Math 313/513, Homework 4 (due Thurs. Feb. 9)

Name: \qquad 313 or 513 (circle)

Reading

- Read sections 3.1 - 3.3.

Book problems

- Math 313:
- section 3.1: $5,10,17,19,23,29$ (be sure to justify your answers, especially for $23!$)
- section 3.2: 2, 3, 9, 12, 13, 16
- section 3.3: 2, 8
- Recall that \mathbb{P}_{n} is the vector space of polynomials of degree at most n. Fix a real constant c. Let W_{c} be the subset of \mathbb{P}_{n} consisting of polynomials whose constant term equals c. For what values of c is W_{c} a subspace of \mathbb{P}_{n} ? Explain.
- Math 513: all of the above, plus:
- section 3.1: problem 30
- section 3.2: problem 35 (explain your answer!)
- Prove carefully that the column space of an $m \times n$ matrix A is indeed a subspace (of \mathbb{R}^{m}). Hint: there are three things you need to check.
- section

MATLAB assignment

This week we will study $n \times n$ matrices A that are sparse, meaning that most entries (say at least 90%) are zero. Such matrices often show up in practice, and MATLAB has a more efficient way of dealing with them: rather than recording n^{2} numbers, it keeps track simply of the rows and columns of the nonzero entries, and their values. If A is an ordinary matrix, sparse(A) returns a new data type that represents A being stored in this fashion.

For now, we will focus on k-banded square matrices A : this means there exists a number k such that $a_{i j}=0$ if $|i-j|>k$. Usually, k is much smaller than n, making the matrix sparse.

- In your comments, explain by what familiar term we refer to 0 -banded matrices. (OVER)
- Write a function (see hint below) rand_band (n, k) that takes in integers $n>0$ and $k \geq 0$ and outputs a randomly generated $n \times n$ matrix that is k-banded. Be sure that the matrix you return is stored in the sparse format.
- Write code, similar to that in last week's assignment, that measures the running time for solving $A \vec{x}=\vec{b}$ for random $n \times 1$ vectors \vec{b} and random 10 -banded $n \times n$ matrices A. Let n start at 100 and go up in steps of, say, 50 , until it gets so big that your computer and/or MATLAB has difficulty with it. (Warning: don't measure the time it takes to generate the random matrix and vector.)
- Generate a plot with the values of n on the x-axis and the corresponding running times on the y-axis.
- In your comments, make a conjecture based on your results about how the running time depends on n (e.g., is it proportional to $n, n^{2}, n^{3}, n \log (n)$, etc.). The point of this exercise is that you can often beat out the " n^{3} " rule if your matrix is sparse (or banded, in this case).

Now, put all your code together into a .m file, being sure to include your comments. Submit to Blackboard, using the format lastname_hw04.m

Some MATLAB hints

1. How do you write a function in MATLAB? Ideally, you'd do this in a separate .m file, but for now, at the top of your .m file, do something like:
```
function z = multiply_numbers(m,n)
    z = m*n;
end
```

Then put your usual code below. For future reference, you can return multiple values from a function by:

```
function [y, z] = add_and_multiply_numbers(m,n)
    y = m + n;
    z = m*n;
end
```

