Use cylindrical or spherical coordinates to do the following. Write solutions up neatly and show all steps necessary to obtain your answer.

1. Evaluate \(\iiint_G z \, dV \) where \(G \) is the solid enclosed by the hemispheres \(y = \sqrt{9-x^2-z^2}, \ y = \sqrt{4-x^2-z^2}, \) and the coordinate planes \(x = 0, \ y = 0, \) and \(z = 0. \)

2. Find the mass of the solid that is inside the cylinder \(x^2 + y^2 = 4, \) bounded above by the sphere \(x^2 + y^2 + z^2 = 9, \) and below by the \(xy \)-plane. The density is \(\delta(x, y, z) = 2z. \)
3. Find the volume of the solid that is inside the sphere \(x^2 + y^2 + z^2 = 36 \) and above the plane \(z = 3 \).