Math 313/513, Homework 8 (due Thurs. Mar. 22)

Name: \qquad 313 or 513 (circle)

Reading

- Read sections $6.2,6.3$, and the first four pages of 4.2

Problems

- Math 313:
- Section 6.2, problem 1 (show your work)
- Section 6.2, problem 4 (explain your answers)
- Section 6.2, problem 7
- Section 6.2, problem 11
- Section 6.2, problem 15
- Section 6.3, problem 8 (ignore the comment on $-w^{2}$)
- Find a 3×3 matrix whose eigenvalues are $3,1,0$ and whose corresponding eigenvectors are

$$
\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] .
$$

1. Suppose A is 3×3 with eigenvalues $0,1,2$. Must A be diagonalizable? Why?
2. Suppose A is 3×3 with eigenvalues 0 and 2 . Must A be diagonalizable? Could A be diagonalizable possibly? Why?

- Section 4.2, problem 1 (note Strang's notation differs from that given in class)
- Section 4.2, problem 2 (note Strang's notation differs from that given in class)
- Math 513: all of the above, plus:
- Section 6.2, problem 36
- Prove that for any matrix A, e^{A} is always invertible. (Hint: what should its inverse be?)
(OVER)

MATLAB assignment

How does a computer find the eigenvalues of a square matrix A ? Rather than trying to find roots of a polynomial, many systems use the "power method," described below, at least for the problem of finding the largest real eigenvalue. First, choose a tolerance value, such as 10^{-6}. Start with x_{0}, a random vector of unit length with n entries. Start looping, where you set $y_{k}=A x_{k-1} . x_{k}$ will be the result of normalizing y_{k} to have unit length. Keep looping until $x_{k}-x_{k-1}$ has length less than the tolerance. (Note: by "length" I mean Euclidean length, not the number of entries; by "unit" I mean length 1; to "normalize" a vector, you divide it by its length.) Now the length of y_{k} is your estimate for the largest real eigenvalue, and x_{k} is your estimate for the eigenvector.

Write a function: function [lambda, V]=lastname_eig(A) stored in lastname_eig.m that takes in a square matrix A and returns your best guess for the largest real eigenvalue lamdba and eigenvector V .

Check your code on some matrices of your choosing to make sure it works correctly. In your comments, answer the following questions:
a. If you try your code on the matrix [$0-1 ; 10]$ what goes wrong? Answer in two ways: algebraically, in terms of eigenvalues, and geometrically, in terms of what the power method is doing. Also, please fix your code to avoid infinite loops!
b. Why does a 3×3 matrix always have a real eigenvalue?

Include your comments, and submit your code to Blackboard. Please remember to name your file as requested.

