Math 312 (Linear Algebra): Course Summary Spring 2011, Prof. Jauregui

- Linear systems
 - consistency/inconsistency
 - multiple interpretations of $A\vec{x} = \vec{b}$: matrix equation, vector equation, system of scalar equations
 - row reduction
 - * (reduced) echelon form
 - * pivot positions, pivot columns
 - vector algebra in \mathbb{R}^n
 - * linear independence/dependence
 - * span of a collection of vectors
 - homogeneous equation
- Linear transformations
 - dynamical interpretation of $A\vec{x} = \vec{b}$
 - the matrix of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$
 - one-to-one and onto linear transformations
 - invertible matrix theorem ("big theorem")
 - interpretation of matrix multiplication in terms of composition
 - geometric interpretation of determinant
- Vector spaces
 - subspaces of \mathbb{R}^n
 - $\ast\,$ column space, null space
 - basis for a subspace of \mathbb{R}^n , coordinate vectors
 - rank-nullity theorem
 - abstract vector spaces
 - * examples: function spaces, polynomial spaces \mathbb{P}_n
 - * linear transformations between vector spaces, kernel and range
 - * bases for general vector spaces
 - change-of-basis (for vectors and for linear transformations)
- Spectral Theory ("eigenstuff")
 - Eigenvalues and eigenvectors, characteristic polynomial
 - eigenspaces and dimension
 - diagonalization of a square matrix
 - * equivalent condition: maximum number of linearly independent eigenvectors
 - * sufficient condition: distinct eigenvalues
 - * sufficient condition: symmetric matrix

- interpretation of diagonalization via change-of-basis
- complex eigenvalues and eigenvectors
- Orthogonality
 - dot product on \mathbb{R}^n , orthogonality, orthogonal matrices
 - orthogonal complement of a subspace
 - symmetric matrices and orthogonal diagonalization
 - orthogonal projection
 - orthogonal/orthonormal bases and Gram-Schmidt algorithm
 - least-squares solutions of inconsistent linear systems, error
 - singular values of an $m \times n$ matrix and their interpretation
- Matrix factorizations/decompositions
 - LU decomposition, applications to solving $A\vec{x} = \vec{b}$
 - QR decomposition
 - singular value decomposition (SVD)
 - Jordan canonical form
- Applications
 - construct lines/parabolas/polynomials passing through prescribed points
 - Markov chains, transition of states, steady-state vectors
 - discrete dynamical systems
 - Google's PageRank algorithm
 - construct lines of best fit via least-squares
 - using the SVD to compress images (rank-k approximation to a matrix)
 - principal component analysis
 - * applications to finance and data analysis
 - Assignment problem, solution via the Hungarian algorithm
 - matrix exponential, solutions of a systems of linear ODEs
 - error-correcting codes