Math 115
Answers to Practice Problems for Final Exam, I

1. (a) 9
(b) There is a right angle at B.
(c) \((2,4,-5) \)
(d) \(\frac{3\sqrt{5}}{2} \)

2. (a) \[
\begin{pmatrix}
1 & 10 & 13 \\
-4 & -6 & -4 \\
\end{pmatrix}
\]
 \(A + B \) can’t be done because \(A \) and \(B \) don’t have the same number of rows.
 \(BA \) can’t be done because the number of columns of \(B \) is not equal to the number of rows of \(A \).
(b) \(-6\)
(c) \(x = 2/3, \ y = 3, \ z = -8/3 \)

3. (a) \(x = -3 + 3t, \ y = 7 - 4t, \ z = 5 + 2t \)
(b) \(-x + 2y + 10z = -14 \)

4. (a) \(x = -4 + 8t, \ y = -2 + 2t \)
(b) See part II of answers.

5. (a) \(2\pi \sqrt{10} \)
(b) \(\mathbf{v}(0) = \langle 0, -1, 3 \rangle \)
(c) \(\mathbf{a}(0) = \langle -9, 0, 0 \rangle \)
(d) \(\langle 0, 0, 0 \rangle \)

6. See part II of answers.

7. \(-6x + 18y - z = 69 \)
(b) All points of the form \((2, b, 0)\) and \((a, 3, 0)\) where \(a \) and \(b \) can be any real numbers.

8. (a) \((1, 0) \)
(b) saddle point

9. (a) \(\frac{-14}{\sqrt{5}} \)
(b) She will go downhill because the directional derivative is negative.
(c) \(\langle \frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \rangle \)

10. The fact that the speed is constant means that \(||\mathbf{v}(t)|| \) is constant. From a property proved in class it follows that \(\mathbf{v}(t) \) and \(\mathbf{v}'(t) \) are orthogonal for all values of \(t \). Since \(\mathbf{v}'(t) = \mathbf{a}(t) \), this means that \(\mathbf{v}(t) \) and \(\mathbf{a}(t) \) are orthogonal for all values of \(t \).