y + 2.
a a a

e Examplel: Turn
1
Yy + iy' + 2y =sint
into a system.
— Solution:
— Goal: We let 71 =y , x5 = %' and set up the following system:
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— To do so, we start with what we defined and take derivatives:

/

x1 =Y - 517’1 =Y =22

x2:y/ — zé:y”:féy’—nysint
hence

/ 1, .
Ty = —iy — 2y —sint
1 . ..
= —5@ — 2x7 —sint, by definition

thus

x) = @9
xh = —2x1 — %1’2 +sint
— Is this Linear? Yes
— Is this homogeneous or non-homogenous? non-homogeneous because of the sint.

e How do we solve system of ODEs? one way is to turn them into 2nd order ODES
e Example2: Consider the following system of EQs

2] =3z — 2w, 1(0) =3
1

xh = 2wy — 2x9, 22(0) = 5

Turn the following system into a single equation and solve for (z1,x3).
— Solution: To do so we solve for (z1,x5)one variable (the one that appears least often) using
algebra:
* Stepl: From EQ1 solve for zs:

3
2wy =311 — 1) = X2 = 2%~ )
3 1
— T2 = 5&:1 — 51}1 (*)

x Take a serivative of both sides

3 1
then set this equal to the RHS of EQ 2:
3 1
—x) — —xf =211 — 225 (%)

2 2

x Plug (%) into (%*):

3 1 3 1
§x’1 — 51:/1/ =2x1 — 2 <2z1 — 2z'1)
and note that this is only dependent on the x;variable. Doing some algebra we get the

equation

o] —x) =221 =0 (**x%)
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* Step2: Now combining () into (x x x) we have

Tog = %xl — %:1:’1 < plug x; here

i)
af —a} —2x1 =0 = solve for z;
- Solve z; using the methods from Chapter 3 and get
xr1 = cle2t + Cgeit.

hence plug x; and its derivative 2 into

3 1,
To = 51’1 — 5(171
3 2t —t 1 2t —t
=5 (016 + cae ) ~3 (2016 — e )
1

= iclezt + 2c9e7 1,

which gives the two general solutions we needed.
e This method is tedious and we’ll never use this method again.
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7.2. Review of Matrices
We will start by considering the following linear system with constant coefficients:

¥y = axy+ bro

cry + dzs.

!
Lo

a b
(1)
be a matrix and let x = ( zl ) be a vector we can define matrix-vector product as
2
Ax— [ @ b ) _ [ an + bxo
c d To cr1+dry )

e Give an example matrix-vector multiplication with A = ( jl g ) and ¢ = ( ? >

Let

e Talk about adding vectors and scaling vectors!
e Thus we can write a system of ODES as

= Ax
d T2

— A is the coefficient matrix
e Example: The system

where A = Z b ) amdx:(ml )

] = =231 + T2
xh = x1 — 219
can be represent by
zp\ [ -2 1 x1
xTo o 1 -2 To
T = Ax

1

5 > e~* is a solution to

, (2 3
r = 4 —9 .

) e~ 4 into the LHS and RHS and see if the are equal to each

e Example: Verify that = (

— Solution: We plug = = < _9

o4t / o4t
LHS =z’ = < _9e—it ) = ( ge—1t )

other
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136
and
2 3 2 3 e~ 4
RHS_<4 2)33_(4 2)(2e4t>
2e 4 — e~
= ( 467415_'_467415 )
_46—4t
- < 8e~4 )
since
LHS = RHS

1 . . .
then « = ( 9 e~4 is a solution to this system.

e How to picture solutions to systems?

Phase Plane/Portrait:
— What do solutions x(t) to @’ = Ax look like? They are parametric equations in the

plane! We graph in the z;-x5 plane since
o(t) = (z1(t), z2(t))

is a vector (or point) that changes in time. Recall your Calc 3.

“al
J-
|

Y

N

b}

N
| b B Pl

.
"
)
3
4
'
v
7
-
=
-

[ O O )

x Graph would look like this:

* This is called the Phase Plane
— Phase Portrait are several phase planes for different initial conditions.

x Graph a Phase Portrait

— What are the simplest solutions?
* An equilibrum solution are the constant solutions: z(t) = (2o, yo)-

*x An equilibrum solution is a dot, since as times moves on it stays constant in the same

place.
x To solve for the equilibrium solution you set the derivative equalk to zero, in this case

Az = 0.
— A direction field can be drawn by drawing the following vector field
F(z1,22) = Ax.
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7.3. Systems of Linear Equatiosn: Linear Independence, Eigenvalues, Eigenvectors

Crash course in linear algebra:
Determinants:

e Suppose we want to find solutions to Ax = 0 or
a b z1\_ (0 axri +brs =0
(c d)(x2>_<0> = cx1 +dre =0
1 2 T _ O — X1 + 21}2 = O
-1 3 zo ) L0 —21+ 329 =0

e Can we find solutions to this system? Yeah easy! its just algebra.
— Notice that @ = (z1,22) = (0,0) is always an equilibrium solution to

o take

ary +bry =0
cry+dre =0 -

— When do we have nontrivial solutions? There is a way to knowing without actually soliving

for it.

a

e The determinant of a matrix A = ( c b ) is defined to be

d
det A =ad — be

1 2.
1 3 ) is defined to be

detA=3—(-2)=5

The determinant of a matrix A = (

THEOREM. If A is matriz and det A # 0 then the only solutions to the system Ax = 0 is the (0,0), the
origin.
If det A = 0 then there are infinitely many solutions.

e Note that det ( i g ) = 0 and hence there are nontrivial solutions.

— check that (—3,1) is a nontrivial solution.
e If det A =0 are then A is singular, or degenerate.
— If det A # 0 are nonsingular, or nondegenerate, or invertible.
— When A is invertible then the inverse matrix A~! exists and we can solve

Ax =0b (%)
by
x=A"'b
and this is the unique solution to (x).
Independence:

e Another important concept in linear algebra is when two vectors are independent or dependent.
o If x = ( ;1 ) and y = ( zl ) are vectors, then ¢;x + coy is said to be a linear combination
2 2

of the two vectors.
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; is a linear combination of ( ; ) and ( 32 ) Why?

Because if we let ¢; = 1 and ¢; = 2 note that
1 -2 1 —4 -3
o)) =(2)+ (&) -(3)

e Definition: The vectors x = ( il ) and y = ( Zl ) are said to be linearly independent if
— 2 2

— Given example! The vector

the only solutions to c;x + coy = 0 are the trivial solutions ¢; = ¢ = 0.
— A visual (and very usefull) way to understand this, two vectors are linearly independent if
they do not lie in the same line through the origin.
— Also, this means x and y are linearly independent if the only way 0 is a linear combination of
these vectors, is the trivial linear combination.
— Multiple vectors? The vectors x,y,z are linearly indepedent if the only solution to ¢;x +
c2y + c3z = 0 are the trivial solutions ¢; = co = ¢3 = 0.

e Examplel: Are < ; > and < Z > linearly independent? (yes)

— Method1:
1 3

1 3
k1<2>+k2<4>=0
k1 + 3ko —0
2k +4ky |
1 3 ki)
(1) (k)=

det A=4—-6+#0

and from the theorem this tells us that they only solution is the trivial solution k1 = k3 =0 .
Hence yes! linearly independent!

— Method2: Draw this on the x — y plane and note they’re NOT on the same line through the
origin.

1t 11

e Example2: Are ( 35 ) and ( 10 ) linearly independent? (No) check both ways!
— Methodl:

3 -6\ 3 —6 Bi\
k1(5>+k2(10>—0 = <5 10>(k2)_0
< detA=30-30=0
and from the theorem this tells us there are infinitely many solutions.
— Hence linearly dependent!

— Method2: Draw this on the x — y plane and note they ARE on the same line through the
origin.
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7.4. Linearity principle

Linearity Principle:

THEOREM. Suppose ¥’ = Ax is a linear system of differential equations.
(1) If x(t) is a solution of this system and c is any constnat, then cx(t) is also a solution.
(2) If xV(t) and x2(t) are two solutions of this systme, then x(t) +x3)(t) is also a solution.

e The point is we can create new solutions from one we already know are solutions via linear combi-
nations!

e In fact, as long as I have one solution then I have infinitely many.

e In fact, we’ll see that if as long as we have two solutions that are linearly indepedent, then we have
al possible solutions.

THEOREM. (The General Solution) Suppose xV)(t) and x)(t) are solutions of the system x' = Ax.
If x((0) and x()(0) are linearly independent, then for any initial condition x(0) = (zo, o), we can find
constants ¢; and ¢y such that x(t) = ¢;x™M (¢) + cax(M(¢) is the solution to the IVP

o = Ax, x(())—<x0 )

Yo

e This theorem says that as long as I find two linearly indepedent solutions x(*(¢) and x(*)(¢) then
every solution is of the form

x(t) = erxW () + coxD(8).
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7.5. Basic Theory of Systems of 1st Order Linear EQs

Equilibrium solutions:

e Consider
T = Ax
where A = ( a b > and x = < 1 )
c d To
e Recall An equilibrium solution, is x(¢) = (z¢, yo) such that Az = 0. That is if

a b x\ ar+by =0
<c d)<y>0<:> (cx+dy:0>'

These are the constant solutions.
— We usually assume det A # 0 so that x(t) = 0 is the only equilibrium solution.
— These are the constant solutions.
— We will ask if other solutions are stable or unstable? That is, do other solutions approach the
origin or not.

Some Linear Algebra

e Draw a vector field, with some straight line solutions
— An eigenvector is a vector where the vector field points in the same or opposite direction as
the vector itself.

DEFINITION. Given a matrix A, a number A is called an eigenvalue of A if there is a nonzero vector v
such that
Av = Av.

The corresponding vector v is called an eigenvector of the eigenvalue ).

Derivation:
e Our goal is to first find eigenvalue, then find the corresponding eigenvector:

1 0. . . A0
Let I = 0 1 identity matrix then Al = ( 0 A

must have that for some v

). Note that by the definition of an eigenvalue, we

Av=)Av <<= Av=)v
— Av-Av=0
— Av—-AIv=0
— (A-X)v=0.

Now A — A is actually another matrix. What matrix? Let’s see
a b A0
ar = (2a)-(5 %)
_ a— A b
o c d—X\ )’

So using our theorem from a previous section , we know when the equation (A — AI) v = 0 has nontrivial

solution? Recall from the theorem that if

det (A—AI)=0
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then we had nontrivial solutions!! Let’s solve for A, because we know how to find determinants!!!

a— A b
det(A—A)=0 <= det( . d—A)_O
<~ (a—A)(d—)X)—bc=0.
<= (something) A + (something)\ + (something) = 0
so solve for A and that will be your eigenvalue! This polynomial is called the characteristic polynomial!

Examplel: Find the eigenvalues and the corresponding eigenvectors of A = ( (2) 5)4 )

e Stepl: Solve

det (A= \[) =0 < det<2_A 3 ):

0 —4-2
= (2N (=4-X)-0-3=0
= (2N (—4-)\) =

= A=-4,2.

1
2

o 2 3 Iy o I
Av =2v < (0—4><m2>_ <$2>

21’1 + 31’2 = 2.’E1
—4%’2 = 2(,61

7N\
)
8
‘H
&+
S
]
[~}
N—
I
[\)
7 N
8 8
N =
N—

A
<= 9 =0 and z; = can be anything.
1 .
so choose v = ( 0 ) as the eigenvector.

e Step3: Find the eigenvectors: Now let Ay = —4 then vp = ( ;;1 ) is an eigenvector if
— 2

2 3re = —4
Av = —4v <— 1+ 92 e
—43;‘2 = —4.132

6x1 +3x0=0 = x9=—221
—41‘2 = —41,‘2

1 .

o | & the eigenvector.

— (*)Notice that any multiple would also be an eigevnvector. So we can also choose

aw(1)-(?)

Back to Differential Equations: Why Eigenvectors?

so choose vy =
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e Consider
2 3
:1:’:(0 4))(
— — - -
Bhd e r N T Y Y e e e
*‘«h&\‘«\\\\\ NN N T TR
e S T T B S S ) NN NN N Nt
| T VT T TR TR TR T TR TS
T T O TR R RS NN W N NN W W e
T
A A B e B N B
] R T TR
T R S
‘ Wl
el = = = = = = R \§\’(?///,'.~44
e \\Tri.-,-,-,-
T T T T T TR AU B B B BV
o S i T T S B B
RORRORORRORORR \\\\'*.‘\'i\?fp
S e e e e NN B e
NN R OROROR W R B T T T S R
Al R RN R N RN o T
48 NN R NN RN xR LS IR B S
e The direction field looks like this: - - .

e We want to search for straight line solutions (Note them on the graph)
— Because they probably have easy explicit formulas and more importantly they are linearly
independent! (why?)
e How do we find them?
— From the geometry of the phase plane. If x is a straight line solution, then notice that Ax = Ax
for some \. Because the vector Ax(x,y) points in the same direction as the vector from (0, 0)

— So if we can find an eigenvector and its eigenvalue then we would have found a straight line
solution.

CLAIM. Suppose A is an eigenvalue and v = ( ; > is an eigevenvector. Then we claim that
At
af x etz
X(t):et< y>:<e“y)

PRrROOF. We just have to check that LHS and RHS equal for

dx
X ax.
a0

is a straight line solution:

The Left Hand Side is
dX:d(eiix>:<)\e;\t:c):)\<e)‘tx>:/\x
dt — dt \ My ety My
and the Right Hand Side is
Ax = AeMv = eMAv = eMAv = A (e”v) = \x.
So yes they are equal! O

Example2: Find the General solution:

Going back to our example
de. (2 3
at  \ 0 —4 )%
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recall that we have the eigenvalue \; = 2 with eigenvector v; = ( é ), and Ao = —4 with eigenvector

Vo = < 1 > From the theorem we have just proved: Then we know two straight line solutions:

-2
MWy =2t L @y — it [ 1
x(t)=¢e 0 , and x**(t) =e L

If these are independent, then we can form the general solution using a theorem from last time! Are
Y1(0) = ( (1) ) and Ya(t) = ( j2 ) independent?
Take the Wronkian:

eZt e—4t

0 —2e %

hence {x(l),w(Q)} forms a fundamental set of solutions.

W [X(l),iL'(Q)} = =22 40

e Yes! remenber that these vector are in completely different lines! Therefore they are independent!

x(t) = cre? ( (1) ) + coe™ ( _12 > .

THEOREM. Suppose A is a matriz with distinct, real eigenvalues A1, Ao with corresponding eigenvectors
V1, va, repectively. Then the solutions general solution of the system

Thus the general solution is

e Summary:

' = Ax

8

A A

x(t) = creMtvy + cpetvy.

And the solutions xV) (t) = eMtvy, xD)(t) = e2tvy are linearly independent.

If enough time teach the following tricks:

a

e Let A= Z . Let’s figure out how to use this.

o trA = a + d. the sum of the diagonal.

e Fact 1: the eigenvalues add to the trace ,\; + Ao = a + d.

e Fact 2: if the two rows add to the same number a + b = a + d, then that number is an eigenvalue
with eigenvector v = (1, 1)

e Fact 3: if the two columns add to the same number a+c¢ = b+d, then that number is an eigenvalue
and an eigenvector for the OTHER eigenvalue is (1, —1)

Example3:

2 2
oTakeA(1 3>.

— Using Fact 2: 2+2 =143 =4.S0o A\; =4 is an eigenvalue and vy = ( } ) is the eigenvalue.
— Using Fact 1:

M+ = 243=5
A = b—4=1
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— So we only need to the find vo. Need actual work here:
2 = =

xr1 + 209 = 21 — x1 + 229 =0
T1 + 3x9 = 29 x1 +2x0=0

<~ 1 = —2To

— vy | 2

T\

Example4:
4 5
e Take A = ( 13 >

1
1
— Since A1 + Ay = 12 then A\ = 3.

— A =9and vy =
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7.6. Phase Portraits for system w/real eigenvalues

Here are two facts we may have not noticed last time:

e If the eigenvalue ) is negative, the straight line solution x(¢) = e*v tends to the origin as t — oo.

Draw a picture with example x(t) = e~ * ( (1) )

e If the eigenvalue ) is positive, the straight line solution x(¢) = e*v tends to away from the origin

as t — oo. Draw a picture with example x(t) = e* ( (1) )
Saddles:

DEFINITION. A linear system for which we have one positive and one negative eigenvalue has an equi-
librium point that is called a saddle.
o= 3 %)«
h 0 2

x(t) = ¢re” % < (1) ) +ch2t< (1) )

e Draw straight line solutions in Phase Plane
e Draw other solutions in Phase Plane. Show this by using ¢ — oo analysis.

Examplel: Consider

if we solve this system we get

b
R
Y
R

-

-
¥ ¥
¥ ¥

o —
Make an analysis on the x(t), y(¢) graphs with initial point (1,1) and get graph that looks like this::
Example2: Consider
o - ( 8 —11 )X
6 -9

using trick about eigenvalues we get that Ay = —3 ad Ay = 2 with eigenvectors vi = < 1 ) and vy = ( 1 ) .

BT o (11
x(t) = cie < | ) Tee 6 |

e Draw straight line solutions in Phase Plane
e Draw other solutions in Phase Plane. Show this by using ¢ — oo analysis.
e Also draw z(t), y(t) curves for the following initial conditions:

- (Oa _5)

if we solve this system we get
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— (20, 10) should be inside one of the parabola thingys
Asymptotically stable node

DEFINITION. A linear system for which we have both negative, distinct eigenvalues has an equilibrium
point that is called a asymptotically stable node.

dx (-1 0
it \ 0 —4 )%
if we solve this system we get

-t _ 1 _ 0
=)o (1) e (1)

e Draw straight line solutions in Phase Plane with ARROWs
e Draw other solutions in Phase Plane.
— MAKE DISTINCTION ON THE ARROWS.(They sink in )

Examplel: Consider

3.0
° 4 3 E) 1 0 1 2 3 4

dX_ -2 =2
a1 =3 )%

x(t) = cie™ ( } ) + coet < _12 ) .

Asymptotically unstable node

Example2: Consider

if we solve this system we get

DEFINITION. A linear system for which we have both positive, distinct eigenvalues has an equilibrium
point that is called a asymptotically unstable node.

dx (2 2
a\1 3)%

et () ()

e Draw straight line solutions in Phase Plane with ARROWs
e Draw other solutions in Phase Plane.
— MAKE DISTINCTION ON THE ARROWS.(They SOURCE out )

Examplel: Consider

if we solve this system we get
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° - E B K 0

Pictures tell us more than intuition:
If there’s any more time draw Phase Portraits for the following countivive system (profit example)

dx_ -2 -3
a3 2 )%

x(#) zklet< ! >+k26-5< X )

use tricks and get
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7.7. Complex Eigenvalues

e We have only worked when we have distinct real eigenvectors.
e But what if we get complex numbers as eigenvectors?
— When will this even happen?

e Consider
dx 1 -3
a3 1"
L T T T S S G G U €
O T
) O O o i i e e N N T G, U, U S
L B R B R e S T S S S
L A A e e T T T T . W . T S |
N S
7 S S S S S (G S S S S S S -
WY A e RNt
sl 4 A A A ANt
) T S S S S S PRI S S S R S Y
L R T R T S T T T s s e L e S A
L T T T T T T T S e e e S
B N R T T T TR TR T T it o S e S
e R T T TR TR TE Th U5 T e I S B
| N A R M S S
N N S N .
L T T T T T T N T I . S
T T T T T T T S T T e L P
L N T T e T T T T S el

e With this direction field:

e The intuition form before doesn’t work. There are no straight line solutions. It looks like solutions
will be spirals.

e So we shall proceed as have done before, but this time you will see that we will have complex
numbers

IS
-
o
o
&

0 05 1 15 2 25 3

Complex numbers:

e Here are some facts. Complex numbers are of the form a + bi where a,b € R and i = /—1.
— §2 = —1. Remenber this.
e Also we’ll need to know Euler’s Formula: e?* = cosb+ isinb. So

el — ¢ — ¢ (cosb + isinb) = e cos b + ie® sinb.

Examplel: Find general solutions of

e Find the eigenvalue:
det (A—A)=0 < (1-))>+9=0

24436
==

A =1=£3.

e Pick one eigenvalue: Find the eigenvector: Solve

T — 3x9 = (1 +3i)$1
3r1 +x9 = (1 +3Z)$2
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One of these equations will be redundant. So pick one equation to find the eigenvector

—
—

3x1 + a0 = (14 3i)

T, = 1To

3.231 = 3i$2

<= pick 29 =1 and get x; = i.

So the eigenvector v = ;
e Find the corresponding complex solution:

At
{ (1430)t
1 ) €

1

) ete3tz

1

Xcomp (1)

i >et (cos 3t + i sin 3t)

iet cos 3t — e’ sin 3t

et cos 3t + iel sin 3t

—elsin 3t + ie’ cos 3t
et cos 3t + iet sin 3t

ie’ (cos 3t + isin 3t)
1e! (cos 3t + i sin 3t)

is associated with the eigenvalue A = 1 + 3i.

> put i’s together

B —e'sin 3¢ v e’ cos 3t
o et cos 3t et sin 3t
= Xpo(t) + ixim (t).

THEOREM. If Xcomp(t) = Xre(t)+iXim (t) is a solution to the linear system ‘Zl—’t‘ = Ax. Then X,¢(t), Xim (t)

are two linearly independent solutions to the system as well.

e So it turns out the general solution to this system is

() =i )ra(

—etsin 3t
et cos 3t

et cos 3t
et sin 3t

)

e Qualitative Analysis: We already know from the direction field that the curves are going to be
spirals. The e' terms says that the solutions are getting father and father away from the origin:

— Thus graph of the Phase Portrait looks like this:
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Summarize:

THEOREM. If a linear system as eigenvalue A = a+ Bi. Then the solution curves from spirals about the
origin with natural period 2=, natural frequency % and

(1) If « < 0, it’s a asymptotically stable spiral point.

(2) If « > 0, its a asymptotically unstable spiral point.

(8) If « = 0, its a center.

So the previous example was a asymptotically unstable spiral. Let’s see other examples.

Example2: A center
dx 0 1
it~ \ -2 0)%

and get characterisitc polynomial of A2 + 2 and get A\ = +iv/2.
e Phase Portrait: e
. .21 . 2
— The period is == and frequency is ¥=.

2
We convert ZT%’ = —2y into

— One thing the theorem doesn’t tell us is if the spirals are clockwise or counter-clockwise.

— So figure out the vector image at (1, 0) and (0, 1) and get A(1,0) = (0, —2) and A (0,1) = (1,0).
This is thus clockwise.

— Since a = 0 then this is center and a graph looks like:
e The solution would be

x(t) = o1 ( _&%sz%t ) +C2< \/Silleo\s/i\/tit )

e The solutions are ellipese. By we don’t know if the major and minor axis are in the y and x axis.
Example3: asymptotically stable spiral.

Suppose
dx (-2 =3
a3 —2)F
and get characterisitc polynomial that A2 4+ 4\ + 13 = 0 and get A = —2 =+ 3s.
e Phase Portrait:
— The period is 2?“ and frequency is %
— One thing the theorem doesn’t tell us is if the spirals are clockwise or counter-clockwise.
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— So figure out the vector for at (1,0) and (0,1) and get A(1,0) = (—2,3) and A(0,1) = (-3, -2).
This is thus counterclockwise.
— Since @ = —2 < 0 then this is spiral sink.
e The solution would be for A = —2 + 3i get eigenvector of v = (4, 1) and solution of

—2t —2t
—e sin 3t e cos 3t
x(t) = < e 2t cos 3t ) T ( e~ 2tgin 3t ) :
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7.8. Repeated and zero eigenvalues

dx_ 1 -2
L2 5 )%

Repeated roots:
Suppose

Let’s first the the eigenvalues:

det<12>\ 5_2A>=o = (1-NG-N+4=0
= M-6A+9=0
— (A-3)*=0,
— =3

So it turns out that we will guess. Our guess is going to be similar to the guess to what we did in a
previous section. The solution will be of the form:

x(t) = eMvy + teMvy.
where Y (0) = vy is the initial condition. So what will vy be? Let’s figure it out. For this solution to work
we check that the LHS equals to RHS for

dx
22 _ 1
a0

)

for this specific Y.
The LHS: Do calculus like we would normally do:

% = AeMvo +eMvy + Metlvy
= (Ao +vi)eM + (W) teM
The RHS: We have
Ax = A (e’\tvo + te>‘tv1)

= Avoe + (Avy) teM
So matching the coefficients we get that we must have
Avy = Avy and Avg + vy = Avy.
This means either v; is an eigenvector or the zero vector. We also have that we can explicitely get
Avog+vi=Avg <= vi=Avyg— vy
— vi=(A-A)vy.

Thus we have the following theorem:
METHOD #1

THEOREM. Suppose %’t‘ = Ax is a system with \ being a double root. Then the general solution is of the
form:
x(t) = eMvq + teMv,y
where v in the initial condition and
Vi = (A— AI)V().
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If v # 0 then it is an eigenvector, and if vi = 0 then vq is an eigenvector and Y (t) is a striaght line
solution.

e (Warning) Never think that e*vq,te*v, are solution by their own. It doesn’t work that way
here. This is a completely different way to solving this problem.

So what do we do? Can we find some eigenvectors:
Examplel:
We consider

with initial condition x(0) = < ? )

e Stepl: Recall we found A = 3 to be an eigenvalue. Our theorem gives us that v; will be an
eigenvector. But we can find it directly by putting A = 3 into

-2 =2
det( 9 9 >:0

. 1 . .
and getting x = —y so v = ( 1 ) 1S an elgenvector.

Zo

e Step2: Suppose vy = < Y ) is the initial condition then what is is v{7
— 0

Vi = (A — )\I) Vo
o -2 =2 o
B 2 2 Yo
_ —2x9 — 2y
- 2x0 + 2y )
o Step3: Write the solution
x(t) = e3tvo+tedtvy

3t [ To ast [ —2w0 — 2y0
= e + te
<yo) ( 2x0 + 2yo >

and pluggin the inital condition we have

x(t)63t< ; >+t63t( _66 >

e Step4: We plot the solutions by plotting the straight line solutions first (y = —x) and then making
the following graph (an almost spiral, but a asymptotically unstable improper node) putting
outwards (because A = 3 > 0) (still check clockwise/counterclockwise):
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Example 2
For

and get A = —2 and get

Y(t) = e_Zt( f/g ) +te_2t( v )

wih the following graph (note the sink):

e This would be an asymptotically stable improper node because A < 0.
METHOD #2 - For general solutions:

e Suppose we have repeated eigenvalue A to

dx
@2 _ 4
a

then we can always write a general solution like this:

z(t) = creMv + ¢y (te)‘tv + eMa)
where v is any eigenvector:

(A-X)v=0,

and a solves the following system

(A= X)a=w.

e Examplel (revisited): Find general solution of
x (1 -2
a — \2 5 )%

*x Stepl: Not hard to check that A = 3 is an eigenvalue and v = (

— Solution:

1 . .
1 ) 1S an eigenvector.
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* Step2: We just need to find the vector a that solves

_ -2 -2 a ) (1
(A—)\I)a—v<:><2 2><a2>_(—1>
—2a1—2a2:1
<~
2a1+2a2:71
== ——1—
ap = 9 az,

1
a —5—a
{:}a:( 1):( 2 2)
a9 a9

choosing a; = 0 we have
_1
(%)

is a solution hence: the general solution is

z(t) = creMv + ¢y (te’\tv + e”a)

:cle?’t( _11 >+cz (tegt( _11 )“M( v ))

Every vector is an eigenvector:
dY a O
dt(Oa)Y

Suppose
then A\ = a and then every vector is an eigenvector. Because every vector is an eigenvector, then every
solution is a ray the either aproaches or leaces the origin. Here is a graph:

Systems with a zero eigenvalue:

Examplel:

Notice that when det A = 0 then from before must have infinitely many equilbrium solutions. Notice for
all the other examples we always had the origin as the equilibrium point. So when det A = 0 then we know
that there exists

A1 =0.

dx _ (-3 1
ad \ 3 —-1)%

Since det A = 0 then this will always tell us that one of the eigenvalues is Ay = 0. But since traAd = —4 and
using the fact that A\; + Ay = —4 then \y = —4.

Consider

e The eigenvector for A\; = 0 is the line y; = 3z; so choose v; = ( :1)‘ >

e The eigenvector for A\; = —4 is the line x5 = —y2 so choose vy = ( _11 )

e The solution is like before in the discussion of distinct eigenvalues:

20 cww<§>+weu(zl)
= q(é)+®€u<11>
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e First thing: There is a line of equilibrium solutions at y = 3z.
e All other solutions are iether point outwards or inwards. Here inwards becasue of the A\ = —4
e Here is a graph:
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7.9. Non-homegeneous Linear Equations

e Suppose we have a non-homogeneous system
' = Az +g(t)

where g(t) # 0.
e Methods:
— diagonalization
— Laplace transforms
— variation of parameters
— method of undetermined coefficients - we’ll learn this today
% A is constant
* g(t) consists or polynomial, sin, cos, or exp.
¢ MOUC:
— Stepl: Find x. which is the general solution to the homogeneous equation

' = Ax.
— Step2: Make guess for x,, which is a particular solution to
' = Ax +g(t)

based on g(t).
— Step3: Adjust if there are any repeats with x.. By multiplying by ¢.
e Examplel(MOUC): Find general solution of

, (0 1 2e!
v ( _2 _3 ) v + < _et .
— Solution:

— Stepl: Find x.: which solves

, (0 1
r = _9 _3 i

*x HKigenvalue A\; = —2 has an eigenvector v, =

*x Eigenvalue Ay = —1 has an eigenvector vy =

NN
o |

—_

S~

* So the homogeneous solution is

:I:c:cl( ;1 >6_2t+02< 711 )e_t.

2
— Step2: We make our first guess x,:based on g(t) = 1 et
* 1st guess: x, = ae’ = ( @ ) ¢! where a = [ ) is some vector.
ag an

- Since ae! is not part of x. then we made the right guess.

157
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— Step3: Then plug x, into the ODE:

d
m;;Amp+g(t) = Cit(aet);Aaet—i-( 2 )et

-1

— a;AaJr( _21>

<:>—( 2 )lAa—a

— aet;Aaet—i—( 2 )et

1
— < - ) 2(A-Ta

-1 1
-2 -4

(5 2 (e)-(7)

* You can row reduce or solve using regular algebra to obtain

T -5
62" 6

and since A — [ = ( ) then we need to solve

a; =
* Thus the general solution is

a:(t):cl( _21 )6_2t+02( _11 )e_t—i—é( j5 )et.

e Variation of parameters:
— Stepl: Find x. which is the general solution to the homogeneous equation

' = Az
in terms of
zo(t) = creM (1) + crz@ (t),
and define the Fundamental matrix:
u(t) = (20(1), 22 (1))
— Step2: Then the solution to ' = Ax + g(t) is given by
x(t) = zc(t) + 2p(1)

where

@ (t) = U(t)u(t)
where u(t) is a vector that satisfies

U(t)u'(t) = g(t).

o Example2:(Variation of Parameters) Use variation of parameters to solve

(21 0
= (7 2)ee (i)
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— Stepl: We first need to find x. which solves

, (21

and by doing the work we get that

x.(t) zclet< _11 )+c2e3t( 1 )

hence the fundamental matrix is:
t 3t
e e
wm—(_ge%)

— Step2: Now we need to find the u vector which solves:

t 3t /
;L e e up \ 0
V(' =g <= <6t eSt)<ul2)_<4et>

{etu’l + e3tuly = = u} =—¢

—eluf + e3tuly = et

plugging v} = —e?!u), into the second equation we get

—e' (—e®'uh) + e*luh = e’ = 4e' = 2¢%'ul = 4e

= ubh = 2e
and plugging this back into the first equation we get
uy = —e*ufy = uf = —e* (2e7%) = -2

— Step3: Now we have that by integrating

ufp = -2 = Ju; =-2t
uh = 2~ Uy = —e "2t

so that we can compute x, with our formula:

—2t

o =wu) = ( 0 G ) (%)

[ —2tet — ¢t
T\ 2tet — €
-1,
_< 2t — 1 )e

Hence the general solution is = x. + x,:

et U Y e (L) 21
rrac 1 )Tec 2 — 1

¢ Example3(MOUC) Find general solution of

0 1 2e~2
S (22
— Solution:

— Stepl: Find x.:which is the same as Example 1:

)

2t

Ug

/

159
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% So the homogeneous solution is

—1 _ —1 _
a:c_cl( 9 >e2t—|—02< 1 >6t.

— Step2: We make our first guess x,:based on g(t) = ( _21 > e 2

az
- Since ae~?! is part of . then we need to reguess
* 2ns guess: T, = ate 2! +be~?' (note that this is different than in the non system
case)
— Step3: Then plug x, into the ODE:

_ a a .
* Ist guess: x, = ae 2= ( ! > e! where a = ( al ) 1s some vector.
2

RHS = Az, + g(t)

= Aate™ % + Abe™?!

2 —ot
%)

_l’_
= Aate™ 2 + [Ab—i— < 1 ﬂ e 2

while the LHS is equal to

o

d
LHS = T [ate*% + be*Zt] =ac % — 2ate % — 2be= %

= —2ate™ 4 (a — 2b) e~ 2.
— Collecting terms we have:
te”*term : —2a = Aa (%)
e %'term :a — 2b = Ab + ( 31 ) (%)
— Using (x) we have
—2a=A < (A+2[)a=0

= (% )0)-()

hence a; = —%ag or
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— Back to (xx) we have

a—2b:Ab+( _21> <=

Ab+2ba< _21) <—

2 1 | —ir-2 2 1| -ir—2
[—2 -1 | r+1 {0 0’ gr—1
and this is consistence if and only if
%r—1:0:>r:2.
— Thus
2bl+b2:f%271<:>2b1+b2:—3
< by =3-—-2h
hence

_ by
b_(32b1)

and since b; can be anything choose b; = 0 to get

-(5)

a = ( _%T‘ > =
T
— Step4: Recall that
z(t) =z, +

— Recall

as needed.
e Exampled: Suppose

and

T = 5cost te 5sint
¢~ "\ 2cost +sint 2\ 2cost — cost

Find the correct x, guess.
— Solution:

)

161
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— First guess: Our first guess is based on g(¢) online and since

glt) = ( ~ oot ) —g(t) = ( ) )cost+ ( ! )sint

T, = acost+ bsint

then

*x But since this is part of . we need to make another guess.
— Second guess:
T, = atcost + btsint + ccost + dsint.



