Math 312 (Linear Algebra): Course Summary Spring 2011, Prof. Jauregui

- Linear systems
- consistency/inconsistency
- multiple interpretations of $A \vec{x}=\vec{b}$: matrix equation, vector equation, system of scalar equations
- row reduction
* (reduced) echelon form
* pivot positions, pivot columns
- vector algebra in \mathbb{R}^{n}
* linear independence/dependence
* span of a collection of vectors
- homogeneous equation
- Linear transformations
- dynamical interpretation of $A \vec{x}=\vec{b}$
- the matrix of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
- one-to-one and onto linear transformations
- invertible matrix theorem ("big theorem")
- interpretation of matrix multiplication in terms of composition
- geometric interpretation of determinant
- Vector spaces
- subspaces of \mathbb{R}^{n}
* column space, null space
- basis for a subspace of \mathbb{R}^{n}, coordinate vectors
- rank-nullity theorem
- abstract vector spaces
* examples: function spaces, polynomial spaces \mathbb{P}_{n}
* linear transformations between vector spaces, kernel and range
* bases for general vector spaces
- change-of-basis (for vectors and for linear transformations)
- Spectral Theory ("eigenstuff")
- Eigenvalues and eigenvectors, characteristic polynomial
- eigenspaces and dimension
- diagonalization of a square matrix
* equivalent condition: maximum number of linearly independent eigenvectors
* sufficient condition: distinct eigenvalues
* sufficient condition: symmetric matrix
- interpretation of diagonalization via change-of-basis
- complex eigenvalues and eigenvectors
- Orthogonality
- dot product on \mathbb{R}^{n}, orthogonality, orthogonal matrices
- orthogonal complement of a subspace
- symmetric matrices and orthogonal diagonalization
- orthogonal projection
- orthogonal/orthonormal bases and Gram-Schmidt algorithm
- least-squares solutions of inconsistent linear systems, error
- singular values of an $m \times n$ matrix and their interpretation
- Matrix factorizations/decompositions
- LU decomposition, applications to solving $A \vec{x}=\vec{b}$
- QR decomposition
- singular value decomposition (SVD)
- Jordan canonical form
- Applications
- construct lines/parabolas/polynomials passing through prescribed points
- Markov chains, transition of states, steady-state vectors
- discrete dynamical systems
- Google's PageRank algorithm
- construct lines of best fit via least-squares
- using the SVD to compress images (rank- k approximation to a matrix)
- principal component analysis
* applications to finance and data analysis
- Assignment problem, solution via the Hungarian algorithm
- matrix exponential, solutions of a systems of linear ODEs
- error-correcting codes

