This quiz covers everything done in class on January 12, 14, and 16, and the types of homework problems assigned on those days.

Reminder: The quiz is on Wednesday January 21. There will be an optional review session on Tuesday January 20 at 1:00pm in Bailey 207.

- **Logarithmic functions**
 A. Definition: \(\log_a x \) is the inverse of \(a^x \).
 - \(d \log_a x = \frac{1}{x} \) and \(\log_a a^x = x \).
 - \(\log_a x = y \) exactly when \(a^y = x \)
 - Graph and domain of a logarithmic function.
 - Definition of the natural logarithm.

B. Log rules
 - Rules for \(\log_a(xy), \log_a \left(\frac{x}{y} \right), \log_a x^y \), and computations.

C. Solving equations involving logarithms and exponentials.

D. The derivative of the natural log
 - \(\frac{d}{dx} \ln x = \frac{1}{x} \) and \(\frac{d}{dx} \ln g(x) = \frac{1}{g(x)} \cdot g'(x) \)
 - Proof
 - Computations

- **Derivatives of general logarithms and exponentials**
 A. Differentiating \(f(x) = g(x)^{h(x)} \)
 B. Differentiating \(\log_a f(x) \)
 - Key: Use the change of base formula for logarithms to write
 \[
 \log_a(f(x)) = \frac{\ln(f(x))}{\ln(a)}
 \]
 - Proof of the change of base formula:
 \[
 \log_a(x) = \frac{\ln(x)}{\ln(a)}
 \]

- **Antiderivatives**
 A. Definition of antiderivative (also called an indefinite integral)
 - \(\int f(x) \, dx = F(x) + C \) means exactly \(\frac{d}{dx} [F(x)] = f(x) \).
 B. Basic indefinite integrals
 - Know indefinite integrals for powers of \(x \), \(e^x \), six integrals for trig functions.
 C. More complex calculations
 - Theorem on sums and products:
 \[
 \int af(x) + bg(x) \, dx = a \int f(x) \, dx + b \int g(x) \, dx
 \]
 - Computing integrals by manipulating the integrand until it matches a sum of things on the list of “Basic indefinite integrals.”