Math 313/513, Homework 10 (due Thurs Apr. 12th)

Name:
313 or 513 (circle)

Reading

- Read sections 8.5 and 6.4 of Strang.

Problems Math 313:

1. Strang, section 8.5 , problem 1
2. Strang, section 8.5, problem 2 (use the L^{2} inner product we discussed in class)
3. Find the Fourier series of $f(x)=\cos (3 x)$. (Hint: it won't require much computation.)
4. Find the Fourier series of $f(x)=x(2 \pi-x)$. You may use an outside tool (e.g., Wolfram Alpha) to evaluate the integrals. Graph this function in MATLAB, along with its Fourier series up through $k=5$. Include a printout of your results.
5. Find the Fourier series of the function $f(x)$ that equals 0 for $0 \leq x \leq \pi$ and equals $x-\pi$ for $\pi \leq x \leq 2 \pi$. Also graph this function in MATLAB, along with its Fourier series up through $k=5$. Include a printout of your results.
6. The spectral theorem says that if A is symmetric, then A is orthogonally diagonalizable. Prove the converse: i.e., that if A is orthogonally diagonalizable, then A must be symmetric.
7. True or false? If true, give a brief explanation. If false, provide a counterexample:
(a) If A is symmetric, then A has distinct real eigenvalues.
(b) If A is symmetric, then A is diagonalizable.
(c) If A is symmetric with eigenvalues $3,2,1$, then any two eigenvectors that are linearly independent are also orthogonal.
(d) If A is symmetric with eigenvalues $3,2,2$, then any two eigenvectors that are linearly independent are also orthogonal.
8. Find a matrix that is orthogonal and symmetric, but not the identity.
9. Strang, section 6.4 , problem 26
10. Orthogonally diagonalize the following matrix:

$$
\left[\begin{array}{cc}
16 & -4 \\
-4 & 1
\end{array}\right]
$$

(OVER)
11. Orthogonally diagonalize the following matrix. Hint: the eigenvalues are 7 and -2 :

$$
\left[\begin{array}{ccc}
3 & -2 & 4 \\
-2 & 6 & 2 \\
4 & 2 & 3
\end{array}\right]
$$

(Don't forget to check your answer at the end!)

Math 513: all of the above, plus:

1. Let V be the vector space of $n \times n$ matrices. Prove that $\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right)$ defines an inner product on V. Also prove that the subspace of symmetric matrices is orthogonal to the subspace of skew-symmetric matrices using this inner product. (Optional challenge: can you write down a formula for the orthogonal projection of a matrix A onto the subspace of symmetric matrices? And projection onto the subspace of skew-symmetric matrices?)
2. Let V be the vector space of continuous functions $f(x)$ on the interval $[0, P]$, for some constant $P>0$. Define an inner product on V as:

$$
\langle f(x), g(x)\rangle=\int_{0}^{P} f(x) g(x) d x
$$

Start with the orthogonal functions $1, \sin \left(\frac{2 \pi}{P} m x\right), \sin \left(\frac{2 \pi}{P} n x\right)$ for $m, n \geq 1$ and make them orthonormal. Find the formula for the Fourier coefficients of a function $f(x)$ defined on $[0, P]$. Hint: your answer should reduce to that given in class when $P=2 \pi$.

MATLAB assignment

To be announced soon!

