
Di�erential Equations Exercises Solutions





CHAPTER 1

Introduction

1.1. Problems

(1) What does it mean to be a solution to a di�erential equation?
• Solution: A solution is a function y(t) that when you plug the function into the Di�erential
Equation, you get equality.

(2) Find the equilibrium solutions to the equation

dy

dt
= y2 + 2y

• Solution: By factoring the RHS we get

dy

dt
= y (y + 2)

and setting the RHS equal to zero we get that y = 0,−2 are the equilibrium(constant) solutions.
(3) Find the equilibrium solutions to the equation

dy

dt
= y4t− 3y3t+ 2y2t

• Solution: By factoring the RHS we get

dy

dt
= y2t (y − 1) (y − 2)

and setting the RHS equal to zero we get that y = 0, 1, 2 are the equlibrium(constant) solutions.
Note that t = 0, is NOT an equilibrium solution, because that wouldn't even make any sense
since t is an independent variable. Solutions are functions y(t). So when I write y = 0, 1, 2 are
solutions, I mean the functions

y(t) = 0, y(t) = 1, y(t) = 2

are the solutions. If you plot these functions, they are constant horizontal lines.
(4) Classify the following equations as ODEs or PDEs.

(a) dy
dt = 2yt
• Solution: The solution to this equation would be a function y = y(t). Since there is
only one independent variable, then this is an ODE.

(b) ∂u
∂t = ∂2u

∂x2

• Solution: The solution to this equation would be a function u = u(t, x). Since there are
two independent variables, then this is a PDE. Note that the dependent variable is u,
which is di�erent than the standard y that we have been using. We can always change
the letters of our variables. Please don't let that confuse you.
� Fun Fact: This particular PDE is a very famous PDE and is called the heat equation.
It models the �ow of heat in a medium over time.
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(c) ∂2u
∂t2 = ∂2u

∂x2 + ∂2u
∂y2

• Solution: The solution to this equation would be a function u = u(t, x, y). Since there
are three independent variables, then this is a PDE.
� Fun Fact: This particular PDE is a very famous PDE and is called the wave

equation. This PDE along with boundary conditions, describes the amplitude and
phase of the wave.

(d) x d
2y
dx2 = y dydx + x2y
• Solution: The solution to this equation would be a function y = y(x). Since there is
only one independent variable, then this is an ODE.

(e) 2y′′ − y′ + y = 0
• Solution: The solution to this equation would be a function y = y(t). Since there is
only one independent variable, then this is an ODE.

(5) Classify the order of the following di�erential equations. Also classify if it is linear or nonlinear.

(a) dy
dt = 2yt
• Solution: This is a �rst order linear ODE.

(b) y d
2y
dt2 = cos t

• Solution: This second order non-linear ODE. The y d
2y
dt2 makes this nonlinear.

(c) ty′′′ − y′′ − 2y = 0
• Solution: This is a third order linear ODE. Don't let the ty′′′ fool you into thinking
it's non-linear. When we talk about linear, we're only looking for linear in y, and we
can treat t's as constants.

(d) dy6

dt6 − 2dydt + y = t2

• Solution: This is a sixth order linear ODE. Don't let the t2 fool you into thinking it's
non-linear. When we talk about linear, we're only looking for linear in y, not in t.

(e) cos y + y′ = t
• Solution: This is a �rst order non-linear ODE.

(f) 6y′′′ − y2 = y(5)

• Solution: This is a �fth order non-linear ODE. The y2 makes this non-linear. Note
that y2 means y · y, while y(2) would mean second derivative.

(g) d2y
dt2 = y

y+t

• Solution: This is a second order non-linear ODE.
(6) Check if the function y(t) = t+ 1 a solution to the following di�erential equation:

dy

dt
=
y2 − 1

t2 + 2t
.

• Solution: The left hand side of the equation is

LHS =
d

dt
(t+ 1)

= 1
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while the right hand side of the equation is

RHS =
y(t)2 − 1

t2 + 2t

=
(t+ 1)

2 − 1

t2 + 2t
=
t2 + 2t+ 1− 1

t2 + 2t

=
t2 + 2t

t2 + 2t
= 1.

Since the LHS = RHS, then y(t) = 1 + t is a solution to this di�erential equation.
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1.2. Problems

(1) Match the following slope �elds with their equations

(a) dy
dt = sin t
• Solution: C

(b) dy
dt = t− y
• Solution: D

(c) dy
dt = 2− y
• Solution: A

(d) dy
dt = t
• Solution: B

(2) Suppose the following ODE

dy

dt
= y2 − t

has the following Slope Field:
(a) Suppose y(t) is a solution to this ODE and also you know that y (−1) = 1. Then based on

the slope �eld, what is your prediction for the long term behavior of y(t), that is, what is your
prediction of

lim
t→∞

y(t) =?

• Solution: If the solution goes through the point y(−1) = 1, then my prediction for the
solution would have to follow the tangent curves.
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• It would probably look like:
• Hence by my sketch

lim
t→∞

y(t) =∞.

(b) Suppose y(t) is a solution to this ODE and also you know that y (1) = 0. Then based on the
slope �eld, what is your prediction for the long term behavior of y(t), that is, what is your
prediction of

lim
t→∞

y(t) =?

• Solution: If the solution goes through the point y(1) = 0, then my prediction for the
solution would have to follow the tangent curves.

• It would probably look like:
• Using the given information, we have could say that

lim
t→∞

y(t) < −1.

• It might be too bold to say that the limit is −∞. This is because what if the solution
keeps going down but then eventually goes back up? Who knows? But given the current
slope �eld, the only prediction we can make is that it is less than−1, because the tangents
above the point (2,−1) all point down.
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• If you'd like to be more precise, it actually seems that the limit might be between −1.5
and −1.

(3) Let P (t) represent the population of the Phan �sh breed. Suppose you come up with the following
di�erential equation that models P (t):

dP

dt
= P (P − 100) (P + 100) /100000

Its Slope Field is given by:
(a) Suppose that the population of the Phan �sh is 80 at time t = 0. What is the long term

behavior for the population of the Phan �sh? Will it keep increasing/decreasing, stabilize to
a certain number, or go extinct?
• Solution: If P (0) = 80 then my prediction for the solution would have to follow the
tangent curves.
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• It would probably look like:
• Hence by my sketch we can make a guess that

lim
t→∞

P (t) = 0,

hence we model that the population of the Phan �sh will go extinct.



CHAPTER 2

First Order Di�erential Equations

2.1. Problems

(1) Use a computer app to draw the direction �eld for the given di�erential equations. Use the direction
�eld to describe the long term behavior of the solution for large t. (Meaning use the direction �eld to
predict limt→∞ y(t) for di�erent starting points). Find the general solution of the given di�erential
equations, and use it to determined how solutions behave as t→∞.
(a) y′ + 3y = t+ e−2t

• Solution:
• Qualitative analysis: Using the applet DField, and rewriting

dy

dt
= t+ e−2t − 3y

we have that following Slope Field with some sketch of solution:

•
• Using the slope Field we predict that all solutions satisfy

lim
t→∞

y(t) = +∞.

• Solve analytically: We have p(t) = 3, and g(t) = t+ e−2t. The integrating factor is

µ(t) = e
∫
p(t)dt = e

∫
3dt = e3t.
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Then the solution is given by

y(t) =
1

µ(t)

[∫
µ(t)g(t)dt+ C

]
=

1

e3t

[∫
e3t
(
t+ e−2t

)
dt+ C

]
=

1

e3t

[∫ (
te3t + et

)
dt+ C

]
=

1

e3t

[
1

3
te3t − 1

9
e3t + et + C

]
=

1

3
t− 1

9
+ e−2t + Ce−3t.

• Now that we have the exact solution we can indeed con�rm that

lim
t→∞

y(t) = lim
t→∞

(
1

3
t− 1

9
+ e−2t + Ce−3t

)
=∞+ 0

= +∞.

(b) y′ + y = te−t + 1
• Solution:
• Qualitative analysis:Using the applet DField, and rewriting

dy

dt
= te−t + 1− y

we have that following Slope Field with some sketch of solution:

•
• Using the slope Field we predict that all solutions satisfy

lim
t→∞

y(t) = 1.

• Solve analytically: We have p(t) = 1, and g(t) = te−t + 1. The integrating factor is

µ(t) = e
∫
p(t)dt = e

∫
1dt = et.
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Then the solution is given by

y(t) =
1

µ(t)

[∫
µ(t)g(t)dt+ C

]
=

1

et

[∫
et
(
te−t + 1

)
dt+ C

]
=

1

et

[∫ (
t+ et

)
dt+ C

]
=

1

et

[
t2

2
+ et + C

]
=
t2

2
e−t + 1 + Ce−t

• Now that we have the exact solution we can indeed con�rm that

lim
t→∞

y(t) = lim
t→∞

(
t2

2
e−t + 1 + Ce−t

)
= 0 + 1 + 0

= 1.

(c) ty′ − y = t2e−t

• Solution:
• Qualitative analysis:Using the applet DField, and rewriting

dy

dt
= te−t +

1

t
y

Using the applet DField, and rewriting

dy

dt
= te−t + 1− y

we have that following Slope Field with some sketch of solution:

•
• Using the slope Field we predict that all solutions satisfy

lim
t→∞

y(t) = +∞ or lim
t→∞

y(t) = −∞, or lim
t→∞

y(t) = 0
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depending on the starting point.
• Solve analytically: Don't forget to �rst rewrite it in the form dy

dt + p(t)y = g(t):

y′ − 1

t
y = te−t

We have p(t) = − 1
t , and g(t) = te−t. The integrating factor is

µ(t) = e
∫
p(t)dt = e

∫
− 1

t dt

= e− ln t = eln t
−1

= t−1

Then the solution is given by

y(t) =
1

µ(t)

[∫
µ(t)g(t)dt+ C

]
=

1

t−1

[∫
t−1

(
te−t

)
dt+ C

]
= t

[∫
e−tdt+ C

]
= t
[
−e−t + C

]
= −te−t + Ct.

• Now that we have the exact solution we can indeed con�rm that

lim
t→∞

y(t) = lim
t→∞

(
−te−t + Ct

)
= lim
t→∞

(
−te−t

)
+ lim
t→∞

(Ct)

= 0 + C lim
t→∞

t.

• Now note that if C > 0 then limt→∞ y(t) = +∞, and if C < 0 then limt→∞ y(t) = −∞,
and �nally if C = 0 then limt→∞ y(t) = 0.

(d) 2y′ + y = 3t
• Solution:

� Try the qualitative analysis yourself. The Analytic soluton is y(t) = 3t−6+Ce−t/2

and note that we always have

lim
t→∞

y(t) = lim
t→∞

(
3t− 6 + Ce−t/2

)
=∞− 6 + 0

= +∞.

(2) Find the particular solution to given initial value problem.
(a) y′ − y = 2te2t, y(0) = 1

• Solution: Using integrating factors, one obtains the general solution

y(t) = 2te2t − 2e2t + Cet.

Using the initial condition we have that

1 = y(0) = 2 · 0 · e2·0 − 2e2·0 + Ce0 = −2 + C
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hence C = 3, thus the particular solution to the IVP is

y(t) = 2te2t − 2e2t + 3et.

(b) ty′ + 2y = sin t, y (π/2) = 1, t > 0
• Solution: Using integrating factors, one obtains the general solution

y(t) =
1

t2
sin t− 1

t
cos t+

C

t2
.

Using the initial condition we have that

1 = y(0) =
1(
π
2

)2 sin
π

2
− 1

π
2

cos
π

2
+

C(
π
2

)2
=

4

π2
+

4

π2
C

hence C = π2

4 − 1, thus the particular solution to the IVP is

y(t) =
1

t2
sin t− 1

t
cos t+

1

t2

(
π2

4
− 1

)
.

(3) Consider the following initial value problem:

ty′ + (t+ 1) y = 2te−t, y(1) = a, t > 0

where a is any real number.
(a) Find the particular solution that solves this IVP.

• Solution: Using the technique for Linear 1st order ODE, you should get:

y(t) = te−t − e−tt−1 + eae−tt−1.
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2.2. Problems

(1) Find the general solutions for the following di�erential equations. Find the explicit solutions if you
can. If you can't solve for y exactly, then leave it as an implicit solution:
(a) y′ = ky where k is a parameter.

• Solution: First note y = 0 is an equilibrium solution. Since k is a parameter then we
want to keep track of it. Then rewrite y′ = dy

dt and separate variables

dy

dt
= ky ⇐⇒ 1

y
dy = kdt

⇐⇒
∫

1

y
dy =

∫
kydt

⇐⇒ ln |y| = kt+ c1

⇐⇒ |y| = ekt+c1 ,

⇐⇒ |y| = ec1ekt, rename c2 = ec1

⇐⇒ |y| = c2e
kt.

Now since

|x| =

{
x x ≥ 0

−x x < 0

then we can get rid of the absolute value by putting a ± on the RHS (we'll use this trick
often)

|y| = c2e
kt ⇐⇒ y = ±c2ekt

⇐⇒ y = c3e
kt, rename c3 = ±c2

• Thus since c3is our �nal constant I'll just rename it as C and get

General solution : y(t) = Cekt.

• Note that the equilibrium solution of y = 0 is included in our formula by setting C = 0.
So this is indeed the most general solution.

(b) y′ =
x2

y
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• Solution: First note there are no equilibrium solutions. Then rewrite y′ = dy
dx and

separate variable

dy

dx
=
x2

y
⇐⇒ ydy = x2dx

⇐⇒
∫
ydy =

∫
x2dx

⇐⇒ y2

2
=
x3

3
+ c1

⇐⇒ y2 =
2x3

3
+ 2c1,

⇐⇒ y2 =
2x3

3
+ c2, rename c2 = 2c1

⇐⇒ y = ±
√

2x3

3
+ c2

Thus since c2is our �nal constant I'll just rename it as C and get

General solution : y(t) = ±
√

2x3

3
+ C.

(c)
dy

dx
=

3x2 − 1

3 + 2y
• Solution: First note there are no equilibrium solutions. Separate variable

dy

dx
=

3x2 − 1

3 + 2y
⇐⇒ (3 + 2y) dy =

(
3x2 − 1

)
dx

⇐⇒
∫

(3 + 2y) dy =

∫ (
3x2 − 1

)
dx

⇐⇒ 3y + y2 = x3 − x+ c1

We need to solve for y. Since this is a quadratic in y then we can use the quadratic
formula: Rewrite the above as

y2 + 3y − x3 + x− c1 = 0,

rename c2 = −c1 and get

y2 + 3y − x3 + x+ c2 = 0

then just like in the notes, we can solve ay2 + by + c = 0 with here a, b, c being

a = 1

b = 3

c = −x3 + x+ c2.
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and using the quadratic formula we get

y =
−b±

√
b2 − 4ac

2a

=
−3±

√
32 − 4 (−x3 + x+ c2)

2

=
−3
2
± 1

2

√
9 + 4x3 − 4x− 4c2

but notice that 9− 4c2 is just a constant, so I'll rename that as c3 = 9− 4c2 and get

General solution : y(t) = −3

2
± 1

2

√
4x3 − 4x+ c3.

• Now this is a perfectly good correct answer, but if you can simplify even more (if
you'd like to, but you don't have to on exams), by factoring out the 4 inside the square
root, to get

y(t) = −3

2
± 1

2

√
4
(
x3 − x+

c3
4

)
= −3

2
± 2

2

√
x3 − x+

c3
4

= −3

2
±
√
x3 − x+ c4, renamed c4 =

c3
4
.

And hence an even more simpli�ed version of the General solution is

More simpli�ed General solution : y(t) = −3

2
±
√
x3 − x+ C.

(d) xy′ =

(
1− y2

)1/2
y

• Solution: Note that y(t) = 1,−1. are equilibrium solutions. Then separate variables

x
dy

dx
=

(
1− y2

)1/2
y

⇐⇒ ydy

(1− y2)1/2
=

1

x
dx

⇐⇒
∫

y

(1− y2)1/2
dy =

∫
1

x
dx

⇐⇒
∫

y

(1− y2)1/2
dy = ln |x|+ c

To integrate the LHS we use u-substitution with u = 1 − y2 and get du = −2ydy , or
−du2 = ydy so that

LHS =

∫
y

(1− y2)1/2
dy = −1

2

∫
u−1/2du

= −1

2

u1/2

1/2
= −u1/2 = −

√
1− y2.
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Thus

LHS=RHS ⇐⇒ −
√
1− y2 = ln |x|+ c

⇐⇒
√
1− y2 = − ln |x|+ c

⇐⇒ 1− y2 = (C − ln |x|)2

⇐⇒ y2 = 1− (C − ln |x|)2

⇐⇒ y = ±
√

1− (C − ln |x|)2

• Note that since the formula does not contain y(x) = ±
√
1− (C − ln |x|)2 the equilibrium

solutions y = 1,−1 then the general explicit solution is given by

General solution :


y(t) = ±

√
1− (C − ln |x|)2

y(t) = −1
y(t) = 1

(e)
dy

dx
=

x2

1 + y2

• Solution: Note that there are no equilibrium solutions. Then rewrite dy
dx = x2

1+y2 and

separate variables

dy

dx
=

x2

1 + y2
⇐⇒

(
1 + y2

)
dy = x2dx

⇐⇒
∫ (

1 + y2
)
dy =

∫
x2dx

⇐⇒ y +
y3

3
=
x3

3
+ c1

⇐⇒ y +
y3

3
− x3

3
+ C = 0, where I let C − c1

• Recall we are trying to solve for y. And in general it is hard to solve for cubic (even
though there is a �cubic formula�, I don't expect you to know what it is). Hence we will
leave the solution as an implicit solution:
• Thus

General Implicit solution : y +
y3

3
− x3

3
+ C = 0.

(f)
dy

dx
=

x

cos (y2) y
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• Solution: Note that there are no equilibrium solutions. Then separate variables

dy

dx
=

x

cos (y2) y
⇐⇒ cos

(
y2
)
ydy =

∫
xdx

⇐⇒
∫

cos
(
y2
)
ydy =

∫
xdx

⇐⇒ 1

2
sin
(
y2
)
=
x2

2
+ c1, by u-substitution

⇐⇒ sin
(
y2
)
= x2 + c2

• Note that we can solve this exactly to get

General Explicit solution : y(t) = ±
√
sin−1 (x2 + C).

• What is the domain of this function? We have to be careful here. Because the
domain of sin−1 x is [−1, 1], while its range is

[
−π2 ,

π
2

]
And since we can only put positive

numbers in the square root function. Then the domain of y(t) is all real numbers where

−1 ≤ x2 + C ≤ 1 and 0 ≤sin−1
(
x2 + C

)
and this only happens when

0 ≤ x2 + C ≤ 1.

• In general, I won't expect you to know the domain and range of inverse trig functions.
So the domains of the functions is whereever the equations are de�ned. Thus it might
be easier to write solutions implicitely:

General Implicit solution : All functions satisfying sin
(
y2
)
= x2 + C.

(2) Consider the ODE

dy

dt
=

4y

t
.

(a) What kind of di�erential equation is this? Is it Linear? Is it separable?
• Solution: Note that since we can write the ODE as

dy

dt
− 4

t
y = 0

then it is linear. It is also separable!
• This means, any of the two methods would work.

(b) If the ODE is both Separable and Linear. Then use both methods to solve this equation. And
check to make sure you get the same answer.
• Solution:
• Solving it as a Linear ODE: Since dy

dt −
4
t y = 0 then we can let p(t) = − 4

t and g(t) = 0.
The integrating factor is

µ(t) = e
∫
p(t)dt = e

∫
− 4

t dt

= e−4 ln t = eln t
−4

=
1

t4



2.2. PROBLEMS 20

Then the solution is given by

y(t) =
1

µ(t)

[∫
µ(t)g(t)dt+ C

]
=

1

t−4

[∫
1

t4
· 0dt+ C

]
= t4 [0 + C]

= Ct4.

• Solving it by treating as a separable equation: Separating we get

dy

dt
=

4y

t
⇐⇒ dy

y
=

4

t
dt

⇐⇒
∫
dy

y
=

∫
4

t
dt

⇐⇒ ln |y| = 4 ln |t|+ c1

⇐⇒ ln |y| = ln t4 + c1

⇐⇒ |y| = eln t
4+c1

⇐⇒ |y| = ec1eln t
4

⇐⇒ y = Celn t
4

, by letting C = ±ec1

⇐⇒ y = Ct4.

And we get the same answer. Note that the equilibrium solution y = 0, is also included
by letting C = 0.
• In general you can choose whichever method you prefer.

(3) Find the general solution to the following di�erential equation:

dy

dt
= (y + 1) (y − 2) .

(Hint: Use Partial fractions!)

• Solution: Note that y(t) = −1, 2. are equilibrium solutions. Then rewrite dydt = (y + 1) (y − 2)
and separate variable

dy

dt
= (y + 1) (y − 2) ⇐⇒ dy

(y + 1) (y − 2)
= dt

⇐⇒
∫

dy

(y + 1) (y − 2)
=

∫
dt

⇐⇒
∫

dy

(y + 1) (y − 2)
= t+ c1.

to integrate
∫

dy
(y+1)(y−2) we need to use partial fractions.

• Recall to do partial fractions we have

1

(y + 1) (y − 2)
=

A

y + 1
+

B

y − 2
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multiply both sides by (y + 1) (y − 2) and get

1 = A (y − 2) +B (y + 1)

LHS = RHS

rewrite the RHS by putting all y's together

1 = (A+B) y + (B − 2A)

and rewrite the LHS and recall there is an imaginary 0 · y and get

0 · y + 1 = (A+B) y + (B − 2A)

comparing coe�cients we have that

0 = A+B

1 = B − 2A

and solving this system we have that

A = −1

3
and B =

1

3
.

• Putting back into the ODE equation we have∫ (
−1

3

1

y + 1
+

1

3

1

y − 2

)
dy = t+ c1 ⇐⇒

1

3
ln |y − 2| − 1

3
ln |y + 1| = t+ c1

⇐⇒ ln |y − 2|1/3 − ln |y + 1|1/3 = t+ c1

⇐⇒ ln
|y − 2|1/3

|y + 1|1/3
= t+ c1

⇐⇒ |y − 2|1/3

|y + 1|1/3
= ec1et, and then let c2 = ec1

⇐⇒ |y − 2|1/3

|y + 1|1/3
= c2e

t,

⇐⇒ |y − 2|
|y + 1|

= c3e
3t, where c3 = c32

⇐⇒ (y − 2)

(y + 1)
= c4e

3t, where c4 = ±c3

⇐⇒ (y − 2) = c4e
3t (y + 1)

⇐⇒ y − 2 = c4e
3ty + c4e

3t

⇐⇒ y
(
1− c4e3t

)
= c4e

3t + 2

⇐⇒ y =
c4e

3t + 2

1− c4e3t

Since this formula already includes the Equilibrium solution y(t) = 2 when C = 0, then

General Explicit solution :

{
y(t) = Ce3t+2

1−Ce3t

y(t) = −1
.
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2.3. Problems

(1) First check each if the following di�erential equations are homogeneous. Then �nd the general
solutions for the following di�erential equations.

(a) x2
dy

dx
= −

(
y2 − yx

)
.

• Solution: First we write it as dy
dx = − (y2−yx)

x2 and we try to get the RHS to look like

F
(
y
x

)
. by doing some algebra note that

dy

dx
= −

(y
x

)2
+
(y
x

)
hence we can make the substitution v = y

x on the RHS and use the fact that
dy
dx = x dvdx+v

on the LHS:

x
dv

dx
+ v = −v2 + v

and simplifying we get

x
dv

dx
= −v2.

• This new equation is separable:

x
dv

dx
= −v2 ⇐⇒

∫
v−2dv = −

∫
1

x
dx

⇐⇒
∫
v−2dv = − ln |x|+ C

⇐⇒ −1

v
= − ln |x|+ C

⇐⇒ 1

v
= ln |x|+ C, note that I just renamed− C by C again

⇐⇒ v =
1

ln |x|+ C
.

• Now that we've solve for v. We need to go back to y, using the substitution we had
made v = y

x

v =
1

ln |x|+ C
⇐⇒ y

x
=

1

ln |x|+ C

⇐⇒ y =
x

ln |x|+ C
.

• Thus y(x) = x
ln|x|+C is our �nal answer.

� There is also an equilibrium solution of y = 0
• Thus the general explicit solution is given by{

y(x) = x
ln|x|+C

y(x) = 0

(b)
dy

dx
=
x+ 3y + 2y

2

x

3x+ y
.
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• Solution: First we try to get the RHS to look like F
(
y
x

)
. By doing some algebra (divide

by x everywhere) note that

dy

dx
=

1 + 3 yx + 2
(
y
x

)2
3 + y

x

hence we can make the substitution v = y
x on the RHS and use the fact that

dy
dx = x dvdx+v

on the LHS:

x
dv

dx
+ v =

1 + 3v + 2v2

3 + v

and simplifying we get

x
dv

dx
=

1 + 3v + 2v2

3 + v
− v ⇐⇒ x

dv

dx
=

1 + 3v + 2v2

3 + v
− 3v + v2

3 + v

⇐⇒ x
dv

dx
=

1 + v2

3 + v

• This new equation is separable:

x
dv

dx
=

1 + v2

3 + v
⇐⇒

∫
3 + v

v2 + 1
dv =

∫
1

x
dx

⇐⇒
∫

3

v2 + 1
dv +

∫
v

v2 + 1
dv = ln |x|+ C

⇐⇒ 3 tan−1 v +
1

2
ln
∣∣v2 + 1

∣∣ = ln |x|+ C

• We won't be able to solve for v in this equation. (tan−1 and ln don't mix) . But we still
need to go back to y, using the substitution we had made v = y

x

3 tan−1 v +
1

2
ln
∣∣v2 + 1

∣∣ = ln |x|+ C ⇐⇒ 3 tan−1
(y
x

)
+

1

2
ln

∣∣∣∣y2x2 + 1

∣∣∣∣ = ln |x|+ C

• Thus the implicit general solution is given by:

3 tan−1
(y
x

)
+

1

2
ln

∣∣∣∣y2x2 + 1

∣∣∣∣ = ln |x|+ C

(c)
dy

dx
=
y

x
− x2 − y2

2xy
.

• Solution: First we try to get the RHS to look like F
(
y
x

)
. By doing some algebra (divide

the fraction by x2 everywhere, because the leading in y in the numerator is y2) note that

RHS =
y

x
− x2 − y2

2xy
=
y

x
−
(
x2 − y2

)
/x2

(2xy) /x2
=
y

x
−

1−
(
y
x

)2
2 yx

hence we can make the substitution v = y
x on the RHS and use the fact that

dy
dx = x dvdx+v

on the LHS:

x
dv

dx
+ v = v − 1− (v)

2

2v
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and simplifying we get

x
dv

dx
=
v2 − 1

2v
.

• Then we can separate variables:

x
dv

dx
=

1− v2

2v
⇐⇒ 2v

v2 − 1
dv =

dx

x

⇐⇒
∫

2v

v2 − 1
dv =

∫
dx

x

⇐⇒ ln
∣∣v2 − 1

∣∣ = ln |x|+ c

⇐⇒
∣∣v2 − 1

∣∣ = eceln|x|

⇐⇒ v2 − 1 = c |x|
⇐⇒ v2 = 1 + c |x|

⇐⇒ v = ±
√
1 + c |x|

• Putting v = y
x back in we get

v = ±
√
1 + c |x| ⇐⇒ y

x
= ±

√
1 + c |x|

⇐⇒ y = ±x
√
1 + c |x|.

• General solution is

y(x) = ±x
√
1 + c |x|.

(2) Consider the following homogeneous equation:

dy

dx
=
y − x
y + x

.

(a) Use the substitution v = y
x to rewrite the equation only in terms of v and x.

• Solution: First we write it as dy
dx = y−x

y+x and we try to get the RHS to look like F
(
y
x

)
.

by doing some algebra (�vide everything by x) and note that

dy

dx
=

y
x − 1
y
x + 1

hence we can make the substitution v = y
x on the RHS and use the fact that

dy
dx = x dvdx+v

on the LHS:

x
dv

dx
+ v =

v − 1

v + 1
and simplifying we get

x
dv

dx
=
v − 1

v + 1
− v.

note that v−1
v+1 − v = v−1

v+1 + −v
2−v
v+1 = −v

2+1
v+1 thus

x
dv

dx
= −v

2 + 1

v + 1
.

(b) Solve for the general solution.
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• Solution: Using

x
dv

dx
= −v

2 + 1

v + 1
.

� This new equation is separable:

x
dv

dx
= −v

2 + 1

v + 1
⇐⇒ v + 1

v2 + 1
dv = − 1

x
dx

⇐⇒
∫

v + 1

v2 + 1
dv = −

∫
1

x
dx. (?)

We need to integrate
∫

v+1
v2+1dv: Write∫

v + 1

v2 + 1
dv =

∫
v

v2 + 1
dv +

∫
1

v2 + 1
dv

and do u-substitution on the �rst integral, and the second integral remember that its an
inverse tan: ∫

v + 1

v2 + 1
dv =

1

2
ln
∣∣v2 + 1

∣∣+ tan−1 v.

� Putting this back in (?) we get∫
v + 1

v2 + 1
dv = −

∫
1

x
dx ⇐⇒ 1

2
ln
∣∣v2 + 1

∣∣+ tan−1 v = − ln |x|+ C

� Now that we've solve for v. We need to go back to y, using the substitution we had
made v = y

x

1

2
ln

∣∣∣∣y2x2 + 1

∣∣∣∣+ tan−1
(
y2

x2

)
= − ln |x|+ C

� We can simplify even more by noting that 1
2 ln

∣∣∣ y2x2 + 1
∣∣∣ = 1

2 ln
(
x−2

(
y2 + x2

))
= 1

2 ln
(
x−2

)
+

1
2 ln

(
y2 + x2

)
= − ln |x|+ 1

2 ln
(
y2 + x2

)
and substitution this into the LHS we get

− ln |x|+ 1

2
ln
(
y2 + x2

)
+ tan−1

(
y2

x2

)
= − ln |x|+ C

which we can cancel the − ln |x| in each side. And get

1

2
ln
(
y2 + x2

)
+ tan−1

(
y2

x2

)
= C.

� We will leave this as the implicit solution.
(3) Consider the following homogeneous equation:

dy

dx
=
−y2 − yx

x2
.

(a) Use the substitution v = y
x to rewrite the equation only in terms of v and x.

• Solution: First we write it as dy
dx = −y2−yx

x2 and we try to get the RHS to look like

F
(
y
x

)
. By doing some algebra note that

dy

dx
= −

(y
x

)2
−
(y
x

)
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hence we can make the substitution v = y
x on the RHS and use the fact that

dy
dx = x dvdx+v

on the LHS:

x
dv

dx
+ v = −v2 − v

and simplifying we get

x
dv

dx
= −v2 − 2v.

(b) Solve for the general solution.
• Solution: Using

x
dv

dx
= −v2 − 2v.

� This new equation is separable:

x
dv

dx
= −v2 − 2v ⇐⇒

∫
dv

v2 + 2v
= −

∫
1

x
dx

⇐⇒
∫

dv

v (v + 2)
= − ln |x|+ C, (?)

� We need to integrate the LHS of
∫

dv
v(v+2) (use partial fractions) to get 1

v(v+2) = 1
2
1
v −

1
2

1
v+2 . Hence plugging this into the LHS of (?) we get∫
dv

v (v + 2)
= − ln |x|+ C ⇐⇒

∫ (
1

2

1

v
− 1

2

1

v + 2

)
dv = − ln |x|+ c1

⇐⇒ 1

2
ln |v| − 1

2
ln |v + 2| = − ln |x|+ c1

⇐⇒ ln |v| − ln |v + 2| = −2 ln |x|+ c2

� Taking e of everything we get

eln|v|−ln|v+2| = e−2 ln|x|+C ⇐⇒ eln|v|e− ln|v+2| = ec2e−2 ln|x|

⇐⇒ |v|
|v + 2|

= c3e
ln x−2

⇐⇒ v

v + 2
=
c4
x2

where c4 = ±c3

⇐⇒ v =
c4
x2
v + 2

c4
x2

⇐⇒ v
(
1− c4

x2

)
= +2

c4
x2

⇐⇒ v =
2c4

x2
(
1− c4

x2

)
� We need to go back to y, using the substitution we had made v = y

x

y

x
=

2c4

x2
(
1− c4

x2

) ⇐⇒ y =
2xc4

x2
(
1− c4

x2

)
⇐⇒ y =

2xc4
x2 − c4

.
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� and dividing out everyting by c4we get

y =
2x

1
c4
x2 − 1

and �nally renaming C = 1
c4

we get the simplest version:

y(x) =
2x

Cx2 − 1

(4) Using the given substitution. Solve the di�erential equation:

(a) Rewrite
dy

dx
+ xy = x2y2 using the substitution u = 1

y , only in terms of u, x.

• Solution: Using u = 1
y then solving for y we get

y =
1

u
.

• Then di�erentiating
dy

dx
= −u−2 du

dx
.

and substitution this into LHS and RHS of the ODE we get

− 1

u2
du

dx
+ x

1

u
= x2

1

u2

hence
du

dx
− xu = −x2.

(b) Rewrite
dy

dx
+ y =

x

y2
using the substitution u = y3, only in terms of u, x.

• Solution: Using u = y3 then solving for y we get

y = u1/3.

• Then di�erentiating
dy

dx
=

1

3
u−2/3

du

dx
.

and substitution this into LHS and RHS of the ODE we get

1

3
u−2/3

du

dx
+ u1/3 =

x(
u1/3

)2
hence multiplying everyting by u2/3 we get

1

3

du

dx
+ u = x.
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2.4. Problems

(1) Initially, a tank contains 100 L of water with 10 kg of sugar in solution. Water containing sugar
�ows into the tank at the rate of 2 L/min, and the well-stirred mixture in the tank �ows out at the
rate of 5 L/min. The concentration c(t) of sugar in the incoming water varies as c(t) = 2+ cos(3t)
kg/L. Let Q(t) be the amount of sugar (in kilograms) in the tank at time t (in minutes). Write the
Initial Value Problem that Q(t) satis�es?
• Solution:

Step1: De�ne variables
Let Q(t) =amount of sugar at time t. Let Q(0) = 10 kg.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always �nd the Rate In as

Rate in =

(
concentrarion

of stu� coming in

)
× Rate.

Similarly you can always �nd the Rate out as

Rate out =

(
concentrarion

of stu� going out

)
× Rate.

Using the information from the problem we have

Rate in =

(
c(t)

kg

L

)(
2

L

min

)
-sugar water solution

= 2 (2 + cos(3t))
kg

min
.

and

Rate out =

(
concentrarion

of stu� going out

)
× Rate

=

(
Q(t)

w(t)
kg
L

)
× 5

L

min
.

where

w(t) = water at time t

= 100L+

(
2

L

min
− 5

L

min

)
t

= 100− 3t.

hence

Rate out =

(
Q(t)

w(t)
kg
L

)
× 5

L

min
.

=
5Q(t)

100− 3t
.

Step 3: Write the IVP
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Always recall that for mixing problems we have

dQ

dt
= Rate in− Rate out,

dQ

dt
= 2 (2 + cos(3t))− 5Q

100− 3t
.

and the initial condition is

Q(0) = 10.

(2) Initially, a tank contains 500 L (liters) of pure water. Water containing 0.3kg of salt per liter is
entering at a rate of 2 L/min, and the mixture is allowed to �ow out of the tank at a rate of 1
L/min. Let Q(t) be the amount of salt at time t measured in kilograms (kg). What is the IVP
that Q(t) satis�es?
• Solution:

Step1: De�ne variables
Let Q(t) =amount of salt at time t. Let Q(0) = 0 kg since the tank only contains pure water

initially.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always �nd the Rate In as

Rate in =

(
concentrarion

of stu� coming in

)
× Rate.

Similarly you can always �nd the Rate out as

Rate out =

(
concentrarion

of stu� going out

)
× Rate.

Using the information from the problem we have

Rate in =

(
.3
kg

L

)(
2

L

min

)
-salt water solution

= .6
kg

min
.

and

Rate out =

(
concentrarion

of stu� going out

)
× Rate

=

(
Q(t)

w(t)
kg
L

)
× 1

L

min
.

where

w(t) = water at time t

= 500L+

(
2

L

min
− 1

L

min

)
t

= 500 + t.
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hence

Rate out =

(
Q(t)

w(t)
kg
L

)
× 1

L

min
.

=
Q(t)

500 + t.
.

Step 3: Write the IVP
Always recall that for mixing problems we have

dQ

dt
= Rate in− Rate out,

dQ

dt
= .6− Q

500 + t
.

and the initial condition is

Q(0) = 0.

(3) Initially, a tank contains 400 L of water with 10 kg of salt in solution. Water containing 0.1 kg of
salt per liter (L) is entering at a rate of 1 L/min, and the mixture is allowed to �ow out of the tank
at a rate of 2 L/min. Let Q(t) be the amount of salt at time t measured in kilograms. What is the
IVP that Q(t) satis�es?
• Solution:

Step1: De�ne variables
Let Q(t) =amount of salt at time t. Let Q(0) = 10 kg.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always �nd the Rate In as

Rate in =

(
concentrarion

of stu� coming in

)
× Rate.

Similarly you can always �nd the Rate out as

Rate out =

(
concentrarion

of stu� going out

)
× Rate.

Using the information from the problem we have

Rate in =

(
.1
kg

L

)(
1

L

min

)
-salt water solution

= .1
kg

min
.

and

Rate out =

(
concentrarion

of stu� going out

)
× Rate

=

(
Q(t)

w(t)
kg
L

)
× 2

L

min
.
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where

w(t) = water at time t

= 400L+

(
1

L

min
− 2

L

min

)
t

= 400− t.

hence

Rate out =

(
Q(t)

w(t)
kg
L

)
× 2

L

min
.

=
2Q(t)

400− t.
.

Step 3: Write the IVP
Always recall that for mixing problems we have

dQ

dt
= Rate in− Rate out,

dQ

dt
= .1− 2Q

400− t
.

and the initial condition is

Q(0) = 10.

(4) Consider a pond that initially constains 10 million gal of pure water. Water containing a polluted
chemical �ows into the pond at the rate of 6 million gal/year, and the mixture in the pond �ows
out at the rate of 5 million gal/year. The concentration γ(t) of chemical in the incoming water
varies as γ(t) = 2 + sin 2t grams/gal. Let Q(t) be the amount of chemical at time t measured by
millions of grams. What is the IVP that Q(t) satis�es?
• Solution:

Step1: De�ne variables
Let Q(t) =amount of chemical at time t. Let Q(0) = 0 grams, since initially the pond has only

pure water.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always �nd the Rate In as

Rate in =

(
concentrarion

of stu� coming in

)
× Rate.

Similarly you can always �nd the Rate out as

Rate out =

(
concentrarion

of stu� going out

)
× Rate.

Using the information from the problem we have

Rate in =

(
γ(t)

grams

gal

)(
6
gal

year

)
chemical solution

= 12 + 6 sin 2t
grams

year
.
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and

Rate out =

(
concentrarion

of stu� going out

)
× Rate

=

(
Q(t)

w(t)
grams
gal

)
× 5

gal

year
.

where

w(t) = water at time t

= 10 gallons+

(
6
gallons

min
− 5

gallons

min

)
t

= 10 + t.

hence

Rate out =

(
Q(t)

w(t)
kg
L

)
× 5

L

min
.

=
5Q(t)

10 + t.
.

Step 3: Write the IVP
Always recall that for mixing problems we have

dQ

dt
= Rate in− Rate out,

dQ

dt
= 12 + 6 sin 2t− 5Q

10 + t.
.

and the initial condition is

Q(0) = 0.

(5) A tank contains 200 gal of liquid. Initially, the tank contains pure water. At time t = 0, brine
containing 3 lb/gal of salt begins to pour into the tank at a rate of 2 gal/min, and the well-stirred
mixture is allowed to drain away at the same rate. How many minutes must elapse before there
are 100 lb of salt in the tank?
• Solution:

Step1: De�ne variables
Let y(t) =amount of salt at time t. Let y(0) = 0 , since initially the tank has only pure water.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always �nd the Rate In as

Rate in =

(
concentrarion

of stu� coming in

)
× Rate.

Similarly you can always �nd the Rate out as

Rate out =

(
concentrarion

of stu� going out

)
× Rate.
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Using the information from the problem we have

Rate in =

(
3
lb

gal

)(
2
gal

min

)
brine solution

= 6
lb

min
.

and

Rate out =

(
concentrarion

of stu� going out

)
× Rate

=

(
y(t)

w(t)
lb
gal

)
× 2

gal

min
.

where since it's draining the same rate that it is leaving, then the amounut of solution in the tank
is constant:

w(t) = water at time t

= 200 gallons+

(
2
gallons

min
− 2

gallons

min

)
t

= 200

hence

Rate out =

(
y(t)

w(t)
lb
gal

)
× 2

gal

min
.

=
2y(t)

200
=

1

100
y.

Step 3: Write the IVP
Always recall that for mixing problems we have

dy

dt
= Rate in− Rate out,

dy

dt
= 6− 1

100
y.

and the initial condition is
y(0) = 0.

Step 4: Solve IVP as a linear equation (it's also separable) and get

y(t) = 600− 600e−t/100.

But the questions for what time it takes until there is 100 lbs of salt in the tank, Then set

y(t) = 100

and solve for t. That is, solve

100 = 600− 600e−t/100

and get

time it takes to �ll tank to hundred lbs = 100 ln
6

5
≈ 18.23 minutes
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(6) A huge tank initially contains 10 gallons (gal) of water with 6 lb of salt in solution. Water containing
1 lb of salt per gallon is entering at a rate of 3 gal/min, and the well-stirred mixture is allowed to
�ow out of the tank at a rate of 2 gal/min. What is the amount of the salt in the tank after 10
min?
• Solution:

Step1: De�ne variables
Let y(t) =amount of salt at time t. Let y(0) = 6 lbs, since initially the tank has only pure

water.
Step2: Find Rate in/ Rate out
Note that for anything that comes in you can always �nd the Rate In as

Rate in =

(
concentrarion

of stu� coming in

)
× Rate.

Similarly you can always �nd the Rate out as

Rate out =

(
concentrarion

of stu� going out

)
× Rate.

Using the information from the problem we have

Rate in =

(
1
lb

gal

)(
3
gal

min

)
brine solution

= 3
lb

min
.

and

Rate out =

(
concentrarion

of stu� going out

)
× Rate

=

(
y(t)

w(t)
lb
gal

)
× 2

gal

min
.

where

w(t) = water at time t

= 10 gallons+

(
3
gallons

min
− 2

gallons

min

)
t

= 10 + t

hence

Rate out =

(
y(t)

w(t)
lb
gal

)
× 2

gal

min
.

=
2y(t)

10 + t
=

Step 3: Write the IVP
Always recall that for mixing problems we have

dy

dt
= Rate in− Rate out,

dy

dt
= 3− 2

10 + t
y.
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and the initial condition is
y(0) = 6.

Step 4: Solve IVP as a linear equation (it's also separable) and get that rewriting

dy

dt
+

2

10 + t
y = 3

then
µ(t) = e

∫
2

10+tdt = e2 ln(10+t) = (10 + t)
2

y(t) =
1

µ(t)

[∫
g(t)µ(t)dt+ C

]
=

1

(10 + t)
2

[
3

∫
(10 + t)

2
dt+ C

]
=

1

(10 + t)
2

[
(10 + t)

3
+ C

]
and solving for C we get

6 =
103 + C

102
=⇒ C = −400

y(t) =
(10 + t)

3 − 400

(10 + t)
2

But the questions for the amount of salt at time t = 10, hence the answer is

y(10) =
(20)

3 − 400

(20)
2 = 19.

(7) Initially a tank holds 40 gallons of water with 10 lb of salt in solution. A salt solution containing
1
2b of salt per gallon runs into the tank at the rate of 4 gallons per minute. The well mixed solution
runs out of the tank at a rate of 2 gallons per minute. Let y(t) be the amount of salt in the tank
after t minutes. Then what is y(20).
• Solution:
• Just like before we can set up the following IVP

dy

dt
= 2− 2y

40 + 2t
, y(0) = 10

and then solving for y(t) and plugging t = 20 we get

y(20) = 35.
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2.5. Problems

(1) A detective is called to the scene of a crime where a dead body has just been found.
• She arrives on the scene at 10:23 pm and begins her investigation. Immediately, the temper-
ature of the body is taken and is found to be 80◦F. The detective checks the programmable
thermostat and �nds that the room has been kept at a constant 68◦F for the past 3 days.
• After evidence from the crime scene is collected, the temperature of the body is taken once
more and found to be 78.5◦ F. This last temperature reading was taken exactly one hour after
the �rst one.
• The next day the detective is asked by another investigator, �What time did our victim die?�
Assuming that the victim's body temperature was normal (98.6◦) prior to death, what is her
answer to this question? Newton's Law of Cooling can be used to determine a victim's time
of death.
• Solution: One needs to solve the following IVP: Let T (t) be the temperature of the victim,
then

dT

dt
= k (T − 68) , T (0) = 98.6

and need to use the information

T (tc) = 80,

T (tc + 1) = 78.5

to solve for k and tc.
• First solving for T (t) we get

T (t) = 68 + (98.6− 68) ekt

= 68 + 30.6ekt.

• Then using

80 = 68 + 30.6ektc ,

78.5 = 68 + 30.6ek(tc+1)

• Solving the �rst equation for k we get

k =
1

tc
ln

12

30.6

and plugging this into second equation we get

78.5 = 68 + 30.6e
1
tc

ln 12
30.6 (tc+1)

and hence
tc ≈ 7.01 hours.

• This means the murder occured 7 hours and .6 minutes ago. That is, the muder occured
arround 3 : 23 pm.
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2.6. Problems

(1) What is the largest open interval in which the solution to the IVPs in part (a) and part (b) are
guaranteed to exist by the Existence and Uniqueness Theorem?
(a) The IVP given by: {(

t2 + t− 2
)
y′ + ety = (t−4)

(t−6)
y(−3) = −1.

• Solution:
• First rewrite

y′ +
et

(t+ 2) (t− 1)
y =

(t− 4)

(t− 6) (t+ 2) (t− 1)

• Where p(t) = et

(t+2)(t−1) and g(t) =
(t−4)

(t−6)(t+2)(t−1) .

• To �nd the largest open interval, we simply need to check the largest open interval
containing the initial value t0 in which both p(t) and g(t) are continuous
• To do this we look for the bad points (non-continuous points) of p and g

• The function p(t) = et

(t+2)(t−1) is continuous whenever t+ 2 6= 0 and when t− 1 6= 0

� Thus we must have t 6= −2, 1.
• The function g(t) = (t−4)

(t−6)(t+2)(t−1) is continuous whenever (t− 6) (t+ 2) (t− 1) 6= 0.

(Note that t = 4is NOT a problem since it's in the numerator )
� Thus we must have t 6= −2, 1, 6.

• Both functions are simultaneously continuous (draw a number line to help you �nd out
when p, g are both continuous) on

(−∞,−2) ∪ (−2, 1) ∪ (1, 6) ∪ (6,∞)

since t0 = −3 falls inside (−∞,−2) then the solution to this IVP must have a domain
as large as

I = (−∞,−2) ,
as guaranteed by the theorem.

(b) The IVP given by: {(
t2 + t− 2

)
y′ + ety = (t−4)

(t−6)
y(5) = 47.

• Solution:
• Note that this is the same equation as in part (a), so we know that both p, g are continuous
on

(−∞,−2) ∪ (−2, 1) ∪ (1, 6) ∪ (6,∞)

• Since the new initial point t0 = 5 falls inside (1, 6) then the solution to this IVP must have a
domain as large as

I = (1, 6) ,

by the theorem.
(2) What is the largest open interval in which the solution of the initial value problem{

(t− 3) y′ + y = (t−3)·ln(t−1)
t−10

y(6) = −7.

is guaranteed to exist by the Existence and Uniqueness Theorem?
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• Solution:
• To apply the Existence and Uniqueness Theorem we �rst need to rewrite this Linear equation
in the form

y′ + p(t)y = g(t)

and we get

y′ +
1

(t− 3)
y =

ln (t− 1)

t− 10

• Where p(t) = 1
(t−3) and g(t) =

ln(t−1)
t−10 .

• To �nd the largest open interval, we simply need to check the largest open interval containing
the initial value t0 in which both p(t) and g(t) are continuous
• To do this we look for the bad points (non-continuous points) of p and g
• The function p(t) = 1

(t−3) is continuous whenever t 6= 3.

� Thus we must have t 6= 3.

• The function g(t) = t ln(t−1)
t−10 is continuous whenever t− 1 > 0 and when t− 10 6= 0

� Meaning when t > 1 and t 6= 10.
• Both functions are simultaneously continuous (draw a number line to help you �nd out when
p, g are both continuous) on

(1, 3) ∪ (3, 10) ∪ (10,∞)

since t0 = 6 falls inside (3, 10) then the solution to this IVP must have a domain as large as

I = (3, 10) ,

by the theorem.
(3) What is the largest open interval in which the solution of the initial value problem{

(t− 1) y′ +
√
t+ 2y = 3

t−3
y(2) = −5.

is guaranteed to exist by the Existence and Uniqueness Theorem?
• Solution:
• First rewrite

y′ +

√
t+ 2

(t− 1)
y =

3

(t− 3) (t− 1)

• Where p(t) =
√
t+2

(t−1) and g(t) =
3

(t−3)(t−1) .

• To �nd the largest open interval, we simply need to check the largest open interval containing
the initial value t0 in which both p(t) and g(t) are continuous
• To do this we look for the bad points (non-continuous points) of p and g

• The function p(t) =
√
t+2

(t−1) is continuous whenever t− 1 6= 0 and when t+ 2 ≥ 0

� Thus we must have t 6= 1 and t ≥ −2.
• The function g(t) = 3

(t−3)(t−1) is continuous whenever t− 3 6= 0 and t− 1 6= 0

� Meaning when t 6= 1, 3.
• Both functions are simultaneously continuous (draw a number line to help you �nd out when
p, g are both continuous) on

(−2, 1) ∪ (1, 3) ∪ (3,∞)
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since t0 = 2 falls inside (1, 3) then the solution to this IVP must have a domain as large as

I = (1, 3) ,

by the theorem.
(4) What is the largest open interval in which the solution of the initial value problem{

t2y′ + ln |t− 4| y = t−1
sin t

y(5) = 9.

is guaranteed to exist by the Existence and Uniqueness Theorem?
• Solution:
• First rewrite

y′ +
ln |t− 4|

t2
y =

t− 1

t2 sin t

• The function p(t) = ln|t−4|
t2 is continuous when t 6= 0 and t− 4 6= 0.

� Thus we must have t 6= 0, 4.
• The function g(t) = t−1

t2 sin t is continuous when t 6= 0 and when t 6= ±nπ for any interger n.
� So continuous whenever t 6= 0 and t 6= . . . ,−3π − 2π,−π, 0, π, 2π, 3π . . .

• Note that the problem point 4 is in between π and 2π, that is; π < 4 < 2π!
• Both functions are simultaneously continuous (draw number lines to help you �nd out when
p, g are both continuous) on

· · · ∪ (−2π,−π) ∪ (−π, 0) ∪ (0, π) ∪ (π, 4) ∪ (4, 2π) ∪ · · ·
since t0 = 5 falls inside (4, 2π) then the solution to this IVP must have a domain as large as

I = (4, 2π) ,

by the theorem.
(5) Consider the IVP below

dy

dt
= y1/5, y(0) = 0.

(a) Is this a Linear or nonlinear equation? Can you use Theorem 1 from Section 2.7?
• Solution:
• This is a nonlinear equation, due to the y1/5.
• Theorem 1 from section 2.7 only applies to Linear equations, thus we can't use Theorem 1 for
this IVP.

(a) Using Theorem 2 from Section 2.7 (the general theorem), can you guarantee that there is a
unique solution to this IVP? Why?
• Solution:
• To apply Theorem 2, we need the right hand side equation

f(t, y) = y1/5

to be continuous and we need
∂f

∂y
=

1

5y4/5

to be continous around the point (t0, y0) = (0, 0). But since 1
5y4/5

is not continuous when

y0 = 0, then we cannot guarantee uniqueness of the solution.
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2.7. Problems

(1) Consider the following di�erential equation:

dy

dt
= (y + 2) (y − 1) (y + 5)

(a) Draw a Phase Line. Classify the Equilibrium solutions.
• Solution:

•
(b) Draw all possible sketch of solutions of this di�erential equation.

• Solution:

•
(c) Consider the IVP

dy

dt
= (y + 2) (y − 1) (y + 5) , y(0) = 3.

Let y(t) be the unique solution that solves this IVP. Draw a sketch of y(t) and use it to �nd
limt→∞ y(t) and limt→−∞ y(t)?
• Solution:
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•
(2) Consider the following di�erential equation:

dy

dt
= y (y − 3)

2
(y + 4)

(a) Draw a Phase Line. Classify the Equilibrium solutions.
• Solution:

•
(b) Draw all possible sketch of solutions of this di�erential equation.

• Solution:

•
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(c) Consider the IVP

dy

dt
= y (y − 3)

2
(y + 4) , y(0) = −5.

Let y(t) be the unique solution that solves this IVP. Draw a sketch of y(t) and use it to �nd
limt→∞ y(t) and limt→−∞ y(t)?
• Solution:

•
(d) Consider the IVP

dy

dt
= y (y − 3)

2
(y + 4) , y(0) = 1.

Let y(t) be the unique solution that solves this IVP. Draw a sketch of y(t) and use it to �nd
limt→∞ y(t) and limt→−∞ y(t)?
• Solution:

•
(3) Let y(t) be the unique solution to the IVP given by

dy

dt
= y2 sin y, y(0) = 1.

Draw a Phase Line for the ODE to �nd out limt→∞ y(t) for the unique solution of the IVP above.
• Solution:
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•
(4) Consider the di�erential equation

dy

dt
= f (y)

where f(y) is given by the following graph (in y versus f(y)):

(a) Draw the Phase Line and classify the Equilibrium solutions.
• Solution:
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•
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2.8. Problems

(1) Determine whether each of the following equations are exact. If it is exact, �nd the general implicit
solution in the form ψ(x, y) = C.
(a) (2x+ 3) + (2y − 2) y′ = 0

• Solution:
• Note that M(x, y) = 2x+ 3 and N(x, y) = 2y − 2 and we compute

My = 0

Nx = 0

and since My = Nx then this equation is exact!
• To solve we compute �nd the implicit general solution ψ(x, y) = C.
• By the Theorem from Sec 2.8, we know that we have that

ψx =M =⇒ ψ =

∫
M(x, y)dx

=

∫
(2x+ 3) dx

= x2 + 3x+ h(y)

while

ψy = N =⇒ ψ =

∫
N(x, y)dy

=

∫
(2y − 2) dy

= y2 − 2y + g(x)

• Thus we collect everything that we have missing from the two versions of ψ (without
overcounting) and get

ψ(x, y) = x2 + 3x+ y2 − 2y

• Thus the general implicit solution is given by

x2 + 3x+ y2 − 2y = C.

(b) (2x+ 4y) + (2x− 2y) y′ = 0
• Solution:
• Note that M(x, y) = 2x+ 4y and N(x, y) = 2x− 2y and we compute

My = 4

Nx = 2

and since My 6= Nx then this equation is NOT exact! Hence we can't solve it using the
methods from this section.

(c)
(
3x2 − 2xy + 2

)
dx+

(
6y2 − x2 + 3

)
dy = 0

• Solution:
• Note that M(x, y) = 3x2 − 2xy + 2 and N(x, y) = 6y2 − x2 + 3 and we compute

My = −2x
Nx = −2x
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and since My = Nx then this equation is exact!
• To solve we compute �nd the implicit general solution ψ(x, y) = C.
• By the Theorem from Sec 2.8, we know that we have that

ψx =M =⇒ ψ =

∫
M(x, y)dx

=

∫ (
3x2 − 2xy + 2

)
dx

= x3 − x2y + 2x+ h(y)

while

ψy = N =⇒ ψ =

∫
N(x, y)dy

=

∫ (
6y2 − x2 + 3

)
dy

= 2y3 − x2y + 3y + g(x)

• Thus we collect everything that we have missing from the two versions of ψ (without
overcounting) and get

ψ(x, y) = x3 − x2y + 2x+ 2y3 + 3y

• Thus the general implicit solution is given by

x3 − x2y + 2x+ 2y3 + 3y = C.

(d)
(
2xy2 + 2y

)
+
(
2x2y + 2x

)
y′ = 0

• Solution:
• Note that M(x, y) = 2xy2 + 2y and N(x, y) = 2x2y + 2x and we compute

My = 4xy + 2

Nx = 4xy + 2

and since My = Nx then this equation is exact!
• To solve we compute �nd the implicit general solution ψ(x, y) = C.
• By the Theorem from Sec 2.8, we know that we have that

ψx =M =⇒ ψ =

∫
M(x, y)dx

=

∫ (
2xy2 + 2y

)
dx

= x2y2 + 2xy + h(y)

while

ψy = N =⇒ ψ =

∫
N(x, y)dy

=

∫ (
2x2y + 2x

)
dy

= x2y2 + 2xy + g(x)
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• Thus we collect everything that we have missing from the two versions of ψ (without
overcounting) and get

ψ(x, y) = x2y2 + 2xy

• Thus the general implicit solution is given by

x2y2 + 2xy = C.

(e)
dy

dx
= −ax+ by

bx+ cy
• Solution:
• First we need to rewrite this in the form Mdx+Ndy = 0:

(ax+ by) dx+ (bx+ cy) dy = 0

• Note that M(x, y) = ax+ by and N(x, y) = bx+ cy and we compute

My = b

Nx = b

and since My = Nx then this equation is exact!
• To solve we compute �nd the implicit general solution ψ(x, y) = C.
• By the Theorem from Sec 2.8, we know that we have that

ψx =M =⇒ ψ =

∫
M(x, y)dx

=

∫
(ax+ by) dx

= a
x2

2
+ bxy + h(y)

while

ψy = N =⇒ ψ =

∫
N(x, y)dy

=

∫
(bx+ cy) dy

= bxy + c
y2

2
+ g(x)

• Thus we collect everything that we have missing from the two versions of ψ (without
overcounting) and get

ψ(x, y) = a
x2

2
+ bxy + c

y2

2

• Thus the general implicit solution is given by

a
x2

2
+ bxy + c

y2

2
= C.

(f) (ex sin y + 3y) dx− (3x− ex sin y) dy = 0
• Solution:
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• Note that M(x, y) = ex sin y + 3y and N(x, y) = −3x+ ex sin y and we compute

My = ex cos y + 3

Nx = −3 + ex sin y

and since My 6= Nx then this equation is NOT exact!

(g)
(y
x
+ 6x

)
dx+ (lnx− 2) dy = 0,x > 0

• Solution:
• Note that M(x, y) = y

x + 6x and N(x, y) = lnx− 2 and we compute

My =
1

x

Nx =
1

x

and since My = Nx then this equation is exact!
• To solve we compute �nd the implicit general solution ψ(x, y) = C.
• By the Theorem from Sec 2.8, we know that we have that

ψx =M =⇒ ψ =

∫
M(x, y)dx

=

∫ (y
x
+ 6x

)
dx

= y lnx+ 3x2 + h(y)

while

ψy = N =⇒ ψ =

∫
N(x, y)dy

=

∫
(lnx− 2) dy

= y lnx− 2y + g(x)

• Thus we collect everything that we have missing from the two versions of ψ (without
overcounting) and get

ψ(x, y) = y lnx+ 3x2 − 2y

• Thus the general implicit solution is given by

y lnx+ 3x2 − 2y = C.

(2) Find the implicit particular solution to the initial value problem(
9x2 + y − 1

)
dx− (4y − x) dy = 0, y(1) = 0.

• Solution:
• Note that M(x, y) = 9x2 + y − 1 and N(x, y) = −4y + x and we compute

My = 1

Nx = 1

and since My = Nx then this equation is exact!
• To solve we compute �nd the implicit general solution ψ(x, y) = C.
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• By the Theorem from Sec 2.8, we know that we have that

ψx =M =⇒ ψ =

∫
M(x, y)dx

=

∫ (
9x2 + y − 1

)
dx

= 3x3 + xy − x+ h(y)

while

ψy = N =⇒ ψ =

∫
N(x, y)dy

=

∫
(−4y + x) dy

= −2y2 + xy + g(x)

• Thus we collect everything that we have missing from the two versions of ψ (without over-
counting) and get

ψ(x, y) = 3x3 + xy − x− 2y2

• Thus the general implicit solution is given by

3x3 + xy − x− 2y2 = C.

• To �nd the value of C, we simply use the initial condition y(1) = 0 to get

3 + 0− 1− 0 = C =⇒ C = 2

to get
3x3 + xy − x− 2y2 = 2.

(3) Find the values of b for which the given equation is exact.(
ye2xy + x

)
dx+ bxe2xydy = 0.

• Solution:
• Note that M(x, y) = ye2xy + x and N(x, y) = bxe2xy and we compute

My = e2xy + 2xye2xy

Nx = be2xy + 2ybxe2xy

and for this ODE to be exact we need

My = Nx

hence
e2xy + 2xye2xy = be2xy + 2ybxe2xy

which are equal only when
b = 1.
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2.9. Problems

(1) Find the approximate values of the solution of the given initial value problem at t = 0.1, 0.2, 0.3
and 0.4 using Euler's Method with h = 0.1.

dy

dt
= t+ y, y(0) = 1.

• Solution:
• We make a table:
k tk yk = yk−1 + f (tk−1, yk−1)h f (tk, yk) = tk + yk

0 0 1 0 + 1 = 1
1 0.1 y1 = 1 + 1 · (.1) = 1.1 f (t1, y1) = 0.1 + 1.1 = 1.2
2 0.2 y2 = 1.1 + (1.20) · (.1) = 1.22 f (t2, y2) = 0.2 + 1.22 = 1.42
3 0.3 y3 = 1.22 + (1.42) · (.1) = 1.362 f (t3, y3) = 0.3 + 1.362 = 1.662
4 0.4 y4 = 1.362 + (1.662) · (.1) = 1.5282
• Hence

y(0.1) ≈ 1.1

y(0.2) ≈ 1.22

y(0.3) ≈ 1.362

y(0.4) ≈ 1.5282.

(2) Find the approximate values of the solution of the given initial value problem at t = 0.1, 0.2, 0.3
and 0.4 using Euler's Method with h = 0.05.

dy

dt
= t+ y2, y(0) = 1.

• Solution:
• We make a table:
k tk yk = yk−1 + f (tk−1, yk−1)h f (tk, yk) = tk + y2k
0 0 1 1
1 0.05 y1 = 1.05 f (t1, y1) = 461/400
2 0.1 y2 = 8861/8000 = 1.107625 f (t1, y1) = 12963660/9770377
3 0.15 y3 = 4292730/3656603 f (t1, y1)8658620/5665903
4 0.2 11178230/8939891 1545168/876223
5 0.25 6566530/4905709 3681136/1802965
6 0.3 1099469/763184 84140/35421
7 0.35 7333465/4702731 3211634/1154539
8 0.4 1398466/823357 = 1.69849287733

Hence

y(0.1) ≈ 1.10762

y(0.2) ≈ 1.25037

y(0.3) ≈ 1.44063

y(0.4) ≈ 1.6984
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(3) Find the approximate value of y (2) using Euler's Method with h = 0.5 for the solution of the
following IVP

dy

dt
= y (3− ty) , y(0) = 0.5.

• Solution:
• We make a table:
k tk yk = yk−1 + f (tk−1, yk−1)h f (tk, yk) = yk (3− tkyk)
0 0 0.5 1.5
1 0.5 y1 = 5/4 = 1.25 f (t1, y1) = 95/32
2 1.0 y2 = 175/64 = 2.734375 f (t2, y2) = 2975/4096
3 1.5 y3 = 25375/8192 f (t3, y3) = −21280010/4172981
4 2.0 5435048/9921647 ≈ 0.54779

Hence

y(2) ≈ 0.54779.

(4) Consider the solution y(t) to the IVP:

dy

dt
= y (t+ y) /10, y(0) = 1.

Use the Slope �eld below with Euler's Method (using h = .5) to estimate the value of y(3):

(a)
• Solution:
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•
• Hence from the curve sketch we have that

y(3) ≈ 2.4



CHAPTER 3

Second Order Linear Equations

3.1. Problems

(1) Check if the following function are solutions to the given EQ?
(a) Check directly if y1 = 2e5t is a solution or not to y′′ − 6y′ + 5y = 0?

• Solution:
• To check y1 = 2e5t is a solution to the ODE above we �rst plug y1 into the LHS and set
it Equal to the RHS.

• But before we do, let's �rst start taking some derivatives

y1 = 2e5t

y′1 = 10e5t

y′′1 = 50e5t

and now we can plug this into the LHS:

LHS = y′′1 − 6y′1 + 5y1

=
(
50e5t

)
− 6

(
10e5t

)
+ 5

(
2e5t

)
= 50e5t − 60e5t + 10e5t

= (50− 60 + 10) e5t

= 0,

Now since the RHS of the equation is already

RHS = 0

then since

LHS = RHS

then y1 must be a solution.
(b) Check directly if y2 = 2et is a solution or not to y′′ − 6y′ + 5y = t?

• Solution:
• To check y2 = 2et is a solution to the ODE above we �rst plug y2 into the LHS and set
it Equal to the RHS.

• But before we do, let's �rst start taking some derivatives

y2 = 2et

y′2 = 2et

y′′2 = 2et

53
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and now we can plug this into the LHS:

LHS = y′′1 − 6y′1 + 5y1

=
(
2et
)
− 6

(
2et
)
+ 5

(
2et
)

= 2e5t − 12e5t + 10e5t

= (2− 12 + 10) e5t

= 0,

Now since the RHS of the equation is

RHS = t

then since

LHS 6= RHS

then y2 IS NOT a solution.
(2) Recall from the Lecture Notes, that if y(t) = ert is a solution to the ODE given by

ay′′ + by′ + cy = 0

for constant a, b, c where a 6= 0, then the exponent r in front the t must be a solution to the

characteristic EQ ar2 + br + c = 0.
(a) By yourself, rederive that if y(t) = Aert is a solution to the equation above then the number

r must satisfy the characteristic EQ ar2 + br + c = 0 or A = 0. (Hint: How do we check
something is a solution? Well you just plug it to the LHS and RHS and check if they are
equal!)

• Solution:
• Again, how do we check something is a solution? We plug in y(t) = Aert into the LHS and
RHS and set them equal to each other.

• Let's �rst start taking some derivative:

y(t) = Aert

y′(t) = Arert

y′′(t) = Ar2ert,

• Now plug in y into the LHS

LHS = ay′′ + by′ + cy

= a
(
Ar2ert

)
+ b

(
Arert

)
+ c

(
Aert

)
= aAr2ert + bArert + cAert

=
(
ar2 + br + c

)
Aert

• Now the RHS is

RHS = 0.

• Thus if y is really a solution then LHS = RHS:

LHS = RHS ⇐⇒
(
ar2 + br + c

)
Aert = 0

⇐⇒
(
ar2 + br + c

)
= 0

where I divided both sides by Aert 6= 0.
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• Thus is order for y(t) = Aert to be a solution to the ODE, then r must satisfy the equation

ar2 + br + c = 0,

which from class is called the characteristic equation.
(3) Use the method given in Section 3.1 to �nd the general solution to

y′′ + 5y′ − 6y = 0

• Solution:
• From Section 3.1, in order to the solutions to Linear constant coe�cient ODEs, we

� 1) Solve the characteristic EQ: ar2 + br + c = 0 and say r1, r2 are distinct and real!
� 2) Then it was given to us that the general solution is given by y(t) = c1e

r1t + c2e
r2t.

• First we solve the characteristic EQ:

r2 + 5r − 6 = 0 ⇐⇒ (r + 6) (r − 1) = 0

so that r1 = 1 and r2 = −6.
• Then the general solution is given by

y(t) = c1e
t + c2e

−6t.

(4) Use the method given in Section 3.1 to �nd the general solution to

y′′ − 7y′ = 0

• Solution:
• From Section 3.1, in order to the solutions to Linear constant coe�cient ODEs, we

� 1) Solve the characteristic EQ: ar2 + br + c = 0 and say r1, r2 are distinct and real!
� 2) Then it was given to us that the general solution is given by y(t) = c1e

r1t + c2e
r2t.

• First we solve the characteristic EQ:

r2 − 7r = 0 ⇐⇒ r(r − 7) = 0

so that r1 = 0 and r2 = 7.
• Then the general solution is given by

y(t) = c1e
r1t + c2e

r2t

= c1e
0t + c2e

7t

= c1 + c2e
7t.

(5) Use the method given in Section 3.1 to �nd the particular solution to the IVP

y′′ + y′ − 20y = 0, y(0) = 18, y′(0) = 9

• Solution:
• First we �nd the general solution:

� From Section 3.1, in order to the solutions to Linear constant coe�cient ODEs, we
∗ 1) Solve the characteristic EQ: ar2 + br+ c = 0 and say r1, r2 are distinct and real!
∗ 2) Then it was given to us that the general solution is given by y(t) = c1e

r1t +
c2e

r2t.
• First we solve the characteristic EQ:

r2 + r − 20 = 0 ⇐⇒ (r + 5) (r − 4) = 0

so that r1 = 4 and r2 = −5.
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• Then the general solution is given by

y(t) = c1e
4t + c2e

−5t.

• To �nd the values of c1, c2, we use the initial conditions y(0) = 18, y′(0) = 9:
� But �rst take a derivative:

y(t) = c1e
4t + c2e

−5t

y′(t) = 4c1e
4t − 5c2e

−5t

� Solve for c1, c2:

18 = y(0) = c1 + c2

9 = 4c1 − 5c2

and solving this system we get

c1 = 11, c2 = 7

hence the particular solution is

y(t) = 11e4t + 7e−5t.



3.2. PROBLEMS 57

3.2. Problems

(1) What is the largest open interval in which the solution of the initial value problem{
(t− 3) y′′ + sin ty′ + y = ln(t−1)

t−10
y(15) = −7, y′(15) = 10

is guaranteed to exist by the Existence and Uniqueness Theorem?
• Solution:
• To apply the Existence and Uniqueness Theorem we �rst need to rewrite this Linear equation
in the form

y′′ + p(t)y′ + q(t)y = g(t)

and we get

y′′ +
sin t

(t− 3)
y′ +

1

(t− 3)
y =

ln (t− 1)

(t− 3) (t− 10)

• Where p(t) = sin t
(t−3) , q(t) =

1
(t−3)and g(t) =

ln(t−1)
(t−3)(t−10) .

• To �nd the largest open interval, we simply need to check the largest open interval containing
the initial value t0 in which both p(t), q(t) and g(t) are simultaneously continuous
• To do this we look for the bad points (non-continuous points) of p, q and g
• The function p(t) = sin t

(t−3) is continuous whenever t 6= 3.

� Thus we must have t 6= 3.
• The function q(t) = 1

(t−3) is continuous whenever t 6= 3.

� Thus we must have t 6= 3.

• The function g(t) = ln(t−1)
(t−3)(t−10) is continuous whenever t − 1 > 0 and when t − 10 6= 0 and

t− 3 6= 0
� Meaning when t > 1 and t 6= 3, 10.

• All functions are simultaneously continuous (draw a number line to help you �nd out when
p, q, g are all continuous) on

(1, 3) ∪ (3, 10) ∪ (10,∞)

since t0 = 15 falls inside (10,∞) then the solution to this IVP must have a domain as large as

I = (10,∞) ,

by the theorem.
(2) What is the largest open interval in which the solution of the initial value problem{

t2y′′ + ety′ + (t− 1) y =
√
t+ 2

y(−1) = 1, y′(−1) = 5

is guaranteed to exist by the Existence and Uniqueness Theorem?
• Solution:
• To apply the Existence and Uniqueness Theorem we �rst need to rewrite this Linear equation
in the form

y′′ + p(t)y′ + q(t)y = g(t)

and we get

y′′ +
et

t2
y′ +

(t− 1)

t2
y =

√
t+ 2

t2
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• Where p(t) = et

t2 , q(t) = (t−1)
t2 and g(t) =

√
t+2
t2 .

• To �nd the largest open interval, we simply need to check the largest open interval containing
the initial value t0 in which both p(t), q(t) and g(t) are simultaneously continuous
• To do this we look for the bad points (non-continuous points) of p, q and g

• The function p(t) = et

t2 is continuous whenever t
2 6= 0.

� Thus we must have t 6= 0.

• The function q(t) = (t−1)
t2 is continuous whenever t2 6= 0.

� Thus we must have t 6= 0.

• The function g(t) =
√
t+2
t2 is continuous whenever t+ 2 > 0 and when t2 6= 0.

� Meaning when t > −2 and t 6= 0.
• All functions are simultaneously continuous (draw a number line to help you �nd out when
p, q, g are all continuous) on

(−2, 0) ∪ (0,∞)

since t0 = −1 falls inside (−2, 0) then the solution to this IVP must have a domain as large as

I = (−2, 0) ,

by the theorem.
(3) Consider the equation

y′′ + p(t)y′ + q(t)y = 0,

where p, q are continuous in some interval I. What are the 2 things you have to do by the General
Solution Theorem in order to �nd the general solution to the ODE above
• Solution:
• The general solution theorem says that if y′′ + p(t)y′ + q(t)y = 0 is homogeneous 2nd order
ODE, Then the roadmap to �nding the general solution is:

• 1) Find y1 and y2 that are solution to the ODE above,

• 2) Check that the wronskian W (y1y2) (t) =

∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ is NOT ZERO for at least one

point in the interval I
• Then the general solution is given by

y(t) = c1y1(t) + c2y2(t).

(4) Consider the equation

2t2y′′ + 3ty′ − y = 0, t > 0.

(a) Is the function y1(t) = t
1
2 a solution to this ODE?

• Solution:
• We take derivatives

y1(t) = t
1
2

y′2(t) =
1
2 t
− 1

2

y′3(t) = − 1
4 t
− 3

2
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then plug into the LHS

LHS = 2t2y′′1 + 3ty′1 − y1

= 2t2
(
−1

4
t−

3
2

)
+ 3t

(
1

2
t−

1
2

)
−
(
t
1
2

)
= −1

2
t
1
2 +

3

2
t
1
2 − t 1

2

= 0.

since LHS = 0 then yes!
(b) Is the function y2(t) = t−1 a solution to this ODE?

• Solution:
• We take derivatives

y2(t) = t−1

y′2(t) = −t−2
y′′2 (t) = −t−2.

then plug into the LHS

LHS = 2t2y′′2 + 3ty′2 − y2
= 2t2

(
2t−3

)
+ 3t

(
−t−2

)
−
(
t−1
)

= 4t−1 − 3t−1 − t−1

= 0.

since LHS = 0 then yes!
(c) Use the General Solution Theorem to show that

y(t) = c1t
1
2 + c2t

−1

gives the general solution to the ODE above.
• Solution:
• The General Solution Theorem says
• 1) Find y1 and y2 that are solution to the ODE above.

� Which we already found in parts (a) and (b) that y1(t) = t
1
2 and y2(t) = t−1 are

solutions.

• 2) Check that the wronskian W (y1y2) (t) =

∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ is NOT ZERO for at least

one point in the interval I
� We compute this:

W (y1, y2) =

∣∣∣∣ t
1
2 t−1

1
2 t
− 1

2 −t−2

∣∣∣∣ = −3

2
t−3/2 6= 0

• Then the general solution is given by

y(t) = c1y1(t) + c2y2(t)

and plugging y1, y2in we have

y(t) = c1t
1
2 + c2t

−1



3.3. PROBLEMS 60

3.3. Problems

(1) Find the general solution of the following 2nd Order Linear ODEs with constant coe�cients.
(a) y′′ + 16y = 0

• Solution:
• The characteristic equation is given by

r2 + 16 = 0

and the roots are r1,2 = ±4i.
• For complex solutions, r = λ+ iµ then general solution is given by

y(t) = c1e
λt cos (µt) + c2e

λt sin (µt)

hence the general solution is given by

y(t) = c1e
0t cos (4t) + c2e

0t sin (4t)

= c1 cos (4t) + c2 sin (4t)

(b) y′′ − 4y′ + 9y = 0
• Solution:
• The characteristic equation is given by

r2 − 4r + 9 = 0

• We can always use the quadratic fomula:

r =
−b±

√
b2 − 4ac

2a

=
4±
√
42 − 4 · 1 · 9

2

=
4±
√
16− 36

2

= 2± 1

2

√
−20

= 2± 1

2

√
−4 · 5

= 2± 2
√
5

2
· i

= 2±
√
5i

• For complex solutions, r = λ+ iµ then general solution is given by

y(t) = c1e
λt cos (µt) + c2e

λt sin (µt)

hence the general solution is given by

y(t) = c1e
2t cos

(√
5t
)
+ c2e

2t sin
(√

5t
)
.

(c) y′′ − 4y′ + 29y = 0
• Solution:
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• The characteristic equation is given by

r2 − 4r + 29 = 0

and once can always use the quadratic formula and arrive at r = 2± 5i!
� Another way is to complete the square for a r2 + br + c = 0 and the trick is to use

( b2 )
2 to complete the square.

� Hence b = −4 so we'll use ( b2 )
2 =

(−4
2

)2
= 4 to split 25 into pieces

� That is,

r2 − 4r + 25 = 0 ⇐⇒ r2 − 4r + 4+ 25 = 0

⇐⇒ (r − 2)
2
+ 25 = 0

⇐⇒ (r − 2)
2
= −25

⇐⇒ r − 2 = ±
√
−25

⇐⇒ r − 2 = ±5i
⇐⇒ r = 2± 5i.

• For complex solutions, r = λ+ iµ then general solution is given by

y(t) = c1e
λt cos (µt) + c2e

λt sin (µt)

hence the general solution is given by

y(t) = c1e
2t cos (5t) + c2e

2t sin (5t) .

(2) Find the particular solution to the following IVP:

y′′ − 8y′ + 17y = 0, y(0) = −4, y′(0) = −1.
• Solution:
• The characteristic equation is given by

r2 − 8r + 18 = 0

and the roots are r1,2 = 4± i.
• The general solution and its derivative is given by

y(t) = c1e
4t cos(t) + c2e

4t sin(t),

y′(t) = 4c1e
4t cos(t)− c1e4t sin(t) + 4c2e

4t sin(t) + c2e
4t cos(t)

amd using initial conditions we have

−4 = y(0) = c1

−1 = y′(0) = 4c1 + c2

and hence c1 = −4 and c2 = 15, hence the particular solution to the IVP is given by

y(t) = −4e4t cos(t) + 15e4t sin t.
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3.4. Problems

3.4.1. Part 1; Repeated roots.

(1) Find the general solution of the following 2nd Order Linear ODEs with constant coe�cients.
(a) y′′ + 14y′ + 49y = 0

• Solution:
• The characteristic equation is given by

r2 + 14r + 49 = 0 ⇐⇒ (r + 7)2 = 0

and the roots are r1,2 = −7,−7 real and repeated
• For repeated real roots, then general solution is given by

y(t) = c1e
r1t + c2te

r1t

hence the general solution is given by

y(t) = c1e
−7t + c2te

−7t.

(b) y′′ − 18y′ + 81y = 0
• Solution:
• The characteristic equation is given by

r2 − 18r + 81 = 0 ⇐⇒ (r − 9)2 = 0

and the roots are r1,2 = 9, 9 real and repeated
• For repeated real roots, then general solution is given by

y(t) = c1e
9t + c2te

9t

hence the general solution is given by

y(t) = c1e
9t + c2te

9t.

(2) Find the particular solution to the following IVP:

y′′ − 4y′ + 4y = 0, y(0) = 12, y′(0) = −3.

• Solution:
• The characteristic equation is given by

r2 − 4r + 4 = 0

and the roots are r1,2 = 2, 2, real and repeated
• The general solution and its derivative is given by

y(t) = c1e
2t + c2te

2t

y′(t) = 2c1e
2t + c2e

2t + 2c2te
2t

amd using initial conditions we have

12 = y(0) = c1

−3 = y′(0) = 2c1 + c2

and hence c1 = 12 and c2 = −27, hence the particular solution to the IVP is given by

y(t) = 12e2t − 27te2t.
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3.4.2. Part 2; the method of reduction of order.

(1) Suppose you know that y1(t) = t is a solution to

t2y′′ − 3ty′ + 3y = 0, t > 0.

Find a second solution y2(t) that makes y = c1y1 + c2y2 the general solution of this ODE.
• Solution:
• Step 1: Use method of reduction of order to make guess y2(t) = v(t)y1(t) and take its
derivatives.

y2 = vt

y′2 = v′t+ v

y′′2 = v′′t+ v′ + v′ = v′′t+ 2v′

• Step 2: Plug y2 into LHS and simplify as much as possible.

LHS = t2y′′2 − 3ty′2 + 3y2

= t2 (v′′t+ 2v′)− 3t (v′t+ v) + 3 (vt)

= t3v′′ + 2t2v′ − 3t2v′ − 3tv + 3tv

= t3v′′ − t2v′.
• Step 3: Set LHS equal to zero and obtain an equation of the form a(t)v′′+b(t)v′ = 0. Namely

t3v′′ − t2v′ = 0.

Solve for v by making the substitution w = v′ (and use w′ = v′′) to get

t3w′ − t2w = 0.

and you can solve this as a 1st Order Linear, or 1st Order separable. I'll use that fact that its
separable:

t3w′ − t2w = 0 ⇐⇒ t3
dw

dt
= t2w

⇐⇒
∫
dw

w
=

∫
dt

t

⇐⇒ lnw = ln t+ k1

⇐⇒ w = k2t

and plugging w = v′ back in we get

w = k2t ⇐⇒ v′ = k2t

⇐⇒ v =
k2
2
t2 + k3.

Choosing k2 = 2 and k3 = 0 we get the simplest nontrivial v to be

v = t2.

• Step 4: Plug v back into y2:

y2 = vt = t2t = t3.

Hence the general solution to this equation is given by

y(t) = c1t+ c2t
3.
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(2) Suppose you know that y1(t) = t−1 is a solution to

2t2y′′ + ty′ − 3y = 0, t > 0.

Find a second solution y2(t) that makes y = c1y1 + c2y2 the general solution of this ODE.
• Solution:
• Step 1: Use method of reduction of order to make guess y2(t) = v(t)y1(t) and take its
derivatives.

y2 = vt−1

y′2 = v′t−1 − vt−2

y′′2 = v′′t−1 − v′t−2 − v′t−2 + 2vt−3

= v′′t−1 − 2v′t−2 + 2vt−3

• Step 2: Plug y2 into LHS and simplify as much as possible.

LHS = 2t2y′′2 + ty′2 − 3y2

= 2t2
(
v′′t−1 − 2v′t−2 + 2vt−3

)
+ t
(
v′t−1 − vt−2

)
− 3

(
vt−1

)
= v′′2t− 4v′ + 4t−1v + v′ − vt−1 − 3vt−1

= 2tv′′ − 3v′.

• Step 3: Set LHS equal to zero and obtain an equation of the form a(t)v′′+b(t)v′ = 0. Namely

2tv′′ − 3v′ = 0.

Solve for v by making the substitution w = v′ (and use w′ = v′′) to get

2tw′ − 3w = 0.

and you can solve this as a 1st Order Linear, or 1st Order separable. I'll use that fact that its
separable:

2tw′ − 3w = 0 ⇐⇒ 2t
dw

dt
= 3w

⇐⇒
∫
dw

w
=

3

2

∫
dt

t

⇐⇒ lnw =
3

2
ln t+ k1

⇐⇒ w = ek1e
3
2 ln t

⇐⇒ w = k2t
3/2

and plugging w = v′ back in we get

w = k2t
3/2 ⇐⇒ v′ = k2t

3/2

⇐⇒ v = k2
2

5
t5/2 + k3.

Choosing k2 = 5/2 and k3 = 0 we get the simplest nontrivial v to be

v = t5/2.



3.4. PROBLEMS 65

• Step 4: Plug v back into y2:

y2 = t5/2t−1 = t5/2t−1 = t3/2.

Hence the general solution to this equation is given by

y(t) = c1t
−1 + c2t

3/2.

(3) Suppose you know that y1(t) = t is a solution to

t2y′′ + 2ty′ − 2y = 0, t > 0.

Find a second solution y2(t) that makes y = c1y1 + c2y2 the general solution of this ODE.
• Solution:
• Step 1: Use method of reduction of order to make guess y2(t) = v(t)y1(t) and take its
derivatives.

y2 = vt

y′2 = v′t+ v

y′′2 = v′′t+ v′ + v′ = v′′t+ 2v′

• Step 2: Plug y2 into LHS and simplify as much as possible.

LHS = t2y′′2 + 2ty′2 − 2y2

= t2 (v′′t+ 2v′) + 2t (v′t+ v)− 2 (vt)

= v′′t3 + 2t2v′ + v′2t2 + v2t− 2vt

= v′′t3 + 4t2v′.

• Step 3: Set LHS equal to zero and obtain an equation of the form a(t)v′′+b(t)v′ = 0. Namely

v′′t3 + 4t2v′ = 0.

Solve for v by making the substitution w = v′ (and use w′ = v′′) to get

t3w′ + 4t2w = 0.

and you can solve this as a 1st Order Linear, or 1st Order separable. I'll use that fact that its
separable:

t3w′ + 4t2w = 0 ⇐⇒ t3
dw

dt
= −4t2w

⇐⇒ dw

w
= −4

t
dt

⇐⇒ lnw = −4 ln t+ k1

⇐⇒ w = e−4 ln t+k1

⇐⇒ w = ek1e−4 ln t

⇐⇒ w = k2t
−4

and plugging w = v′ back in we get

w = k2t
−4 ⇐⇒ v′ = k2t

−4

⇐⇒ v =
k2
−3

t−3 + k3
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Choosing k2 = −3 and k3 = 0 we get the simplest nontrivial v to be

v = t−3.

• Step 4: Plug v back into y2:

y2 = vt = t−3t = t−2.

Hence the general solution to this equation is given by

y(t) = c1t+ c2t
−2.

(4) Suppose you know that y1(t) = t2 is a solution to

t2y′′ − 3ty′ + 4y = 0, t > 0.

Find a second solution y2(t) that makes y = c1y1 + c2y2 the general solution of this ODE.
• Solution:
• Step 1: Use method of reduction of order to make guess y2(t) = v(t)y1(t) and take its
derivatives.

y2 = vt2

y′2 = v′t2 + 2vt

y′′2 = v′′t2 + 2v′t+ 2v′t+ 2v

= v′′t2 + 4v′t+ 2v

• Step 2: Plug y2 into LHS and simplify as much as possible.

LHS = t2y′′2 − 3ty′2 + 4y2

= t2
(
v′′t2 + 4v′t+ 2v

)
− 3t

(
v′t2 + 2vt

)
+ 4

(
vt2
)

= v′′t4 + 4v′t3 + 2vt2 − 3v′t3 − 6vt2 + 4vt2

= v′′t4 + v′t3

• Step 3: Set LHS equal to zero and obtain an equation of the form a(t)v′′+b(t)v′ = 0. Namely

v′′t4 + v′t3 = 0.

Solve for v by making the substitution w = v′ (and use w′ = v′′) to get

t4w′ + t3w = 0.

and you can solve this as a 1st Order Linear, or 1st Order separable. I'll use that fact that its
separable:

t4w′ + t3w = 0 ⇐⇒ t4w′ + t3w

⇐⇒ dw

w
= −1

t
dt

⇐⇒ lnw = − ln t+ k1

⇐⇒ w = e− ln t+k1

⇐⇒ w = ek1e− ln t

⇐⇒ w = k2t
−1
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and plugging w = v′ back in we get

w = k2t
−1 ⇐⇒ v′ = k2t

−1

⇐⇒ v = k2 ln t+ k3

Choosing k2 = 1 and k3 = 0 we get the simplest nontrivial v to be

v = ln t.

• Step 4: Plug v back into y2:

y2 = vt2 = t2 ln t.

Hence the general solution to this equation is given by

y(t) = c1t
2 + c2t

2 ln t.
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3.5. Problems

(1) Consider the following non-homogeneous 2nd order ODE:

y′′ + y′ − 2y = e3t.

(a) Find the General Solution
• Solution:
• Step1: Find yh(t) , which is simply the general solution to the homogeneous EQ,

y′′ + y′ − 2y = 0

but we learned that we must solve the characteristic polynomial r2+ r− 2 = (r+2)(r−
1) = 0 and get r = −2, 1 so that the solution is

yh(t) = c1e
−2t + c2e

t.

• Step2: We �nd yp(t) by making our guess and to �nd the undertermined coe�cient.
� 1st Guess: (always based on the general form of the RHS= g(t))
∗ Since the RHS = e3t, we let yp(t) = Ae3t.

� 2nd Guess? To make sure we don't need to second guess. We check that there are
no repeats with yh. Since Ae3t is not already part of yh = e−2t + c2e

t, then we
made the correct guess.

� We want to �nd what the value of A is. We need to plug this into the LHS. So we
start by taking derivatives:

yp = Ae3t,

y′p = 3Ae3t

y′′p = 9Ae3t

• Step3: Set the LHS equal to the RHS and solve for A to get. Plug yp into the LHS:

LHS = y′′p + y′p − 2yp =
(
9Ae3t

)
+
(
3Ae3t

)
− 2

(
Ae3t

)
= 10Ae3t

• Setting LHS = RHSwe have

LHS = RHS

10Ae3t = e3t

so that A = 1
10 .

• Step4: Plug A back in and get yp(t) =
1
10e

3t and a general solution of

y(t) = yh + yp.

y(t) = c1e
−2t + c2e

t +
1

10
e3t.

(b) Find the particular solution to the IVP:

y′′ + y′ − 2y = e3t, y(0) =
1

10
, y′(0) =

13

10
.

• Solution:
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• By Part (a), we know the general solution is given by

y(t) = c1e
−2t + c2e

t +
1

10
e3t,

y′(t) = −2c1e−2t + c2e
t +

3

10
e3t.

Using the initial conditions we have

1

10
= y(0) = c1 + c2 +

1

10
13

10
= y′(0) = −2c1 + c2 +

3

10

the equations reduce to

0 = c1 + c2

1 = −2c1 + c2

and you get c1 = − 1
3 and c2 = 1

3 so that the particular solution to the IVP is

y(t) = −1

3
e−2t +

1

3
et +

1

10
e3t.

(2) Find the general solution to the following non-homogeneous 2nd order ODE:

y′′ − 2y′ + 2y = e2t.

• Solution:
• Step1: Find yh(t) , which is simply the general solution to the homogeneous EQ,

y′′ − 2y′ + 2y = 0

but we learned that we must solve the characteristic polynomial r2 − 2r + 2 = 0 and get
r = 1± i so that the solution is

yh(t) = c1e
t cos t+ c2e

t sin t.

• Step2: We �nd yp(t) by making our guess and to �nd the undertermined coe�cient.
� 1st Guess: (always based on the general form of the RHS= g(t))

∗ Since the RHS = e2t, we let yp(t) = Ae2t.
� 2nd Guess? To make sure we don't need to second guess. We check that there are no
repeats with yh. Since Ae

2t is not already part of yh(t) = c1e
t cos t+ c2e

t sin t, then we
made the correct guess.

� We want to �nd what the value of A is. We need to plug this into the LHS. So we start
by taking derivatives:

yp = Ae2t,

y′p = 2Ae2t

y′′p = 4Ae2t

• Step3: Set the LHS equal to the RHS and solve for A to get. Plug yp into the LHS:

LHS = y′′p − 2y′p + 2yp =
(
4Ae2t

)
− 2

(
2Ae2t

)
+ 2

(
Ae2t

)
= 4Ae2t − 4Ae2t + 2Ae2t

= 2Ae2t
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• Setting LHS = RHSwe have

LHS = RHS

2Ae2t = e2t

so that A = 1
2 .

• Step4: Plug A back in and get yp(t) =
1
2e

2t and a general solution of

y(t) = yh + yp.

y(t) = c1e
t cos t+ c2e

t sin t+
1

2
e2t.

(3) Find the general solution to the following non-homogeneous 2nd order ODE:

y′′ − 4y′ + 3y = 4e3t.

• Solution:
• Step1: Find yh(t) , which is simply the general solution to the homogeneous EQ,

y′′ − 4y′ + 3y = 0

but we learned that we must solve the characteristic polynomial r2−4r+3 = (r − 1) (r − 3) = 0
and get r = 1, 3 so that the solution is

yh(t) = c1e
t + c2e

3t.

• Step2: We �nd yp(t) by making our guess and to �nd the undertermined coe�cient.
� 1st Guess: (always based on the general form of the RHS= g(t))

∗ Since the RHS = 4e3t, we let yp(t) = Ae3t.
� 2nd Guess? To make sure we don't need to second guess. We check that there are no
repeats with yh. Since Ae

3t IS already part of yh(t) = c1e
t + c2e

3t, then we need to
guess.
∗ 2nd Guess (when second guessing, multiply by t): yp(t) = Ate3t.

� 3rd Guess? To make sure we don't need to third guess. We check that there are no
repeats with yh. Since Ate3t IS NOT already part of yh(t) = c1e

t + c2e
3t, then we

made the right guess here.
� We want to �nd what the value of A is. We need to plug this into the LHS. So we start
by taking derivatives:

yp = Ate3t,

y′p = Ae3t + 3Ate3t

y′′p = 3Ae3t + 3Ae3t + 9Ate3t

= 6Ae3t + 9Ate3t

• Step3: Set the LHS equal to the RHS and solve for A to get. Plug yp into the LHS:

LHS = y′′p − 4y′p + 3yp =
(
6Ae3t + 9Ate3t

)
− 4

(
Ae3t + 3Ate3t

)
+3
(
Ate3t

)
= 6Ae3t + 9Ate3t − 4Ae3t − 12Ate3t + 3Ate3t

= 2Ae3t
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• Setting LHS = RHSwe have

LHS = RHS

2Ae3t = 4e3t

so that A = 2.
• Step4: Plug A back in and get yp(t) = Ate3t = 2te3t and a general solution of

y(t) = yh + yp.

y(t) = c1e
t + c2e

3t + 2te3t.

(4) Find the general solution to the following non-homogeneous 2nd order ODE:

y′′ − 2y′ + y = et.

• Solution:
• Step1: Find yh(t) , which is simply the general solution to the homogeneous EQ,

y′′ − 2y′ + y = 0

but we learned that we must solve the characteristic polynomial r2−2r+1 = (r − 1) (r − 1) = 0
and get r = 1, 1 (repeated real) so that the solution is

yh(t) = c1e
t + c2te

t.

• Step2: We �nd yp(t) by making our guess and to �nd the undertermined coe�cient.
� 1st Guess: (always based on the general form of the RHS= g(t))

∗ Since the RHS = et, we let yp(t) = Aet.
� 2nd Guess? To make sure we don't need to second guess. We check that there are no
repeats with yh. Since Aet IS already part of yh(t) = c1e

t + c2te
t, then we need to

second guess.
∗ 2nd Guess (when second guessing, multiply by t): yp(t) = Atet.

� 3rd Guess? To make sure we don't need to third guess. We check that there are no
repeats with yh. Since Ate

t IS already part of yh(t) = c1e
t + c2te

t, nhen we need to
guess again
∗ 3rd Guess (when second guessing, multiply previous guess by t): yp(t) = At2et.

� We want to �nd what the value of A is. We need to plug this into the LHS. So we start
by taking derivatives:

yp = At2et,

y′p = 2Atet +At2et

y′′p = 2Aet + 2Atet + 2Atet +At2et

= 2Aet + 4Atet +At2et

• Step3: Set the LHS equal to the RHS and solve for A to get. Plug yp into the LHS:

LHS = y′′p − 2y′p + yp =
(
2Aet + 4Atet +At2et

)
− 2

(
2Atet +At2et

)
+
(
At2et

)
= 2Aet + 4Atet +At2et − 4Atet − 2At2et

+At2et

= 2Aet
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• Setting LHS = RHSwe have

LHS = RHS

2Aet = et

so that A = 1
2 .

• Step4: Plug A back in and get yp(t) = At2et = 1
2 t

2et and a general solution of

y(t) = yh + yp.

y(t) = c1e
t + c2te

t +
1

2
t2et.

(5) Find the general solution to the following non-homogeneous 2nd order ODE:

y′′ + y′ − 6y = 52 cos (2t) .

• Solution:
• Step1: Find yh(t) , which is simply the general solution to the homogeneous EQ,

y′′ + y′ − 6y = 0

but we learned that we must solve the characteristic polynomial r2+r−6 = (r + 3) (r − 2) = 0
and get r = −3, 2 so that the solution is

yh(t) = c1e
−3t + c2e

2t

• Step2: We �nd yp(t) by making our guess and to �nd the undertermined coe�cient.
� 1st Guess: (always based on the general form of the RHS= g(t))

∗ Since the RHS = 52 cos (2t), we let yp(t) = A cos (2t) +B sin (2t).
� 2nd Guess? To make sure we don't need to second guess. We check that there are no
repeats with yh. Since A cos (2t)+B sin (2t) is not already part of yh(t) = c1e

−3t+c2e
2t,

then we made the correct guess.
� We want to �nd what the value of A,B is. We need to plug this into the LHS. So we
start by taking derivatives:

yp = A cos (2t) +B sin (2t) ,

y′p = −2A sin (2t) + 2B cos (2t)

y′′p = −4A cos (2t)− 4B sin (2t)

• Step3: Set the LHS equal to the RHS and solve for A to get. Plug yp into the LHS:

LHS = y′′p + y′p − 6yp = (−4A cos (2t)− 4B sin (2t))

+ (−2A sin (2t) + 2B cos (2t))

−6 (A cos (2t) +B sin (2t))

= (−10A+ 2B) cos (2t) + (−2A− 10B) sin (2t)

• Setting LHS = RHSwe have

LHS = RHS

(−10A+ 2B) cos (2t) + (−2A− 10B) sin (2t) = 52 cos (2t) + 0 · sin(2t)
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so that you have to solve

52 = −10A+ 2B

0 = −2A− 10B

and solving this system we get

A = −5, B = 1.

• Step4: Plug A,B back in and get yp(t) = −5 cos (2t) + sin (2t) and a general solution of

y(t) = yh + yp.

y(t) = c1e
−3t + c2e

2t +−5 cos (2t) + sin (2t) .

(6) Find the general solution to the following non-homogeneous 2nd order ODE:

y′′ + 2y′ + 3y = sin (t) .

• Solution:
• Step1: Find yh(t) , which is simply the general solution to the homogeneous EQ,

y′′ + 2y′ + 3y = 0

and get

yh(t) = c1e
−t sin

(√
2t
)
+ c2e

−t cos
(√

2t
)

• Step2: We �nd yp(t) by making our guess and to �nd the undertermined coe�cient.
� 1st Guess: (always based on the general form of the RHS= g(t))

∗ Since the RHS = sin (t), we let yp(t) = A cos (t) +B sin (t).
� 2nd Guess? To make sure we don't need to second guess. We check that there are no

repeats with yh. Since A cos (t)+B sin (t) is not already part of yh(t) = c1e
−t sin

(√
2t
)
+

c2e
−t cos

(√
2t
)
, then we made the correct guess.

� We want to �nd what the value of A,B is. We need to plug this into the LHS. So we
start by taking derivatives:

yp = A cos (t) +B sin (t) ,

y′p = −A sin (t) +B cos (t)

y′′p = −A cos (t)−B sin (t)

• Step3: Set the LHS equal to the RHS and solve for A to get. Plug yp into the LHS:

LHS = y′′p + 2y′p + 3yp = DO WORK

= −A cos (t)−B sin (t)

−2A sin (t) + 2B cos (t)

+3A cos (t) + 3B sin (t)

= (2A+ 2B)A cos (t) + (−2A+ 2B)B sin (t)

• Setting LHS = RHSwe have

LHS = RHS

FROM STEP 2 = 0 cos (t) + sin (t)

(2A+ 2B)A cos (t) + (−2A+ 2B)B sin (t) = 0 cos (t) + sin (t)
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set up a system of equations

2A+ 2B = 0

−2A+ 2B = 1

and solving this system we get

A = −1/4, B = 1/4.

• Step4: Plug A,B back in and get yp(t) = − 1
4 cos (t) +

1
4 sin (t) and a general solution of

y(t) = yh + yp.

y(t) = c1e
−t sin

(√
2t
)
+ c2e

−t cos
(√

2t
)
− 1

4
cos (t) +

1

4
sin (t) .

(7) For the following ODEs. Use the method of undertermined coe�cients (MOUC) to make the correct
guess for the yp. You DO NOT have to solve for the coe�cients, A,B,C . . . . Simply make the
correct guess for the yp.
(a) y′′ − 2y′ + y = tet

• Solution:
• Step1: Find yh(t) , which is simply the general solution to the homogeneous EQ,

y′′ − 2y′ + y = 0

but we learned that we must solve the characteristic polynomial r2−2r+1 = (r − 1) (r − 1) =
0 and get r = 1, 1 (repeated real) so that the solution is

yh(t) = c1e
t + c2te

t.

• Step2:
• 1st Guess:(based on RHS) yp = (At+B) et

• 2nd Guess: (based on if there are repeats with yh) yp =
(
At2 +Bt

)
et

• 3rd Guess: (based on if there are repeats with yh) yp =
(
At3 +Bt2

)
et,

� Since there no repeats with yh then this is the �nal guess.
(b) y′′ + y′ − 2y = t2et

• Solution:
• Step1: Find yh(t) , which is simply the general solution to the homogeneous EQ,

y′′ + y′ − 2y = 0

but we learned that we must solve the characteristic polynomial r2+ r− 2 = (r+2)(r−
1) = 0 and get r = −2, 1 so that the solution is

yh(t) = c1e
−2t + c2e

t.

• Step2:
• 1st Guess:(based on RHS) yp =

(
At2 +Bt+ C

)
et

• 2nd Guess: (based on if there are repeats with yh) yp =
(
At3 +Bt2 + Ct

)
et

� Since there no repeats with yh then this is the �nal guess.
(c) y′′ + y′ = t2 + cos t

• Solution:
• Step1: Find yh(t) , which is simply the general solution to the homogeneous EQ,

y′′ + y′ = 0
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but we learned that we must solve the characteristic polynomial r2 + r = r(r + 1) = 0
and get r = 0,−1 so that the solution is

yh(t) = c1e
0t + c2e

−t.

= c1 + c2e
−t

• Step2:
• 1st Guess:(based on RHS) yp =

(
At2 +Bt+ C

)
+ (D cos t+ E sin t)

• 2nd Guess: (based on if there are repeats with yh) yp = yp =
(
At3 +Bt2 + Ct

)
+

(D cos t+ E sin t)
� Since there no repeats with yh then this is the �nal guess.

(d) y′′ + y′ − 6y = e5t + sin(3t)
• Solution:
• Step1: Find yh(t) , which is simply the general solution to the homogeneous EQ,

y′′ + y′ − 6y = 0

but we learned that we must solve the characteristic polynomial r2+r−6 = (r + 3) (r − 2) =
0 and get r = −3, 2 so that the solution is

yh(t) = c1e
−3t + c2e

2t

• Step2:
• 1st Guess:(based on RHS) yp = Ae5t + (B cos 3t+ C sin 3t)

� Since there no repeats with yh then this is the �nal guess.
(e) y′′ + y′ − 2y = tet + t2

• Solution:
• Step1: Find yh(t) , which is simply the general solution to the homogeneous EQ,

y′′ + y′ − 2y = 0

but we learned that we must solve the characteristic polynomial r2+ r− 2 = (r+2)(r−
1) = 0 and get r = −2, 1 so that the solution is

yh(t) = c1e
−2t + c2e

t.

• Step2:
• 1st Guess:(based on RHS) yp = (At+B) et +

(
Ct2 +Dt+ E

)
• 2nd Guess: (based on if there are repeats with yh) yp =

(
At2 +Bt

)
et+

(
Ct2 +Dt+ E

)
� Since there no repeats with yh then this is the �nal guess.
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3.6. Problems

(1) Consider the following ODE

y′′ + 16y =
1

sin (4t)
.

(a) Find a particular solution to the ODE above using the method of variation of parameters.
• Solution:
• Step1: First �nd yh is possible. In this case yh will be given by solving the characteristic
equation r2 + 16 = 0 so that r = ±4i hence

yh(t) = c1 cos(4t) + c2 sin (4t) .

Thus y1(t) = cos (4t) and y2(t) = sin (4t).
• Step2: Find the Wronskian:

W (y1, y2)(t) =

∣∣∣∣ cos(4t) sin (4t)
−4 sin(4t) 4 cos(4t)

∣∣∣∣
= 4 cos2(4t) + 4 sin2(4t)

= 4
[
cos2(4t) + sin2(4t)

]
= 4 · 1 = 4.

• Step3: Use our formula with g(t) = 1
sin(3t) and get

yp(t) = −y1(t)
[∫

y2(t)g(t)

W (y1, y2) (t)
dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)
dt

]
= − cos(4t)

[∫
1

4

sin (4t)

sin (4t)
dt

]
+ sin (4t)

[∫
cos(4t)

4

1

sin (4t)
dt

]
= − cos(4t)

[∫
1

4
dt

]
+ sin (4t)

[
1

4

∫
cos(4t)

sin (4t)
dt

]
= − cos(4t)

[
t

4

]
+

1

4
sin (4t)

[∫
cos(4t)

sin (4t)
dt

]
now since

∫ cos(4t)
sin(4t) dt =

∫
cot (4t)dt you can remember the antiderivative of

∫
cot (u) dt =

ln (sinu) + C
• Or use can use u-substitution with u = sin(4t) and get du = 4 cos(4t)dt so that∫

cos(4t)

sin (4t)
dt =

∫
1

u

du

4
=

1

4
ln |u|+ C

=
1

4
ln |sin(4t)|+ C

hence taking C = 0,

yp(t) = − cos(4t)

[
t

4

]
+

1

4
sin (4t)

[
1

4
ln |sin(4t)|

]
= − t

4
cos(4t) +

1

16
sin (4t) ln |sin(4t)|

(b) What is the general solution to the ODE above.
• Solution:
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• Then general solution is given by

y(t) = yh + yp

= c1 cos(4t) + c2 sin (4t)

− t

4
cos(4t) +

1

16
sin (4t) ln |sin(4t)| .

(2) Find the general solution to

t2y′′ − 4ty′ + 6y = t3, t > 0

given that
y1(t) = t2, y2(t) = t3

forms a fundamental set of solution for the corresponding homogeneous di�erential equation.
• Solution:
• Step1: Since y1(t) = t2, y2(t) = t3 forms a fundamental set of solution, this means that the
general solution for the homogeneous equation is

yh = c1t
2 + c2t

3.

• Step2: Find the Wronskian:

W (y1, y2)(t) =

∣∣∣∣ t2 t3

2t 3t2

∣∣∣∣
= 3t4 − 2t4 = t4 6= 0,

• Step3: Rewrite the equation in the form y′′ + p(t)y′ + q(t)y = g(t) and hence

y′′ − 4

t
y′ +

6

t2
y = t,

Use our formula with g(t) = t and get

yp(t) = −y1(t)
[∫

y2(t)g(t)

W (y1, y2) (t)
dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)
dt

]
= −t2

[∫
t3 · t
t4

dt

]
+ t3

[∫
t2 · t
t4

dt

]
= −t2

[∫
dt

]
+ t3

[∫
1

t
dt

]
= −t2 [t] + t3 [ln t]

= −t3 + t3 ln t

hence the general solution is

y(t) = yh + yp

= c1t+ c2t
3 − t3 + t3 ln t.

(3) Find the general solution to

t2y′′ − 3ty′ + 3y = 8t3, t > 0

given that
y1(t) = t, y2(t) = t3

forms a fundamental set of solution for the corresponding homogeneous di�erential equation.
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• Solution:
• Step1: Since y1(t) = t, y2(t) = t3 forms a fundamental set of solution, this means that the
general solution for the homogeneous equation is

yh = c1t+ c2t
3.

• Step2: Find the Wronskian:

W (y1, y2)(t) =

∣∣∣∣ t t3

1 3t2

∣∣∣∣
= 3t3 − t3 = 2t3 6= 0,

• Step3: Rewrite the equation in the form y′′ + p(t)y′ + q(t)y = g(t) and hence

y′′ − 3

t
y′ +

3

t2
y = 8t, .

Use our formula with g(t) = 8t and get

yp(t) = −y1(t)
[∫

y2(t)g(t)

W (y1, y2) (t)
dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)
dt

]
= −t

[∫
t3

2t3
8tdt

]
+ t3

[∫
t

2t3
8tdt

]
= −t

[∫
4tdt

]
+ t3

[∫
4

t
dt

]
= −t

[
2t2
]
+ t3 [4 ln t]

= −2t3 + 4t3 ln t

hence the general solution is

y(t) = yh + yp

= c1t+ c2t
3 − 2t3 + 4t3 ln t.

(4) Find the general solution to

2t2y′′ + ty′ − 3y = 2t5/2, t > 0

given that

y1(t) = t−1, y2(t) = t3/2

forms a fundamental set of solution for the corresponding homogeneous di�erential equation.
• Solution:
• Step1: Since y1(t) = t, y2(t) = t−2 forms a fundamental set of solution, this means that the
general solution for the homogeneous equation is

yh = c1t
−1 + c2t

3/2.
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• Step2: Find the Wronskian:

W (y1, y2)(t) =

∣∣∣∣ t−1 t3/2

−t−2 3
2 t

1/2

∣∣∣∣
= t−1

3

2
t1/2 − t3/2

(
−t−2

)
=

3

2
t−1/2 + t−1/2

=
5

2
t−1/2

• Step3: Rewrite the equation in the form y′′ + p(t)y′ + q(t)y = g(t) and hence

y′′ +
1

2t
y′ − 3

2t2
y =

2t5/2

2t2
= t1/2.

Use our formula with g(t) = t1/2 and get

yp(t) = −y1(t)
[∫

y2(t)g(t)

W (y1, y2) (t)
dt

]
+ y2(t)

[∫
y1(t)g(t)

W (y1, y2) (t)
dt

]
= −t−1

[∫
t3/2

5
2 t
−1/2 t

1/2dt

]
+ t3/2

[∫
t−1

5
2 t
−1/2 t

1/2dt

]
= −t−1

[∫
2

5
t2t1/2dt

]
+ t3/2

[∫
2

5
t−1/2t1/2dt

]
= −t−1

[∫
2

5
t5/2dt

]
+ t3/2

[∫
2

5
dt

]
= −t−1

[
2

5

2

7
t7/2

]
+ t3/2

[
2

5
t

]
= − 4

35
t5/2 +

2

5
t5/2

=
10

35
t5/2

=
2

7
t5/2

hence the general solution is

y(t) = yh + yp

= c1t
−1 + c2t

3/2 +
2

7
t5/2.
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3.7. Problems

(1) A 64 lb mass stretches a spring 4 feet. The mass is displaced an additional 5 feet. and then released;
and is in a medium with a damping coe�cients γ = 7 lb sec

ft
. Suppose there is no external forcing.

Formulate the IVP that governs the motion of this mass:
• Solution:

� Find m: w = mg which implies

m =
w

g
=

64 lb

32 ft/s^2
= 2

lbs2

ft

� Find γ: Given

γ = 7
lb sec

ft
.

� Find k:

k =
mg

L
=

64 lb

4ft
= 16

lb

ft
.

� Thus the IVP is given by

2u′′ + 7u′ + 16u = 0, u(0) = 5, u′(0) = 0

(2) A 32 lb mass stretches a spring 4 feet. The mass is displaced an additional 6 feet. and then released
with an initial velocity of 3 ft

sec
; and is in a medium with a damping coe�cients γ = 2 lb sec

ft
. Suppose

there is an external forcing due to wind given by F (t) = 3 cos (3t). Formulate the IVP that governs
the motion of this mass:
• Solution:

� Find m: w = mg which implies

m =
w

g
=

32 lb

32 ft/s^2
= 1

lbs2

ft

� Find γ: Given

γ = 2
lb sec

ft
.

� Find k:

k =
mg

L
=

32 lb

4ft
= 8

lb

ft
.

� Thus the IVP is given by

u′′ + 2u′ + 8u = 3 cos (3t) , u(0) = 6, u′(0) = 3.

(3) Consider the following undamped harmonic oscillator with forcing:

u′′ + 5u = sin (3t) , u(0) = 0, u′(0) = 0.

What is the natural frequency? What is the frequency for the external force? Will you get
resonance? What is your guess for up?
• Solution:
• Recall that r2 + 5 = 0 so r = ±

√
5i, so that

uh(t) = c1 cos
(√

5t
)
+ c2 sin

(√
5t
)
.

• Thus the Natural Frequency is ω0 =
√
5.

• The External Frequency from sin (3t) is ω = 3. Since they don't match, then we will not
get resonance.



3.7. PROBLEMS 81

• Thus our guess for up is

up = A cos (3t) +B sin (3t) .

(4) Consider the following undamped harmonic oscillator with forcing:

u′′ + 16u = 7 cos (4t) , u(0) = 0, u′(0) = 0.

What is the natural frequency? What is the frequency for the external force? Will you get
resonance? What is your guess for up?
• Solution:
• Recall that r2 + 16 = 0 so r = ±4i, so that

uh(t) = c1 cos (4t) + c2 sin (4t) .

• Thus the Natural Frequency is ω0 = 4.
• The External Frequency from 7 cos (4t) is ω = 4. Since they match, then we will get
resonance!
• Thus our guess for up is

up = At cos (4t) +Bt sin (4t) .



CHAPTER 4

Higher Order Linear Equations

4.1. Problems

(1) What is the largest interval for which there exists a unique solution by the Existence and Uniqueness
Theorem for the following IVP:

(t− 5) y(4) − ln(t+7)
t y′′ + ety = t2+1

(t−1)
y(2) = −1
y′(2) = 1

y′′(2) = 2

y′′′(2) = 5.

• Solution:
• First rewrite

y(4) − ln (t+ 7)

t (t− 5)
y′′ +

et

(t− 5)
y =

t2 + 1

(t− 1) (t− 5)

• The function p1(t) = − ln(t+7)
t(t−5) is continuous when t 6= 0, 5 and t+ 7 > 0, or t > −7

• The function p2(t) =
et

(t−5) is continuous when t 6= 5.

• The function g(t) = t2+1
(t−1)(t−5) is continuous when t 6= 1, 5

• All functions are simultaneously continuous (draw number lines to help you �nd out when
p1, p2, g2 are all continuous) when

� t 6= 0, 1, 5 and t > −7
(−7, 0) ∪ (0, 1) ∪ (1, 5) ∪ (5,∞)

since t0 = 2 falls inside (1, 5) then the solution to this IVP must have a domain as large
as

I = (1, 5) ,

by the theorem.
(2) Find general solution of

y′′′ + 10y′′ + 7y′ − 18y = 0.

(Hint: r3 + 10r2 + 7r − 18 = (r − 1) (r + 2) (r + 9))
• Solution:
• The characteristic equation is given by

r3 + 10r2 + 7r − 18 = 0

and by the hint
Z(r) = (r − 1) (r + 2) (r + 9) = 0

82
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which gives
r = 1,−2,−9

hence
y(t) = c1e

t + c2e
−2t + c3e

−9t

(3) Find general solution of

y(4) − 10y′′′ + 36y′′ − 54y′ + 27y = 0.

(Hint: r4 − 10r3 + 36r2 − 54r + 27 = (r − 1) (r − 3)
3
)

• Solution:
• The characteristic equation is given by

r4 − 10r3 + 36r2 − 54r + 27 = 0

and by the hint

Z(r) = (r − 1) (r − 3)
3
= 0

which gives
r = 1,−3,−3,−3

hence
y(t) = c1e

t + c2e
−3t + c3te

−3t + c4t
2e−3t

(4) Find general solution of

y(5) − 4y(4) + 13y′′′ − 36y′′ + 36y = 0.

(Hint: r5 − 4r4 + 13r3 − 36r2 + 36r = r (r − 2)
2 (
r2 + 9

)
)

• Solution:
• The characteristic equation is given by

r5 − 4r4 + 13r3 − 36r2 + 36r = 0

and by the hint

Z(r) = r (r − 2)
2 (
r2 + 9

)
= 0

which gives
r = 0, 2, 2,±3i

hence
y(t) = c1 + c2e

2t + c3te
2t + c4 cos (3t) + c5 sin (3t) .

(5) Find general solution of

y(4) + 11y′′ + 18y = 0.

(Hint: r4 + 11r2 + 18 =
(
r2 + 2

) (
r2 + 9

)
)

• Solution:
• The characteristic equation is given by

r4 + 11r2 + 18r = 0

and by the hint
Z(r) =

(
r2 + 2

) (
r2 + 9

)
= 0

which gives

r = ±
√
2i,±3i

hence

y(t) = c1 cos
(√

2t
)
+ c2 sin

(√
2t
)
+ c4 cos (3t) + c4 sin (3t) .
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(6) Find general solution of

y(6) + 32y(4) + 256y′′ = 0.

(Hint: r6 + 32r4 + 256r2 = r2
(
r2 + 16

)2
)

• Solution:
• The characteristic equation is given by

r6 + 32r4 + 256r2 = 0

and by the hint

Z(r) = r2
(
r2 + 16

)2
= 0

which gives
r = 0, 0,±4i,±4i

hence

y(t) = c1 + c2t

+ c3 cos (4t) + c4 sin (4t)

+ c5t cos (4t) + c6t sin (4t) .
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4.2. Problems

(1) Consider

y(4) + 8y′′′ + 16y′′ = 4e−3t + cos t.

Find the general form of yp. (Hint: r
3 − 4r2 − 11r + 30 = (r + 3) (r − 2) (r − 5))

• Solution:
• Step1: We �nd yh: Solve the characteristic equation

r3 − 4r2 − 11r + 30 = 0

(r + 3) (r − 2) (r − 5) = 0

so that r = −3, 2, 5 hence

yh = c1e
−3t + c2e

2t + c3e
5t

• Step2: Find yp:
� First Guess: yp = Ae−3t +B cos t+ C sin t.
� Second Guess: yp = Ate−3t +B cos t+ C sin t. And this is the �nal correct guess.

(2) Consider

y(4) + 8y′′′ + 16y′′ = t+ et.

Find the general form of yp(Hint: r
4 + 8r3 + 16r2 = r2 (r + 4)

2
)

• Solution:
• Step1: We �nd yh: Solve the characteristic equation

r4 + 8r3 + 16r2 = 0

r2 (r + 4)
2
= 0

so that r = 0, 0,−4,−4 hence

yh = c1 + c2t+ c3e
−4t + c4te

−4t

• Step2: Find yp:
� First Guess: yp = (At+B) + Cet.
� Second Guess: yp =

(
At2 +Bt

)
+ Cet.

� Third Guess: yp =
(
At3 +Bt2

)
+ Cet. And this is the �nal correct guess.

(3) Consider

y(4) − 10y′′′ + 36y′′ − 54y′ + 27y = 2tet + cos(3t),

and suppose you know that yh = c1e
t + c2e

−3t + c3te
−3t + c4t

2e−3t. Find the general form of yp
• Solution:
• Step1: We �nd yh: This is given to us

yh = c1e
t + c2e

−3t + c3te
−3t + c4t

2e−3t

• Step2: Find yp:
� First Guess: yp = (At+B) et + C cos(3t) +D sin (3t).
� Second Guess: yp =

(
At2 +Bt

)
et+C cos(3t)+D sin (3t). And this is the �nal correct

guess.
(4) Consider

y(4) − 2y′′′ = 2t+ 1.

Find the general form of yp. (Hint: r
4 − 2r3 = r3 (r − 2))

• Solution:
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• Step1: We �nd yh: Solve the characteristic equation

r4 − 2r3 = 0

r3 (r − 2) = 0

so that r = 0, 0, 0, 2 hence

yh = c1 + c2t+ c3t
2 + c4e

2t

• Step2: Find yp:
� First Guess: yp = At+B.
� Second Guess: yp = At2 +Bt.
� Third Guess: yp = At3 +Bt2.
� Fourth Guess: yp = At4 + Bt3. And this is the �nal correct guess since there is no
repeats with yh.



CHAPTER 5

Series Solutions of Second Order Linear Systems

5.1. Problems

Read Chapter 5 Lecture Notes.

87



CHAPTER 6

The Laplace Transform

6.1. Problems

(1) Use the de�nition of Laplace transform to �nd the Laplace transform of f(t) = 1. That is, �nd
L{1} .
• Solution:
• We compute L{f(t)} with f(t) = 1

L{t} =
∫ ∞
0

f(t)e−stdt

=

∫ ∞
0

e−stdt

=

[
−e
−st

s

]t=∞
t=0

= lim
t→∞

(
−e
−st

s

)
−
(
−e
−0

s

)
= 0−

(
−1

s

)
=

1

s
.

as long as s > 0.
(2) Use the de�nition of Laplace transform to �nd the Laplace transform of f(t) = t. That is, �nd
L{t} .
• Solution:
• We compute L{f(t)} with f(t) = t

L{t} =
∫ ∞
0

f(t)e−stdt

=

∫ ∞
0

te−stdt,

thus we use integration by parts on

u = t, dv = e−stdt

du = dt, v = −1

s
e−st

88
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and get that ∫
te−stdt = uv −

∫
vdu

= − t
s
e−st −

∫ (
−1

s
e−st

)
dt

= − t
s
e−st +

1

s

∫
e−stdt

= − t
s
e−st − 1

s2
e−st,

hence

L{t} =
∫ ∞
0

te−stdt

= lim
t→∞

(
− t
s
e−st − 1

s2
e−st

)
−
(
−0

s
e0 − 1

s2
e0
)

= (0− 0)−
(
0− 1

s2
e0
)

=
1

s2
,

as long as s > 0.
(3) Use the de�nition of Laplace transform to �nd the Laplace transform of f(t) = t2. That is, �nd
L
{
t2
}
.

• Solution:
• We compute L{f(t)} with f(t) = t2

L{t} =
∫ ∞
0

f(t)e−stdt

=

∫ ∞
0

t2e−stdt,

thus we use integration by parts, or tabular integration,

u dv

t2
(+)

↘ e−st

2t
(−)
↘ − e

−st

s

2
(+)

↘ e−st

s2

0 − e
−st

s3

and get that ∫
te−stdt = −t2 e

−st

s
− 2t

e−st

s2
− 2

e−st

s3
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hence

L
{
t2
}
=

∫ ∞
0

te−stdt

= lim
t→∞

(
−t2 e

−st

s
− 2t

e−st

s2
− 2

e−st

s3

)
−
(
−02 e

0

s
− 2 · 0e

0

s2
− 2

e0

s3

)
= lim
t→∞

(
−t2 e

−st

s
− 2t

e−st

s2
− 2

e−st

s3

)
−
(
−2 1

s3

)
= (0 + 0 + 0)−

(
−2 1

s3

)
=

2

s3
.

as long as s > 0.
(4) Use the properties of Laplace transform and the following facts

L{1} = 1

s
, s > 0

L
{
eat
}
=

1

s− a
, s > a,

L{t} = 1

s2
, s > 0,

L
{
t2
}
=

2

s3
, s > 0,

L{sin(at)} = a

s2 + a2
, s > 0,

L{cos(at)} = s

s2 + a2
, s > 0,

to compute the Laplace transforms of the following functions.
(a) L

{
2e5t + 7 cos(3t) + 2t

}
=

• Solution:
• Using Linearity and the formulas we above

= L
{
2e5t + 7 cos(3t) + 2t

}
= 2L

{
e5t
}
+ 7L{cos(3t)}+ 2L{t}

=
2

s− 5
+ 7

s

s2 + 32
+

2

s2

=
2

s− 5
+

7s

s2 + 9
+

2

s2

(b) L
{
−7e−9t − 5t2 − 5 sin(3t)

}
=

• Solution:
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• Using Linearity and the formulas we above

= L
{
−7e−9t − 5t2 − 5 sin(3t)

}
= −7L

{
e−9t

}
− 5L

{
t2
}
− 5L{sin(3t)}

= − 7

s− (−9)
− 5

2

s3
− 5

3

s2 + 32

= − 7

s+ 9
− 10

s3
− 15

s2 + 9

(c) L
{
−5 sin(

√
7t) + 2 + 5t

}
=

• Solution:
• Using Linearity and the formulas we above

= L
{
−5 sin(

√
7t) + 2 + 5t

}
= −5L

{
sin(
√
7t)
}
+ 2L{1}+ 5L{t}

= −5
√
7

s2 +
(√

7
)2 +

2

s
+ 5

1

s2

=
−5
√
7

s2 +
(√

7
)2 +

2

s
+

5

s2

(d) L
{
4e−t − 6e3t + cos(3t)

}
=

• Using Linearity and the formulas we above

= L
{
4e−t − 6e3t + cos(3t)

}
= 4L

{
e−t
}
− 6L

{
e3t
}
+ L{cos(3t)}

= 4
1

s− (−1)
− 6

1

s− 3
+

s

s2 + 32

=
4

s+ 1
− 6

1

s− 3
+

s

s2 + 9



6.2. PROBLEMS 92

6.2. Problems

(1) Use the table of Laplace Transforms to help you compute the following inverse Laplace transforms.

(a) L−1
{

5
s−6

}
• Solution:
• We use L{eat} = 1

s−a so that

L−1
{

5

s− 6

}
= 5L−1

{
1

s− 6

}
= 5e6t.

(b) L−1
{

5
7−s +

1
s+3

}
• Solution:
• We use L{eat} = 1

s−a so that

L−1
{

5

7− s
+

1

s+ 3

}
= −5L−1

{
1

s− 7

}
+ L−1

{
1

s− (−3)

}
= −5e7t + e−3t

(c) L−1
{

3
s+9 −

10
s2

}
• Solution:
• We use L{eat} = 1

s−a and L{tn} = n!
sn+1 with n = 1 so that

L−1
{

3

s+ 9
− 10

s2

}
= 3L−1

{
1

s− (−9)

}
− 10L−1

{
1

s2

}
= 3e−9t − 10t.

(d) L−1
{

3
s2+7 + 2

(s−5)3

}
• Solution:
• We use L{sin(bt)} = b

s2+b2 with b =
√
7 and L{tneat} = n!

(s−a)n+1 with n = 2, a = 5 so

that L
{
t2e5t

}
= 2

(s−5)3

L−1
{

3

s2 + 7
+

2

(s− 5)
3

}
=

3√
7
L−1

{ √
7

s2 +
(√

7
)2
}

+ L−1
{

2

(s− 5)
3

}

=
3√
7
sin(
√
7bt) + t2e5t.

(e) L−1
{

s−3
(s−3)2+36

}
• Solution:
• We use L{eat cos(bt)} = s−a

(s−a)2+b2 with a = 3, b = 6 so that

L−1
{

s− 3

(s− 3)
2
+ 36

}
= L−1

{
s− 3

(s− 3)
2
+ 62

}
= e3t cos(6t).

(f) L−1
{

s
s2+9 + 2

s −
s−1

(s−1)2+25

}
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• Solution:
• We use L{cos(bt)} = s

s2+b2 with b = 3 and L{eat cos(bt)} = s−a
(s−a)2+b2 with a = 1, b = 5

so that

L−1
{

s

s2 + 9
+

2

s
− s− 1

(s− 1)
2
+ 25

}
= L−1

{
s

s2 + 32

}
+ L−1

{
2

s

}
− L−1

{
s− 1

(s− 1)
2
+ 52

}
= cos (3t) + 2− et cos (5t) .

(2) Solve the following IVP using Laplace Transforms:

y′ + 4y = e−t, y(0) = 0

• Solution:
• Step 1: Find the Laplace Transform of both sides (The going forwards to the s world part):

� We have

L{y′}+ 4L{y} = L
{
e−t
}

⇐⇒ sL{y} − y(0) + 4L{y} = 1

s− (−1)

⇐⇒ sL{y} − 0 + 4L{y} = 1

s+ 1

• Step 2: Solve for L{y} using algebra: and get

L{y} (s+ 4) =
1

s+ 1

⇐⇒ L{y} = 1

(s+ 1) (s+ 4)

• Step 3: Do partial fractions
� We have that

1

(s+ 1) (s+ 4)
=

A

(s+ 1)
+

B

(s+ 4)

so that

1 = A (s+ 4) +B (s+ 1)

taking s = −4 we have

1 = B(−3) =⇒ B =
−1
3

and taking s = −1 we have

1 = A3, =⇒ A =
1

3

so that
1

(s+ 1) (s+ 4)
=

1/3

(s+ 1)
− 1/3

(s+ 4)

• Step 4: Take the inverse Laplace (The going back to t world part)
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� Thus

y = L−1 {L {y}}

= L−1
{

1/3

(s+ 1)
− 1/3

(s+ 4)

}
=

1

3
L−1

{
1

s− (−1)

}
− 1

3
L−1

{
1

s− (−4)

}
=

1

3
e−t − 1

3
e−4t.

(3) Solve the following IVP using Laplace Transforms:

y′ + y = e−2t, y(0) = 2

• Solution:
• Step 1: Find the Laplace Transform of both sides (The going forwards to the s world part):

� We have

L{y′}+ L{y} = L
{
e−2t

}
⇐⇒ sL{y} − y(0) + L{y} = 1

s− (−2)

⇐⇒ sL{y} − 2 + L{y} = 1

s+ 2

• Step 2: Solve for L{y} using algebra: and get

sL{y}+ L{y} = 2 +
1

s+ 2

⇐⇒ L{y} (s+ 1) = 2 +
1

s+ 2

⇐⇒ L{y} = 2

s+ 1
+

1

(s+ 1) (s+ 2)

• Step 3: Do partial fractions
� We have that

1

(s+ 1) (s+ 2)
=

A

(s+ 1)
+

B

(s+ 2)

so that

1 = A (s+ 2) +B (s+ 1)

taking s = −2 we have

1 = B(−1) =⇒ B = −1

and taking s = −1 we have

1 = A, =⇒ A = 1

so that
1

(s+ 1) (s+ 2)
=

1

(s+ 1)
− 1

(s+ 2)

• Step 4: Take the inverse Laplace (The going back to t world part)
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� Thus

y = L−1 {L {y}}

= L−1
{

2

s+ 1
+

1

(s+ 1) (s+ 2)

}
= L−1

{
2

s+ 1
+

1

(s+ 1)
− 1

(s+ 2)

}
= L−1

{
2

s− (−1)

}
+ L−1

{
1

s− (−1)

}
− L−1

{
1

s− (−2)

}
= 2e−t + e−t − e−2t

= 3e−t − e−2t.

(4) Solve the following IVP using Laplace Transforms:

y′ + 7y = 1, y(0) = 3.

• Solution:
• Step 1: Find the Laplace Transform of both sides (The going forwards to the s world part):

� We have

L{y′}+ 7L{y} = L{1}

⇐⇒ sL{y} − y(0) + 7L{y} = 1

s

⇐⇒ sL{y} − 3 + 7L{y} = 1

s

• Step 2: Solve for L{y} using algebra: and get

sL{y}+ 7L{y} = 3 +
1

s

⇐⇒ L{y} (s+ 7) = 3 +
1

s

⇐⇒ L{y} = 3

s+ 7
+

1

(s+ 7) s

• Step 3: Do partial fractions
� We have that

1

(s+ 7) s
=

A

(s+ 7)
+
B

s

so that

1 = As+B (s+ 7)

taking s = 0 we have

1 = B7 =⇒ B =
1

7

and taking s = −7 we have

1 = A(−7), =⇒ A = −1

7
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so that
1

(s+ 7) s
=
−1/7
(s+ 7)

+
1/7

s

• Step 4: Take the inverse Laplace (The going back to t world part)
� Thus

y = L−1 {L {y}}

= L−1
{

3

s+ 7
+

1

(s+ 7) s

}
= L−1

{
3

s+ 7
+
−1/7
(s+ 7)

+
1/7

s

}
= L−1

{
3

s+ 7

}
+ L−1

{
−1/7
(s+ 7)

}
+ L−1

{
1/7

s

}
= 3e−7 − 1

7
e−7t +

1

7

=
20

7
e−7 +

1

7
.
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6.3. Problems

(1) What is the correct form of the partial fractions?

(a)
5s− 1

(s− 3) (s2 + 2s+ 5)
=

• Solution:
• We have

5s− 1

(s− 1) (s2 + 2s+ 5)
=

A

s− 1
+

Bs+ C

s2 + 2s+ 5

(b)
s− 2

(s− 2)
2
(s+ 5)

=

• Solution:
• We have

s− 2

(s− 2)
2
(s+ 5)

=
A

(s− 2)
+

B

(s− 2)
2 +

C

s+ 5
.

(c)
s+ 1

(s2 + 9) (s3 + 2)
=

• Solution:
• We have

s+ 1

(s2 + 9) (s3 + 2)
=
As+B

s2 + 9
+
Cs2 +Ds+ E

s3 + 2
.

(d)
s

(s+ 1) (s2 + 10) s3
=

• Solution:
• We have

s

(s+ 1) (s2 + 10) s2
=

A

s+ 1
+
Bs+ C

s2 + 10
+
D

s
+
E

s2
+
F

s3

(2) Take the inverse Laplace Transforms of the following:
(a) F (s) = 1

s2−8s+7
• Solution:
• We �rst try to factor: and we get

1

s2 − 8s+ 7
=

1

(s− 1) (s− 7)

amd then we use partial fraction

1

(s− 1) (s− 7)
=

A

s− 1
+

B

s− 7

so that

1 = A (s− 7) +B (s− 1)

and taking s = 7we have 1 = B6 so that B = 1
6
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• And using s = 1 we have 1 = A(−6) so that A = − 1
6 so that

L−1
{

1

s2 − 8s+ 7

}
= L−1

{ − 1
6

s− 1
+

1
6

s− 7

}
= −1

6
et +

1

6
e7t.

(b) F (s) = s+7
s2+6s+13

• Solution:
• We �rst try to factor! and we can't factor s2 + 6s + 7. Thus whenever we can't factor
the denominator, we complete the square.

• Recall the special number for s2 + bs+ c is
(
b
2

)2
, so that

(
6
2

)2
= 32 = 9 hence

s2 + 6s+ 13 = s2 + 6s+ 9 + (−9 + 13)

=
(
s2 + 6s+ 9

)
+ 4

= (s+ 3)
2
+ 22

• Hence
s+ 7

s2 + 6s+ 13
=

s+ 7

(s+ 3)
2
+ 22

,

• Now we try to use Formula #9 and #10

L
{
eat sin bt

}
=

b

(s− a)2 + b2
and L

{
eat cos bt

}
=

s− a
(s− a)2 + b2

and get

L−1
{

s+ 7

(s+ 3)
2
+ 22

}
= L−1

{
s+ 3

(s+ 3)
2
+ 22

}
+ L−1

{
4

(s+ 3)
2
+ 22

}

= L−1
{

s+ 3

(s+ 3)
2
+ 22

}
+ 2L−1

{
2

(s+ 3)
2
+ 22

}
= e−3t cos 2t+ 2e−3t sin 2t.

(c) F (s) = 2s−1
s2−8s+18

• Solution:
• We �rst try to factor! and we can't factor s2 + 8s+ 11. Thus whenever we can't factor
the denominator, we complete the square.

• Recall the special number for s2 + bs+ c is
(
b
2

)2
, so that

(−8
2

)2
= 42 = 16 hence

s2 + 6s+ 13 = s2 − 8s+ 16 + (18− 16)

=
(
s2 − 8s+ 16

)
+ 2

= (s− 4)
2
+
(√

2
)2

• Hence
2s− 1

s2 − 8s+ 18
=

2s− 1

(s− 4)
2
+
(√

2
)2 ,
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• Now we try to use Formula #9 and #10

L
{
eat sin bt

}
=

b

(s− a)2 + b2
and L

{
eat cos bt

}
=

s− a
(s− a)2 + b2

and note that we need a 2 (s− 4) = 2s− 8 in the numerator, and thus since −8 + 8 = 0
then

2s− 1 = 2s− 8+ 8− 1 = 2 (s− 4)+8−1
so that

L−1
{

2s− 1

(s− 4)
2
+
(√

2
)2
}

= L−1
{

2 (s− 4)

(s− 4)
2
+
(√

2
)2
}

+ L−1
{

+8− 1

(s− 4)
2
+
(√

2
)2
}

= 2L−1
{

(s− 4)

(s− 4)
2
+
(√

2
)2
}

+
7√
2
L−1

{ √
2

(s− 4)
2
+
(√

2
)2
}

= 2e4t cos
(√

2t
)
+

7√
2
e4t sin

(√
2t
)
.

(3) Solve the following IVP using Laplace Transforms:

y′′ + 4y = 8, y(0) = 11, y′(0) = 5.

• Solution:
• Step 1: Find the Laplace Transform of both sides (The going forwards to the s world part):

� We have

L{y′′}+ 4L{y} = L{8}

⇐⇒ s2L{y} − sy(0)− y′(0) + 4L{y} = 8

s

⇐⇒ s2L{y} − 11s− 5 + 4L{y} = 8

s

• Step 2: Solve for L{y} using algebra: and get

s2L{y}+ 4L{y} = 11s+ 5 +
8

s

⇐⇒
(
s2 + 4

)
L{y} = 11s+ 5 +

8

s

⇐⇒ L{y} = 11s+ 5

s2 + 4
+

8

s (s2 + 4)

• Step 3: Do partial fractions
� On the term

8

s (s2 + 4)
=
A

s
+
Bs+ C

s2 + 4

so that
8 = A

(
s2 + 4

)
+ (Bs+ C) s

and multiplying the RHS out we get

8 = As2 + 4A+Bs2 + Cs

and combining we get

0s2 + 0s+ 8 = (A+B) s2 + Cs+ 4A
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so that we have

0 =A+B

0 =C

8 =4A

hence

A = 2, B = −2 = C = 0

so that

8

s (s2 + 4)
=

2

s
+
−2s
s2 + 4

• Step 4: Take the inverse Laplace (The going back to t world part)
� Thus

y = L−1 {L {y}}

= L−1
{
11s+ 5

s2 + 4
+

2

s
+
−2s
s2 + 4

}
= L−1

{
9s+ 5

s2 + 4
+

2

s

}
= 9L−1

{
s

s2 + 22

}
+

5

2
L
{

2

s2 + 22

}
+ L−1

{
2

s

}
= 9 cos(2t) +

5

2
sin(2t) + 2.

(4) Solve the following IVP using Laplace Transforms:

y′′ − 4y′ + 5y = 2et, y(0) = 3, y′(0) = 1.

• Solution:
• Step 1: Find the Laplace Transform of both sides (The going forwards to the s world part):

� We have

L{y′′} − 4L{y′}+ 5L{y} = L
{
2et
}

⇐⇒
[
s2L{y} − sy(0)− y′(0)

]
− 4 [sL{y} − y(0)] + 5L{y} = 2

s− 1

⇐⇒
[
s2L{y} − 3s− 1

]
− 4 [sL{y} − 3] + 5L{y} = 2

s− 1
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• Step 2: Solve for L{y} using algebra: and get

s2L{y} − 3s− 1− 4sL{y}+ 12 + 5L{y} = 2

s− 1

⇐⇒ L{y}
(
s2 − 4s+ 5

)
− 3s+ 11 =

2

s− 1

⇐⇒ L{y}
(
s2 − 4s+ 5

)
= 3s− 11 +

2

s− 1

⇐⇒ L{y} = 3s− 11

s2 − 4s+ 5
+

2

(s− 1) (s2 − 4s+ 5)

• Step 3: Do partial fractions
� On the term

2

(s− 1) (s2 − 4s+ 5)
=

A

(s− 1)
+

Bs+ C

(s2 − 4s+ 5)

so that
2 = A

(
s2 − 4s+ 5

)
+ (Bs+ C) (s− 1) .

� Using s = 1 give us that

2 = A(1− 4 + 5) =⇒ 2 = A2 =⇒ A = 1

� and multiplying the RHS out we get

2 = As2 − 4As+ 5A+Bs2 −Bs+ Cs− C
and combining we get

0s2 + 0s+ 2 = (A+B) s2 + (−4A−B + C) s+ (5A− C)
so that we have

0 =A+B

0 =− 4A−B + C

2 =5A− C
but we already know that A = 1 hence B = −1 and hence

C = 5A− 2 = 3.

� Thus
2

(s− 1) (s2 − 4s+ 5)
=

1

(s− 1)
+

−s+ 3

(s2 − 4s+ 5)

• Step 4: Take the inverse Laplace (The going back to t world part)
� Thus

y = L−1 {L {y}}

= L−1
{

3s− 11

s2 − 4s+ 5
+

1

(s− 1)
+

−s+ 3

(s2 − 4s+ 5)

}
= L−1

{
2s− 8

s2 − 4s+ 5

}
+ L−1

{
1

s− 1

}
= L−1

{
2s− 8

s2 − 4s+ 5

}
+ et
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We just need to �gure out L−1
{

2s−8
s2−4s+5

}
and to do this, we try to factor the denomina-

tor. But we can't, thus we complete the square using the magic number
(
b
2

)2
=
(−4

2

)2
=

4
s2 − 4s+ 5 =

(
s2 − 4s+ 4

)
+ 1 = (s− 2)

2
+ 1

hence
2s− 8

s2 − 4s+ 5
=

2s− 8

(s− 2)
2
+ 1

thus

L−1
{

2s− 8

(s− 2)
2
+ 1

}
= L−1

{
2 (s− 2)

(s− 2)
2
+ 1

}
− L−1

{
4

(s− 2)
2
+ 1

}
= 2e2t cos t− 4e2t sin t,

hence

y(t) = L−1
{

2s− 8

s2 − 4s+ 5

}
+ et

= 2e2t cos t− 4e2t sin t+ et.
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6.4. Problems

(1) Take the Laplace transforms of the following functions
(a) f(t) = u7(t)e

6(t−7)

• Solution:
• We use the formula L{uc(t)f (t− c)} = e−csF (s), where c = 7 and f (t− 7) = e6(t−7)

hence f(t) = e6t so that F (s) = L
{
e6t
}
= 1

s−6 hence

L
{
u7(t)e

6(t−7)
}
= e−csF (s)

= e−7s
1

s− 6
.

(b) f(t) = u2(t)e
−9(t−2)

• Solution:
• We use the formula L{uc(t)f (t− c)} = e−csF (s), where c = 2 and f (t− 2) = e−9(t−2)

hence f(t) = e−9t so that F (s) = L
{
e−9t

}
= 1

s+9 hence

L
{
u2(t)e

−9(t−2)
}
= e−csF (s)

= e−2s
1

s+ 9
.

(c) f(t) = u2(t) (t− 2)
3

• Solution:
• We use the formula L{uc(t)f (t− c)} = e−csF (s), where c = 2 and f (t− 2) = (t− 2)

3

hence f(t) = t3 so that F (s) = L
{
t3
}
= 6

s4 hence

L
{
u2(t) (t− 2)

3
}
= e−csF (s)

= e−2s
6

s4
.

(d) f(t) = u6(t) sin (3 (t− 6))
• Solution:
• We use the formula L{uc(t)f (t− c)} = e−csF (s), where c = 6 and f (t− 6) = sin (3 (t− 6))
hence f(t) = sin(3t) so that F (s) = L{sin(3t)} = 3

s2+32 hence

L{u6(t) sin (3 (t− 6))} = e−csF (s)

= e−6s
3

s2 + 9
.

(e) f(t) = u1(t) cos (7 (t− 1))
• Solution:
• We use the formula L{uc(t)f (t− c)} = e−csF (s), where c = 1 and f (t− 1) = cos (7 (t− 1))
hence f(t) = cos (7t) so that F (s) = L{cos (7t)} = s

s2+72 hence

Lu1(t) cos (7 (t− 1)) = e−csF (s)

= e−s
s

s2 + 72
.

(2) Take the inverse Laplace transforms of the following functions

(a) F (s) = e−3s

s+1
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• Solution:
• We use the formula L{uc(t)f (t− c)} = e−csF (s), and note that e−3s

s+1 = e−3sF (s) hence

F (s) = 1
s+1 now

f(t) = L−1 {F (s)} = L−1
{

1

s− (−1)

}
= e−t

so that with c = 3

L−1
{
e−3s

1

s+ 1

}
= L−1

{
e−3sF (s)

}
= u3(t)f (t− 3)

= u3(t)e
−(t−3).

(b) F (s) = e−5s

s−7
• Solution:
• We use the formula L{uc(t)f (t− c)} = e−csF (s), and note that e−5s

s−7 = e−5sF (s) hence

F (s) = 1
s−7 now

f(t) = L−1 {F (s)} = L−1
{

1

s− 7

}
= e7t

so that with c = 5

L−1
{
e−5s

1

s− 7

}
= L−1

{
e−5sF (s)

}
= u5(t)f (t− 5)

= u5(t)e
7(t−5).

(c) F (s) = 2e−2s

s2+4
• Solution:
• We use the formula L{uc(t)f (t− c)} = e−csF (s), and note that 2e−2s

s2+4 = e−2sF (s) hence

F (s) = 2
s2+4 now

f(t) = L−1 {F (s)} = L−1
{

2

s2 + 22

}
= sin (2t)

so that with c = 2

L−1
{
e−2s

2

s2 + 4

}
= L−1

{
e−2sF (s)

}
= u2(t)f (t− 2)

= u2(t) sin (2 (t− 2)) .

(d) F (s) = se−9s

s2+7
• Solution:
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• We use the formula L{uc(t)f (t− c)} = e−csF (s), and note that se
−9s

s2+7 = e−9sF (s) hence

F (s) = s
s2+7 now

f(t) = L−1 {F (s)} = L−1
{

s

s2 +
(√

7
)2
}

= cos
(√

7t
)

so that with c = 9

L−1
{
e−9s

2

s2 + 4

}
= L−1

{
e−9sF (s)

}
= u9(t)f (t− 9)

= u9(t) cos
(√

7 (t− 9)
)
.

(e) F (s) = (s+2)e−3s

(s+2)2+16

• Solution:
• We use the formula L{uc(t)f (t− c)} = e−csF (s), and note that (s+2)e−3s

(s+2)2+16
= e−3sF (s)

hence F (s) = (s+2)

(s+2)2+16
now

f(t) = L−1 {F (s)} = L−1
{

(s− (−2))
(s− (−2)2 + 42

}
= e−2t cos (4t)

so that with c = 3

L−1
{
e−3s

(s+ 2)

(s+ 2)
2
+ 16

}
= L−1

{
e−3sF (s)

}
= u3(t)f (t− 3)

= u3(t)e
−2(t−3) cos (4 (t− 3)) .

(3) Take the inverse Laplace transforms of

F (s) =
e−3s

s2 − 3s+ 2
.

• Solution:
• We �rst try to factor the denominator and get

e−3s

s2 − 3s+ 2
=

e−3s

(s− 1) (s− 2)

and then we do partial fractions on

1

(s− 1) (s− 2)
=

A

s− 1
+

B

s− 2

so that

1 = A (s− 2) +B (s− 1)
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so that A = −1, B = 1 and hence

L−1 {F (s)} = L−1
{
− e
−3s

s− 1
+
e−3s

s− 2

}
= −u3(t)e(t−3) + u3(t)e

2(t−3).

(4) Take the inverse Laplace transforms of

F (s) =
se−9s

s2 + 6s+ 11
.

• Solution:
• We �rst try to factor the denominator but we can't!

• Thus we will try to complete the square with the special number
(
b
2

)2
=
(
6
2

)2
= 32 = 9 hence

s2 + 6s+ 11 =
(
s2 + 6s+ 9

)
+ 2

= (s+ 3)
2
+
(√

2
)2
.

• And get
se−9s

s2 + 6s+ 11
= e−9s

s

(s+ 3)
2
+
(√

2
)2

• Then we need to separate, so that we can use formulas L{eat cos (bt)} = s−a
(s−a)2+b2 and

L{eat sin (bt)} = b
(s−a)2+b2 ,

G(s) =
s

(s+ 3)
2
+
(√

2
)2 =

s+ 3

(s+ 3)
2
+
(√

2
)2 +

−3
(s+ 3)

2
+
(√

2
)2

=
s+ 3

(s+ 3)
2
+
(√

2
)2 − 3√

2

√
2

(s+ 3)
2
+
(√

2
)2

• So that

g(t) =L−1 {G(s)}

= L−1
{

s− (−3)
(s− (−3))2 +

(√
2
)2
}
− 3√

2
L−1

{ √
2

(s− (−3))2 +
(√

2
)2
}

= e−3t cos
(√

2t
)
− 3√

2
e−3t sin

(√
2t
)
.

• And to �nish o�, remeber we actualy want to

L−1
{

se−9s

s2 + 6s+ 11

}
= L−1

{
e−9sG(s)

}
hence we use the formula L{uc(t)g (t− c)} = e−csG(s) so that

L−1
{

se−9s

s2 + 6s+ 11

}
= u9(t)g (t− 9)

= u9(t)e
−3(t−9) cos

(√
2 (t− 9)

)
− u9(t)

3√
2
e−3(t−9) sin

(√
2 (t− 9)

)
.
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6.5. Problems

(1) Find the solution to the following IVP using Laplace Transforms

y′ + 9y = u5(t), y(0) = −2.
• Solution:
• Step1: Take L of both sides and solve for L

L{y′}+ 9L{y} = L{u5(t)}
so that

sL{y} − y(0) + 9L{y} = e−5s

s
.

hence

sL{y}+ 2 + 9L{y} = e−5s

s
.

• Step2: Solve for L{y}, we have

L{y} (s+ 9) = −2 + e−5s

s

L{y} = −2
s+ 9

+
e−5s

s (s+ 9)

• Step3: We do partial fractions on

1

s (s+ 9)
=

1/9

s
− 1/9

s+ 9

so we have
e−5s

s (s+ 9)
=

1

9

e−5s

s
− 1

9

e−5s

s+ 9

• Step4: Take the inverse Laplace transform: Using L [ua(t)f(t− a)] = e−asF (s), and get

y = L−1
{
−2
s+ 9

+
1

9
e−5s

1

s
− 1

9

e−5s

s+ 9

}
= −2L−1

{
1

s+ 9

}
+

1

9
L−1

{
e−5s

1

s

}
− 1

9
L−1

{
e−5s

s+ 9

}
= −2L−1

{
1

s− (−9)

}
+

1

9
L−1

{
e−5s

1

s

}
− 1

9
L−1

{
e−5s

1

s− (−9)

}
= −2e−9t + 1

9
u5(t)−

1

9
u5(t)e

−9(t−5).

(2) Find the solution to the following IVP using Laplace Transforms

y′ + y = u7(t)e
−2(t−7), y(0) = 1.

• Solution:
• Step1: Take L of both sides and solve for L

L{y′}+ L{y} = L
{
u7(t)e

−2(t−7)
}

so that

sL{y} − y(0) + L{y} = e−7s

s− (−2)
.
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hence

sL{y} − 1 + L{y} = e−7s

s+ 2
.

• Step2: Solve for L{y}, we have

L{y} (s+ 1) = 1 +
e−7s

s+ 2

L{y} = 1

s+ 1
+

e−7s

(s+ 1) (s+ 2)

• Step3: We do partial fractions on

1

(s+ 1) (s+ 2)
=
−1
s+ 1

+
1

s+ 2

so we have
e−7s

(s+ 1) (s+ 2)
=
−e−7s

s+ 1
+
e−7s

s+ 2

• Step4: Take the inverse Laplace transform: Using L [ua(t)f(t− a)] = e−asF (s), and get

y = L−1
{

1

s+ 1
+
−e−7s

s+ 1
+
e−7s

s+ 2

}
= L−1

{
1

s− (−1)

}
− L−1

{
e−7s

1

s− (−1)

}
+ L−1

{
e−7s

1

s− (−2)

}
= e−t + u7(t)e

−(t−7) + u7(t)e
−2(t−7).

(3) Find the solution to the following IVP using Laplace Transforms

y′′ + 9y = u3(t) sin (2 (t− 3)) , y(0) = 2.

• Solution:
• Step1: Take L of both sides and solve for L

L{y′′}+ 9L{y} = L{u3(t) sin (2 (t− 3))} , y(0) = 0, y′(0) = 0.

and recall L [ua(t)f(t− a)] = e−asF (s), hence a = 3, f(t − 5) = sin (2 (t− 5)) hence f(t) =
sin 2t and L{sin 2t} = 2

s2+4 hence

L{u3(t) sin (2 (t− 3))} = 2e−3s

s2 + 4

so that

s2L{y} − sy(0)− y′(0) + 9L{y} = 2e−3s

s2 + 4
, =⇒(

s2 + 9
)
L{y} = 2e−3s

s2 + 4
, =⇒

L{y} = 2e−3s

(s2 + 9) (s2 + 4)
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• Step2: We do partial fractions on

2

(s2 + 9) (s2 + 4)
=
As+B

s2 + 9
+
Cs+D

s2 + 4

hence

2 = (As+B)
(
s2 + 4

)
+ (Cs+D)

(
s2 + 9

)
, =⇒

0 · s3 + 0 · s2 + 0 · s+ 2 = (A+ C) s3 + (B +D) s2 + (4A+ 9C) s+ (4B + 9D)

hence

A+ C = 0

B +D = 0

4A+ 9C = 0

4B + 9D = 2

and get

A = 0 B = −2

5
, C = 0, D =

2

5
hence

2

(s2 + 9) (s2 + 4)
= −2

5

1

s2 + 9
+

2

5

1

s2 + 4

• Step3: Take the inverse Laplace transform: Using L [ua(t)f(t− a)] = e−asF (s), and L{sin(at)} =
a

s2+a2 and L{cos(at)} = a
s2+a2 we have

y = L−1
{
−2

5

e−3s

s2 + 9
+

2

5

e−3s

s2 + 4

}
= −2

5

1

3
L−1

{
e−3s

3

s2 + 32

}
+

1

5
L−1

{
e−3s

2

s2 + 22

}
= − 2

15
u3(t) sin (3 (t− 3)) +

1

5
u3(t) sin (2 (t− 3)) .


