Math 313/513, Homework 5 (due Thurs. Feb. 16)

Name:
313 or 513 (circle)

Reading

- Read sections 3.4-3.5

Book problems

- Math 313:
- Section 3.4: 3, 6, 14, 16, 17, 23
- Section 3.5: 2, 9, 11, 16, 26, 32
- Math 513: all of the above, plus:
- Section 3.4: 34
- Section 3.5: 40

MATLAB assignment

This week we will study integral calculus in a discrete setting.

- Write a function lastname_simp_int (in your file lastname_simp_int.m where lastname is your last name with no spaces) that takes in the following data: a function $f(x)$ to be integrated (see hints below), the starting and ending values a and b of the integration, and the (even!) number n of subdivisions. The output of lastname_simp_int is the output of performing Simpson's rule to numerically approximate $\int_{a}^{b} f(x) d x$.
- Begin by recalling how Simpson's rule works. First, find Δx. Next, create a column vector \vec{y} consisting of the values of $f(x)$ at the points $a, a+\Delta x, a+$ $2 \Delta x, \ldots, b$ Finally construct a row vector S consisting of appropriate values so that $S \vec{y}$ outputs the result.
- You may wish to test out your code on functions you can integrate exactly, like $\sin (x)$ or x^{2} to compare your function's output with the true value. The grader will use your function to give a good approximation to $\int_{-10}^{10} e^{-x^{2}} d x$ with $n=40$.
- Recall that Simpson's rule works by locally approximating f near x_{k} by the parabola passing through $\left(x_{k-1}, y_{k-1}\right),\left(x_{k}, y_{k}\right),\left(x_{k+1}, y_{k+1}\right)$, then adding up the areas under all these parabolas. Within your function lastname_simp_int, generate a plot that shows the graph of f overlaid with all these segments of parabolas. (Hint: on the second assignment, you generated code that finds the coefficients of a polynomial passing through specified points.)

Include your comments, and submit your code to Blackboard. Please remember to name your file in the form lastname_hw05.m

Some MATLAB hints

1. How do you pass a function like $f(x)=x^{2}$ to another function in MATLAB?
```
sqr = @(x) x.^2;
S = simp_int(sqr, 0, 1, 10)
```

This would call the function simp_int with $f(x)=x^{2}$, from $x=0$ to $x=1$, with $n=10$ subdivisions.

