1. (4 points) Write the function \(h(x) = \frac{2}{\sqrt{x^2 + 4}} \) as the composition of two functions \(f(g(x)) \). Do not use \(f(x) = x \) or \(g(x) = x \).

\[
f(x) = x^2 + 4
\]
\[
g(x) = \frac{2}{\sqrt{x}}
\]

2. (6 points) Solve the equation \(4e^{2x} + 7 = 17 \) for \(x \).

\[
4e^{2x} = 10
\]
\[
e^{2x} = \frac{5}{2}
\]
\[
\ln(e^{2x}) = \ln\left(\frac{5}{2}\right)
\]
\[
2x = \ln\left(\frac{5}{2}\right) \implies x = \frac{1}{2} \ln\left(\frac{5}{2}\right)
\]

3. (6 points) If \(\tan \theta = -\sqrt{2} \) and \(\theta \) is in the second quadrant, find \(\cos \theta \).

\[
\text{opp} = \sqrt{2} \quad \text{hyp} = 1.3
\]
\[
\tan \theta = \frac{\text{opp}}{\text{adj}}
\]
\[
\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{1}{\sqrt{3}}
\]

4. (4 points) Recall that the Horizontal Line Test says that the function \(f \) has an inverse if and only if no horizontal line intersects the graph of \(f \) more than once. Use what we've learned about functions and inverses to explain why the Horizontal Line Test works.

The graph of \(f^{-1} \) is the reflection of \(f \) about the line \(y = x \). If a horizontal line intersects the graph of \(f \) more than once, then when the graph of \(f \) is reflected about \(y = x \) the horizontal line becomes a vertical line that intersects the graph of \(f^{-1} \) more than once. This means that \(f^{-1} \) can't be a function.