Math 117-01
Practice Problems for Exam 3

1. Determine the work done by the force field \(\mathbf{F}(x, y) = 2x \mathbf{i} \) on an object moving in a straight line from \((-1, 1)\) to \((2, 4)\).

2. Use Green’s theorem to evaluate \(\int_C y^2 \, dx - (e^{4y^2} + 2x) \, dy \) where \(C \) is the rectangle with vertices \((1, 0)\), \((2, 0)\), \((2, 3)\), and \((1, 3)\) oriented counterclockwise.

3. (a) The vector field \(\mathbf{F}(x, y) = (y \cos(xy)) \mathbf{i} + (x \cos(xy) + 6y) \mathbf{j} \) is conservative. Find a potential function for \(\mathbf{F} \).

 (b) Let \(C \) be the portion of the curve \(y = \cos(x) \) from \((\pi, -1)\) to \((2\pi, 1)\). Use your answer from (a) to evaluate the line integral \(\int_C (y \cos(xy)) \, dx + (x \cos(xy) + 6y) \, dy \).

4. Suppose that \(\mathbf{F}(x, y, z) = f(x, y, z) \mathbf{i} + g(x, y, z) \mathbf{j} + h(x, y, z) \mathbf{k} \) is a conservative vector field where \(f \), \(g \), and \(h \) have continuous partial derivatives. Prove that
 \[
 \frac{\partial g}{\partial z} = \frac{\partial h}{\partial y}.
 \]

5. (a) Find parametric equations for the portion of the sphere \(x^2 + y^2 + z^2 = 16 \) that lies above the cone \(z = \sqrt{x^2 + y^2} \). Be sure to include the range of values for the parameters.

 (b) Find parametric equations for the portion of the cylinder \(y^2 + z^2 = 9 \) that lies between the planes \(x = 1 \) and \(x = 4 \). Be sure to include the range of values for the parameters.

6. Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \) where \(\mathbf{F}(x, y) = (e^{-x}) \mathbf{i} + (e^{2y}) \mathbf{j} \) and \(C \) is the path determined by \(\mathbf{r}(t) = 2t \mathbf{i} + 3t \mathbf{j} \), \(0 \leq t \leq 2 \).

7. Find the area of the region swept out by the line from the origin to the ellipse \(x = a \cos t \), \(y = b \sin t \) if \(t \) varies from \(t = 0 \) to \(t = \pi/4 \). (Here \(a \) and \(b \) are constants with \(a, b > 0 \).)