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ABSTRACT

OBSTRUCTION CRITERIA FOR MODULAR DEFORMATION PROBLEMS

MAY 2015

JEFFREY HATLEY, B.A., THE COLLEGE OF NEW JERSEY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Tom Weston

For a cuspidal newform f =
∑
anq

n of weight k ≥ 3 and a prime p of Q(an), the deformation

problem for its associated mod p Galois representation is unobstructed for all primes outside some

finite set. Previous results give an explicit bound on this finite set for f of squarefree level; we modify

this bound and remove the squarefree hypothesis. We also show that if the p-adic deformation

problem for f is unobstructed, then f is not congruent mod p to a newform of lower level.
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Q̄ a fixed algebraic closure of Q
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C H A P T E R 1

INTRODUCTION

With only a little exaggeration, modern number theory can broadly and succinctly be described

as the study of the absolute Galois group GQ = Gal(Q̄/Q) of the rational numbers. This object,

which encodes information about all solutions to all polynomial equations with rational coefficients,

is extremely complicated. To study it, number theorists generally consider its representations, which

are continuous1 homomorphisms

ρ : GQ → GLn(K)

from GQ to some matrix group.

Modular forms provide an abundant source of interesting 2-dimensional Galois representations,

thanks to work of Deligne and Serre (see Theorem 2.1). Given a newform f and a choice of a prime

p, one can construct a representation

ρf : GQ → GL2(O)

where O is a finitely generated Zp-module. Reducing modulo the maximal ideal of O yields a

residual representation

ρ̄f : GQ → GL2(k)

where k = O/p is a finite field of characteristic p. In principle, the representations ρf and especially

1As GQ = lim←−Gal(L/Q) is the projective limit of the finite Galois groups Gal(L/Q), where L/Q ranges over all
finite extensions of Q, it is endowed with the profinite topology, hence the requirement that ρ be continuous.
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ρ̄f are easier to understand than the full Galois group GQ.

Given a residual representation ρ̄ : GQ → GL2(k), there are many different representations

ρ : GQ → GL2(Z̄p) which may lift ρ̄, in the sense of making the following diagram commute:

GQ
ρ //

ρ̄ $$

GL2(Z̄p)

��
GL2(k)

In [13], Mazur took up the problem of describing all such lifts ρ of a fixed residual representation

ρ̄. As described in greater detail in Chapter 3, he showed that they were parametrized by a finitely

generated Zp-module R called a universal deformation ring.

The deformation theory of Galois representations, and especially of modular Galois represen-

tations, has been an active area of research ever since Mazur’s original paper. Most notably,

deformation theory has played a central role in the proofs of both the Taniyama-Shimura Conjec-

ture [1, 22] and Serre’s Conjecture [10, 11]. In both proofs, it is necessary to show that a certain

residual Galois representation

ρ̄ : GQ → GL2(F̄p)

is given by the reduction of a modular Galois representation. As modular forms can be parametrized

by a geometric algebra called a Hecke algebra, denoted T, the strategy was to produce an isomor-

phism between the relevant deformation ring R and the appropriate Hecke algebra T; theorems

of this type are now commonly known as “R = T theorems”. Understanding the structure of a

deformation ring R is thus an inherently interesting and important problem.

This thesis presents two results regarding the structure of deformation rings associated with

modular Galois representations. In the simplest case, a deformation ring R is isomorphic to a power

series ring in three variables, and in this case the deformation problem is called unobstructed; this

terminology was coined by Mazur in [13]. The first original theorem in this thesis, Theorem 4.15,

describes conditions (which depend only on the modular form f associated with ρ̄f ) guaranteeing
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that the deformation problem is unobstructed. The second theorem, Theorem 5.5, shows that the

deformation ring R is heavily influenced by the ramification behavior which is permitted to appear

in deformations of ρ̄f .

For the reader who is familiar with algebraic number theory, this thesis is reasonably self-

contained. Some definitions, important theorems, and technical lemmas in the theory of Galois

cohomology have been relegated to an appendix. Chapters 2 and 3 lay the theoretical foundation

for the rest of the thesis, recalling the important properties of modular forms, their associated Galois

representations, and of deformation rings. Chapters 4 and 5 are devoted to proving Theorems 4.15

and 5.5, respectively. Chapter 6 gives some examples of applications of the main theorems.
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C H A P T E R 2

MODULAR GALOIS REPRESENTATIONS

In this chapter we recall the basic facts about Galois representations associated with modu-

lar forms. We also record the aspects of the Langlands Correspondence and the classification of

automorphic representations which will be used in the sequel.

2.1 Modular Forms and Galois Representations

We begin by establishing some notation and language for modular forms. Proofs are omitted,

and we recall only the facts which are essential to the rest of this thesis.

2.1.1 Modular Forms

Let H = { z ∈ C | Im z > 0} denote the complex upper half-plane. If f : H → C is a complex

function, then SL2(Z) acts on f by

τ · f(z) = f

(
az + b

cz + d

)
, τ =

(
a b
c d

)
∈ SL2(Z).

For any integer N ≥ 1, we have the following congruence subgroups:

Γ0(N) = {
(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N)}

Γ1(N) = {
(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)}

4



Let Γ be one of Γ0 or Γ1. A modular form of weight k and level Γ(N) is a holomorphic function

f : H → C such that, for every τ ∈ Γ(N), the identity

τ · f(z) = (cz + d)kf(z) (2.1)

is satisfied. It is also required that f is holomorphic at infinity and at the cusps.

Since Γ(N) will contain a matrix of the form ( 1 a
0 1 ) for some integer a, f is a-periodic, which

implies that f has a q-expansion

f(q) =
∑
n≥0

an(f)qn

with an(f) ∈ C for each n. If a0(f) = 0 then f is said to be a cuspform. The space of cuspforms

of weight k and level Γ(N) is denoted Sk(Γ(N)). If the particular congruence subgroup Γ0(N) or

Γ1(N) is clear from context, or if it is irrelevant, we may just say that f is of weight k and level

N , and write f ∈ Sk(N).

A cuspidal modular form f is called a newform if

• it is in the new subspace Sk(N)new,

• it is normalized, i.e. a1(f) = 1, and

• it is a simultaneous eigenform for all of the Hecke operators Tn and diamond operators 〈n〉.

In this case, for every prime p we have Tp(f) = ap(f)f , and for every d|N we have 〈d〉f = ω(d)f

for some Dirichlet character ω. We call χ the nebentypus character of f . The ai(f) are algebraic

integers, the associated field extension Kf = Q({ai}i≥1) is a number field, and this field contains

the values ω(d). For a prime p lying over a rational prime p, we say f is ordinary at p if ap(f) 6= 0

(mod p); otherwise it is called nonordinary at p.

2.1.2 Modular Galois Representations

Fix, now and forever, algebraic closures and embeddings Q̄ ↪→ Q̄` for every prime `. Denote

the corresponding Galois groups by G` ↪→ GQ.
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Let f ∈ Sk(N) be a newform of weight k ≥ 2 and nebentypus ω. For the entirety of this

subsection, fix a rational prime p as well as a prime p of Q̄ lying over it. Let Kp = Kf,p denote

the completion at p of the number field associated to f , so there is an embedding Kp ↪→ Q̄p. Let

εp : GQ → Z×p denote the p-adic cyclotomic character.

For each such choice of p, it is possible to associate to f a Galois representation ρf,p. The

following theorem is due to Deligne.

Theorem 2.1 (Deligne) Let f =
∑
anq

n be a newform of weight k ≥ 2, level N , and nebentypus

character ω. There is a continuous homomorphism

ρf,p : GQ → GL2(Kp)

which is unramified outside the primes dividing Np. The determinant of ρf,p is εk−1
p ω, and for

every prime ` - Np, we have

trace(ρf,p(Frob`)) = a`.

In fact, ρf,p can be conjugated so that its image is in GL2(O), where O is the ring of integers of

Kp. This depends on a choice of a GQ-stable lattice. Once this choice is made, it makes sense to

compose ρf,p with the reduction mod p map, which yields the residual (mod p) Galois representation

ρ̄f,p : GQ → GL2(kp),

where kp is the residue field of O. For almost all primes p, the residual representation ρ̄f,p is

absolutely irreducible, and in this case, the residual representation is actually independent (up to

isomorphism) of the choice of lattice. In most of our applications, we will only consider primes p for

which ρ̄f,p is absolutely irreducible, in which case we can harmlessly assume ρf,p : GQ → GL2(O)

to be integral.

6



2.2 Automorphic Forms and Local Langlands

Given a modular Galois representation ρf,p, it is useful to consider the restriction of ρf,p or ρ̄f,p

to the decomposition group G` ⊂ GQ for each prime `. By associating the modular form f to an

automorphic form φf , the Local Langlands Correspondence (for n = 2) allows us to determine these

restrictions explicitly. In this section, we (very briefly) recall the important facts about automorphic

forms and the Local Langlands Correspondence which will be needed in later chapters. The primary

source for this section is [4].

Every modular form f , being a holomorphic function on H, corresponds to an automorphic

form φf : GL2(A) → C; here A denotes the adeles of Q. This automorphic form gives rise to

an infinite-dimensional, irreducible, admissable automorphic representation π of GL2(A). This

representation can be decomposed as a restricted tensor product π = ⊗π`, indexed by places `,

where each local component π` is an irreducible admissable representation of GL2(Q`).

The Local Langlands correspondence for n = 2 tells us that such representations π` are in

bijection with (isomorphism classes of) 2-dimensional complex Frobenius-semi-simple Weil-Deligne

representations of WQ`
, the Weil-Deligne subgroup of G`. Grothendieck’s Monodromy Theorem [8,

Proposition 2.17] allows us to associate π` with a representation ρ` : G` → GL2(K̄p), and in our

setting, we in fact have ρ` = ρf,p|G`
. See [8, Section 2] for more details.

Since each local component π` is irreducible, π` (or, equivalently, ρf,p|G`
) is one of the following

types:

(i) π` = π(χ1, χ2) is principal series associated to characters χi : G` → K̄×p , where χ1χ
−1
2 6= | · |±

(| · | denotes the absolute value character);

(ii) π` ' St⊗ χ is special (twist of Steinberg) associated to a character χi : G` → K̄×p ; or

(iii) π` is supercuspidal.

While the definitions of types (i)–(iii) can be found in [4, Section 11.2], it will be sufficient

for our purposes to understand what the corresponding local Galois representations look like. In

7



fact, we may consider the base change of such a representation to the algebraic closure K̄p. The

following can be found in [21].

When π` is principal series associated to characters χ1, χ2, the local Galois representation has

the form

ρf,p|G`
⊗ K̄p '

χ1 ∗

0 χ2

 . (2.2)

When π` is special with associated character χ, the local Galois representation has the form

ρf,p|G`
⊗ K̄p '

εpχ ∗

0 χ

 . (2.3)

We postpone until Section 4.3.3 discussion of the supercuspidal representations, which are more

complicated to describe.

8



C H A P T E R 3

DEFORMATION THEORY

3.1 Basic Definitions

Consider an odd, continuous Galois representation ρ̄ : GQ,S → GL2(k), where k is some finite

field and S is a finite set of primes containing the characteristic of k and the infinite place. Here

GQ,S denotes the Galois group of the maximal extension of Q unramified outside S. Let C be the

category whose objects are local rings which are inverse limits of artinian local rings with residue

field k, and whose morphisms A → B are continuous local homomorphisms inducing the identity

map on residue fields. If A ∈ C, then we say ρ : GQ → GL2(A) is a lift of ρ̄ if the following diagram

commutes:

GQ
ρ //

ρ̄f ##

GL2(A)

��
GL2(k)

The vertical arrow is induced by the reduction map A→ k; we consider two lifts equivalent if they

are conjugate to one another by a matrix in the kernel of this induced map. An equivalence class

of lifts is called a deformation of ρ̄.

There is an associated deformation functor

DS
ρ̄ : C → Sets

which sends a ring A to the set of deformations of ρ̄ to A. When ρ̄ is absolutely irreducible, this

9



functor is representable by a ringRρ̄ ∈ C [3, Lemma 9.5]. Thus, there exists a universal deformation

ρuniv : GQ → GL2(Rρ̄) such that, for any deformation ρ : GQ → GL2(A) of ρ̄, there is a unique

map GL2(Rρ̄)→ GL2(A) making the following diagram commute:

GQ
ρuniv
//

ρ
$$

GL2(Rρ̄)

��
GL2(A)

In the normal way, these universal objects are unique up to unique isomorphism.

3.2 Deformations of Modular Galois Representations

Let f be a newform of level N . Let p be a prime, lying above a rational prime p, such that ρ̄f,p

is absolutely irreducible. Write O for the ring of integers of Kp, and write kp for its residue field,

which has characteristic p. Let S denote the set of the primes dividing Np. As described in 2.1.2,

Deligne’s theorem (Theorem 2.1) produces a Galois representation

ρf,p : GQ → GL2(O).

Since ρf,p is unramified outside of Np∞, it actually factors through GQ,S = Gal(QS/Q), where

QS is the maximal extension of Q unramified outside S. So we obtain a diagram

GQ,S

ρf,p //

ρ̄f,p $$

GL2(O)

��
GL2(kp)

Thus, any deformation of the residual representation ρ̄f,p must also be unramified outside S.

Later in this thesis, particularly in Chapter 5, we will enlarge S to include more finite primes

than simply those dividingNp. This will have the effect of imposing stronger ramification conditions

10



on the deformations of ρ̄f,p. See also Section 3.4 below for relevant notation.

3.3 Structure of Deformation Rings

We return to the notation from Section 3.1. For i = 1, 2, let di be the k-dimension of the

Galois cohomology group H i(GQ,S , ad ρ̄). Mazur showed [13, Section 1.10] that d1 − d2 = 3 and

the universal deformation ring is of the form

Rρ̄ 'W (k)JT1, . . . , Td1K/(r1, . . . , rd2),

where W (k) is the ring of Witt vectors of k. Thus, if d2 = 0, then Rρ̄ is simply a power series ring

in three variables. In this case, the deformation problem for ρ̄ is said to be unobstructed.

Let p > 2 be the characteristic of k, and let εp be the p-adic cyclotomic character. For any

GQ,S-module M , define

X1(GQ,S ,M) := ker

[
H1(GQ,S ,M)→

⊕
`∈S

H1(G`,M)

]
.

Recall that for any representation ρ : G → GL2(K) of a group G over a field K, the adjoint

representation ad ρ : G → GL4(K) is defined by letting g ∈ G act on End(ρ) ' GL2(K) via

conjugation by ρ(g). The trace-zero component of ad ρ is denoted by ad0ρ : G→ GL3(K).

The following proposition [21, Lemma 6] is extremely useful for determining whether certain

deformation problems are unobstructed.

Proposition 3.1 We have

dimkH
2(GQ,S , ad ρ̄) ≤ dimkX1(GQ,S , ε̄p ⊗ ad0ρ̄) +

∑
p∈S

dimkH
0(Gp, ε̄p ⊗ ad ρ̄) (3.1)

with equality if p > 3.

11



Proof. The natural trace pairing

ad ρ̄⊗ ad ρ̄→ k

identifies ε̄p ⊗ ad ρ̄ with the Cartier dual (ad ρ̄)∗ of ad ρ̄. Thus, by Poitou-Tate (A.5) we have an

exact sequence

0 −→ H0(GQ,S , ε̄p ⊗ ad ρ̄) −→
⊕
`∈S

H0(G`, ε̄p ⊗ ad ρ̄)

−→ Hom(H2(GQ,S , ad ρ̄), k) −→X1(GQ,S , ε̄p ⊗ ad ρ̄) −→ 0.

Since ε̄p ⊗ ad ρ̄ = ε̄p ⊕ (ε̄p ⊗ ad0ρ̄) we have

X1(GQ,S , ε̄p ⊗ ad ρ̄) = X1(GQ,S , ε̄p)⊕X1(GQ,S , ε̄p ⊗ ad0ρ̄).

The first term vanishes by [19, Lemma 10.6], so our exact sequence becomes

0 −→ H0(GQ,S , ε̄p ⊗ ad ρ̄) −→
⊕
`∈S

H0(G`, ε̄p ⊗ ad ρ̄)

−→ Hom(H2(GQ,S , ad ρ̄), k) −→X1(GQ,S , ε̄p ⊗ ad0ρ̄) −→ 0.

Thus we have the inequality

dimkH
2(GQ,S , ad ρ̄) ≤

dimkX1(GQ,S , ε̄p ⊗ ad0ρ̄) +
∑
`∈S

dimkH
0(G`, ε̄p ⊗ ad ρ̄)−H0(GQ,S , ε̄p ⊗ ad ρ̄).

By [21, Lemma 3], the group H0(GQ,S , ε̄p⊗ad ρ̄) vanishes if p 6= 3, and the proposition follows.

�
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When ρ̄ = ρ̄f,p for some newform f ∈ Sk(N), the term X1(GQ,S , ε̄p ⊗ ad0ρ̄) can be controlled

by a certain set Cong(f) of congruence primes for f , as described in [21, Section 4.1]. Our focus

will instead be on the local invariants H0(G`, ε̄p⊗ ad ρ̄) for ` ∈ S, which we refer to as obstructions

at `. Thus, we simply state the following result of Weston which handles the X1(GQ,S , ε̄p ⊗ ad0ρ̄)

term.

Write M for the conductor of the nebentypus character ω of f , so M | N . Denote by ω0 the

primitive character associated to ω. We say p is a congruence prime for f if there is a newform g

of weight k and level d | N such that:

• g has nebentypus character lifting ω0;

• g is not a Galois conjugate of f ;

• ρ̄f,p̄ ' ρ̄g,p̄ for some prime p̄ of Q̄p above p.

We denote by Cong(f) the set of congruence primes for f . Then the main result of [21, Section

4.1] is the following.

Proposition 3.2 Let f ∈ Sk(N) be a newform, and let p be a prime of Kf lying over the rational

prime p. Assume that:

(1) ρ̄f,p is absolutely irreducible;

(2) p > k;

(3) Either N > 1 or p - (2k − 3)(2k − 1);

(4) p - N ;

(5) p - φ(N) (that is, ` 6≡ 1 (mod p) for all ` | N);

(6) ρ̄f,p is ramified at p for all p | NM ;

Then X1(GQ,S , ε̄p ⊗ ad0ρ̄) 6= 0 only if p ∈ Cong(f).

Proof. See Lemma 7 and Section 4.1 of [21]. �
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3.4 Some Useful Notation

We introduce some non-standard notation which will be useful throughout this thesis. Given

a modular form f , a prime p | p of K̄f , and a finite set of places S, let us write D(f, S) for the

corresponding deformation problem

GQ,S
ρuniv

//

ρ̄f,p %%

GL2(Rρ̄f,p)

��
GL2(kp)

.

We suppress p from the notation, as it will always be clear from context. If S contains only the

primes dividing the level of f and the infinite place, then we may simply write D(f) , and we call

this the minimal deformation problem for f .
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C H A P T E R 4

EXPLICIT OBSTRUCTION CRITERIA

Let f =
∑
anq

n be a newform in Sk(N) with nebentypus character ω of conductor M . Let S

be a finite set of places of Q containing all places dividing N∞, and let NS denote the product of

the primes in S. Fix a prime p of Kf dividing an odd rational prime p, and let Ŝ = S ∪ {p}. The

main result of [21] is [21, Theorem 18], which is the following.

Theorem 4.1 Suppose that N is squarefree. Assume also that ρ̄f,p is absolutely irreducible and

p > 3. If

H2(GQ,Ŝ , ad ρ̄f,p) 6= 0

then one of the following holds:

(1) p ≤ k;

(2) p | N ;

(3) p | φ(NS);

(4) p | `+ 1 for some ` | NM ;

(5) a2
` ≡ (`+ 1)2`k−2ω(`) (mod p) for some ` | NS

N , ` 6= p;

(6) p = k + 1 and f is ordinary at p;

(7) k = 2 and a2
p ≡ ω(p) (mod p);
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(8) N = 1 and p | (2k − 3)(2k − 1);

(9) p ∈ Cong(f).

It follows that for f of squarefree level, if none of the above conditions are satisfied, then the

deformation problem D(f, S) is unobstructed. This beautiful theorem gave the first general criteria

for determining when a modular deformation problem is unobstructed. Note that these conditions

describe only a finite set of primes, leading to the following corollary:

Corollary 4.2 For a newform f of squarefree level, the deformation problem D(f, S) associated

to a prime p is unobstructed for all but finitely many primes p.

Thus, this theorem says that away from an exceptional finite set of primes, modular deformation

rings are generally power series in three variables. Moreover, one can explicitly determine a set

which contains this exceptional set of obstructed primes from information about the level, weight,

and q-expansion of the modular form being considered.

In this chapter, we improve Weston’s result by removing the hypothesis that the level of f be

squarefree. Thus, for a newform f of any weight k ≥ 2 and any level N ≥ 1, one is able to bound

the set of obstructed primes.

Using the results from the Langlands correspondence described in Chapter 1, we will determine

explicit obstruction criteria for modular deformation problems. That is, given a residual modular

Galois representation ρ̄f,p, we will find conditions on the residue prime p which guarantee that

H0(G`, ε̄p ⊗ ad ρ̄f,p) = 0 for every prime ` in some finite set S. As explained in Section 3.3, the

nonvanishing of these cohomology groups is precisely what prevents the deformation problem from

being unobstructed. If H0(G`, ε̄p ⊗ ad ρ̄) 6= 0, then then corresponding deformation problem is

said to have obstructions at `. Of course, this cohomology group is simply the G`-invariants of the

representation ε̄p ⊗ ad ρ̄. Our strategy is to use the Local Langlands correspondence to determine

(ε̄p ⊗ ad ρ̄)|G`
explicitly.

While modular Galois representations can be hard to describe, it is often easier to understand

their semisimplifications. Thus, when studying the existence of obstructions at a prime `, we will
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frequently use the fact that for any mod p representation ρ̄ : G` → GL2(kp), we have

dimkpH
0(G`, ε̄p ⊗ ad0ρ̄) ≤ dimkpH

0(G`, ε̄p ⊗ ad0(ρ̄)ss), (4.1)

where ad0(ρ̄)ss denotes the semisimplification of ad0ρ̄.

4.1 Notation and Strategy

We fix some notation to be used throughout this chapter. Let f =
∑
anq

n be a newform of

level N and weight k ≥ 2. Let ω be its nebentypus character, and let M be the conductor of ω. Let

K be the number field associated to f , and fix a prime p in K with residue field kp of characteristic

p such that (N, p) = 1 and ρ̄f,p is absolutely irreducible. Let S be a finite set of places containing

the primes dividing N∞, and let Ŝ = S ∪ {p}. We wish to study the conditions under which the

deformation problem D(f, Ŝ) associated to

ρ̄f,p : GQ,Ŝ → GL2(kp)

is unobstructed. As described in Section 3.3, as long as p /∈ Cong(f), then this amounts to

determining when H0(G`, ε̄p ⊗ ad ρ̄) 6= 0 for ` ∈ S. We also remind the reader that the set Ŝ

controls the ramification behavior which is permitted in deformations of ρ̄f,p

Let π be the automorphic representation associated to f , and write π = ⊗π` for its decompo-

sition into admissible complex representations π` of GL2(Q`). By the Local Langlands correspon-

dence, the classification of each π` allows us to study ρ̄f,p|G`
in an explicit fashion. In [21], the

requirement that N be squarefree aided in the determination of π` for each ` ∈ S; in particular, π`

had to be either an unramified principal series, a principal series with one ramified character and

one unramified character, or a special representation associated to an unramified character, and

these were the only possibilities. When `2 | N , it is not so easy to determine the structure of π`.

However, this turns out to be unnecessary, as described in Section 4.3.
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4.2 Local representation at `, where ` ∈ S, ` - N

Before considering the primes ` ∈ S which divide the level of the modular form, let us consider

the simpler cases where the prime ` does not divide N . The restriction of a modular Galois

representation to G` when ` - N depends entirely on whether ` = p or ` 6= p, and we consider these

cases separately. In particular, when ` - N we do not encounter any novelties in the associated

deformation problem, and this case was handled entirely by Weston in [21, Sections 3.1 and 3.4].

We include proofs for completeness, following [21] closely.

4.2.1 Local representation at ` where ` 6= p, ` - N

For a prime ` not dividing Np, the local representation is well-understood. Fix α, β ∈ K̄

satisfying

α+ β = a` and αβ = `k−1ω(`).

The semisimplification of the local representation ρf,p|G`
⊗ K̄p is the direct sum of two characters

ρf,p|ssG`
⊗ K̄p ' χ1 ⊕ χ2,

where the χi : G` → K̄×p are unramified and satisfy

χ1(Frob`) = α and χ2(Frob`) = β.

The reductions mod p of these characters are denoted χ̄i : G` → k̄p. As explained in [2, Section 1],

if α 6= β then ρf,p ⊗ K̄p is split, i.e. ρf,p ⊗ K̄p ' χ1 ⊕ χ2. In this case, it is still possible that the

residual representation is not split, but if α 6≡ β (mod p) then we indeed have

ρ̄f,p|G`
⊗ k̄p ' χ̄1 ⊕ χ̄2.
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The utility of this description comes from the fact that the existence of eigenvectors for ε̄p⊗ad0 ρ̄f,p

with kp-rational eigenvalues is invariant under base change, so to show that H0(G`, ε̄p⊗ad0 ρ̄f,p) = 0

it suffices to study the invariants of ρ̄f,p|G`
⊗ k̄p. The following proposition of Weston [21, Lemma

9] settles this case.

Proposition 4.3 Assume ` - Np and ` 6≡ 1 (mod p). Then H0(G`, ε̄p ⊗ ad ρ̄f,p) 6= 0 if and only if

a2
` ≡ (`+ 1)2`k−2ω(`) (mod p).

Proof. By the preceding discussion and observation (4.1), it suffices to show that (ε̄p⊗ad0 ρ̄f,p|ssG`
)⊗

k̄p has no G`-invariants. A simple computation shows that

(ε̄p ⊗ ad0 ρ̄f,p|ssG`
)⊗ k̄p ' ε̄p ⊕ ε̄pχ̄1χ̄

−1
2 ⊕ ε̄pχ̄

−1
1 χ̄2.

Since G` is topologically generated by Frob` and ε̄p(Frob`) ≡ ` (mod p), the assumption that ` 6≡ 1

(mod p) shows that the first summand has no invariants. Thus, there can be obstructions at ` if

and only if one of ε̄pχ̄1χ̄
−1
2 or ε̄pχ̄

−1
1 χ̄2 is trivial. Evaluating these characters at Frob`, we see that

this is equivalent to the condition

α

β
≡ `±1 (mod p). (4.2)

This congruence can be rewritten as

α

β
+
β

α
≡ `+

1

`
(mod p),

or

(α+ β)2

αβ
≡ (`+ 1)2

`
(mod p).

Since α+ β = a` and αβ = `k−1ω(`), this is equivalent to

a2
` ≡ (`+ 1)2`k−2ω(`) (mod p) (4.3)
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as desired.

Conversely, if (4.3) holds, then so does (4.2), and then the assumption that ` 6≡ 1 (mod p) forces

α 6≡ β (mod p) and the converse follows. �

4.2.2 Local representation at ` where ` = p, ` - N

Recall from Section 2.1.1 the following definitions. For a modular form f =
∑
anq

n and any

prime p | p of K, recall that f is called ordinary at p if ap 6= 0 (mod p); otherwise, f is called

nonordinary at p. When p - N , the structure of the local representation ρf,p|Gp depends on whether

f is ordinary or nonordinary at p. See [6, pp. 214–215] for the details of the following classifications.

• If f is ordinary at p, the semisimplification of ρf,p ⊗ K̄p when restricted to inertia is

ρf,p|Ip ⊗ K̄p ' εk−1
p ⊕ 1.

• If f is nonordinary at p, then ρ̄f,p|Gp is absolutely irreducible.

The first lemma is [21, Lemma 14].

Lemma 4.4 Assume p - N . If f is ordinary at p and H0(Gp, ε̄p⊗ ad ρ̄f,p) 6= 0, then k ≡ 0, 2 (mod

p− 1).

Proof. It suffices to study the semisimplfication of ε̄p ⊗ ad ρ̄f,p|Ip ⊗ k̄p, and by the preceding

discussion this is isomorphic to

ε̄p ⊕ ε̄p ⊕ ε̄kp ⊕ ε̄2−kp .

But ε̄p is ramified at p, hence it is nontrivial. In particular, it has order p−1, so none of ε̄p, ε̄
k
p, ε̄

2−k
p

are trivial if k 6≡ 0, 2 (mod p− 1). �

In the special case where k = 2, the above lemma is vacuous, and we need another lemma.

Lemma 4.5 Assume p - N and p > 2k. Then H0(Gp, ε̄p⊗ ad ρ̄f,p) = 0 unless k = 2 and a2
p ≡ ω(p)

(mod p).
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Proof. The proof is not hard, but it involves the theory of Fontaine-Laffaille and filtered Dieudonné

modules, taking us too far afield. Instead, see [20, Proposition 4.4]. �

The final lemma of this section is [21, Lemma 15].

Lemma 4.6 Assume p - N . If f is nonordinary at p and p > 3, then H0(Gp, ε̄p ⊗ ad ρ̄f,p) = 0.

Proof. As mentioned at the beginning of this section, under the given hypotheses ρf,p|Gp is ab-

solutely irreducible. If the projective image of ρ̄f,p is dihedral, then the Gp-representation ad ρ̄f,p

is the sum of the trivial character, a quadratic character, and an irreducible two-dimensional Gp-

representation. If the projective image of ρ̄f,p is not dihedral, then ad ρ̄f,p is the sum of the trivial

character and an irreducible three-dimensional Gp-representation. In either case, since we assumed

p > 3, the character ε̄p has order at least 3, hence it is neither trivial nor quadratic, and the result

follows from [21, Lemma 3]. �

When ` = p and p | N , the local Galois representation is not nearly as well-understood; indeed,

this is the subject of p-adic Hodge theory. We hypothesize this case out of existence when we prove

the main theorem.

4.3 Twists and `-primitive newforms

Recall that for any primitive Dirichlet character χ of conductor M , we may twist the newform

f to obtain another newform f ⊗ χ =
∑
bnq

n, where bn = χ(n)an for almost all n. The level of

f ⊗ χ is at most NM2, but it may be smaller. For any newform f and any prime `, one says that

f is `-primitive if the `-part of its level is minimal among all its twists by Dirichlet characters. We

have the following simple but important lemma.

Lemma 4.7 Let f be a newform and let f` be an `-primitive twist. Then

H0(G`, ε̄p ⊗ ad ρ̄f,p) = H0(G`, ε̄p ⊗ ad ρ̄f`,p).
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In particular, f has local obstructions at ` if and only if f` has local obstructions at `.

Proof. For some Dirichlet character χ we have f` = f ⊗ χ. Then it is well-known that ρf`,p '

χ ⊗ ρf,p, and a straightforward matrix calculation shows that ad(ρ̄f`,p) ' ad(ρ̄f,p). The lemma

follows. �

By Lemma 4.7, when studying local obstructions at ` for a newform f , we may assume that

f is `-primitive. The utility of considering `-primitive newforms is given by the following result,

which comes from [12, Proposition 2.8].

Proposition 4.8 Let π` be the local component of an `-primitive newform f ∈ Sk(Γ1(N`r)) with

` - N and r ≥ 1. Then one of the following holds.

(1) π` ' π(χ1, χ2) is principal series, where χ1 is unramified and χ2 is ramified;

(2) π` ' St⊗ χ, is special with χ unramified;

(3) π` is supercuspidal.

Proof. See [12, Proposition 2.8] for the proof. �

If the level of a newform f is divisible by `2, it may be difficult to explicitly determine an

`-minimal twist. Loeffler and Weinstein have made this computationally feasible in many cases; see

[12]. We will avoid this extra difficulty and simply determine where obstructions might occur in

all three cases of the above proposition. The arguments used by Weston in [21] are robust enough

to be adapted to the non-squarefree setting when we are in cases (1) and (2) of Proposition 4.8.

Thus, we handle these cases first, following Weston’s arguments closely.

4.3.1 Principal Series Obstruction Conditions

In this section we follow [21, Section 3.2] closely. Suppose we are in case (1) of Proposition 4.8,

so ` | N and π` ' π(χ1, χ2) is principal series associated to two continuous characters χi : G` → K̄p,

22



where χ1 is ramified and χ2 is unramified. Thus, by (2.2), the semisimplification of the associated

Galois representation satisfies

ρf,p|ssG`
⊗ K̄p ' χ1 ⊕ χ2. (4.4)

We obtain the following obstruction criteria; see also [21, Lemma 10].

Lemma 4.9 Suppose π` is principal series, associated to one ramified character and one unramified

character. Assume also that ` 6= p and ` 6≡ 1 (mod p). Then H0(G`, ε̄p ⊗ ad ρ̄f,p) = 0.

Proof. Just as in the proof of Proposition 4.3, it suffices to show that neither ε̄pχ̄1χ̄
−1
2 or ε̄pχ̄

−1
1 χ̄2

is trivial.

By Theorem 2.1, the determinant of ρf,p|G`
is εk−1

p ω|G`
. Then (4.4) implies that

χ1χ2|G`
= εk−1

p ω|G`
.

Since both εp and χ2 are unramified on G`, upon restricting to inertia we see that χ1|I` = ω|I` is a

non–trivial character taking values in µ`−1. By hypothesis ` 6≡ 1 (mod p), so µ`−1 injects into k×p ,

and the reduction χ̄1 : G` → k̄×p is still a ramified character.

It follows that, upon restricting to I`, neither ε̄pχ̄1χ̄
−1
2 or ε̄pχ̄

−1
1 χ̄2 is trivial, hence neither

character is trivial on the full Galois group G`. This proves the result. �

4.3.2 Special Obstruction Conditions

In this section we follow [21, Section 3.3] closely. Suppose we are in case (2) of Proposition 4.8,

so π` is the special representation associated to an unramified character χ : G` → K̄×p . Then by

(2.3) the associated Galois representation has the form

ρf,p|G`
⊗ K̄p '

εpχ ∗

0 χ

 (4.5)

with the upper right corner ramified.
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We begin by collecting some technical lemmas. The following is [20, Lemma 5.1].

Lemma 4.10 If `2 6≡ 1 (mod p), then

ρ̄f,p|G`
⊗ k̄p '

ε̄pχ̄ ∗

0 χ̄

 .

Proof. By (4.5) the semisimplification of ρ̄f,p ⊗ k̄p is ε̄pχ̄⊕ χ̄, so the only way the lemma can fail

is if

ρ̄f,p|G`
⊗ k̄p '

χ̄ ν

0 ε̄pχ̄

 .

for some nontrivial ν : G` → k̄p. Suppose g, h ∈ G`. Then

χ̄(g) ν(g)

0 ε̄pχ̄(g)


χ̄(h) ν(h)

0 ε̄pχ̄(h)

 =

χ̄(gh) χ̄(g)ν(h) + ε̄pχ̄(h)ν(g)

0 ε̄pχ̄(gh)

 .

Since ρ̄f,p is a homomorphism, we must have

ν(gh) = χ̄(g)ν(h) + ε̄pχ̄(h)ν(g),

or equivalently

ε̄−1
p χ̄−1ν(gh) = ε̄−1

p (g)ε̄−1
p χ̄−1ν(h) + ε̄−1

p χ̄−1ν(g)

Thus ε̄−1
p χ̄−1ν is a 1-cocycle in H1(G`, k̄p(−1)), but this group vanishes by Lemma A.2. �

Following Weston, our next step is to translate the existence of obstructions at ` into a statement

about the ramification of ρ̄f,p at `. The following is adapted from [21, Lemma 11].

Lemma 4.11 Assume π` is special, associated to an unramified character χ, with ` 6= p and `2 6≡ 1

(mod p). Then H0(G`, ε̄p ⊗ ad ρ̄f,p) 6= 0 if and only if ρ̄f,p is unramified at `.
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Proof. By Lemma 4.10, the assumption that `2 6≡ 1 (mod p) implies

ρ̄f,p|G`
⊗ k̄p '

ε̄pχ̄ ν

0 χ̄


for some ν : G` → k̄p. Just as in the proof of Lemma 4.10, one can verify that χ̄−1ν ∈ H1(G`, k̄p(1)).

As ε̄p and χ̄ are unramified at `, the representation ρ̄f,p|G`
is unramified if and only if χ̄−1ν is

unramified. The fact that ε̄p is unramified at ` also implies that I` acts trivially on k̄p, so if

φ ∈ H1(G`, k̄p(1)) is nonzero, then its restriction to I` is actually a homomorphism

φ|I` ∈ H
1(I`, k̄p(1)) = Hom(I`, k̄p(1)).

Since char k̄p = p, any such homomorphism must factor through the maximal pro-p quotient of I`,

which is isomorphic to Zp(1). Thus φ|I` is nonzero, and this shows that any nonzero element of

H1(G`, k̄p(1)) is ramified.

Thus, ρ̄f,p is unramified if and only if it is semisimple, and a simple matrix computation shows

that ρ̄f,p is semisimple if and only if H0(G`, ε̄p ⊗ ad0 ρ̄f,p) 6= 0. �

With this lemma in hand, we can give obstruction criteria for the present case. Recall from

Section 3.3 the definition of the congruence primes Cong(f) for a modular form f .

Proposition 4.12 Assume π` is special, associated to an unramified character χ, with ` 6= p,

`2 6≡ 1 (mod p), and ρ̄f,p absolutely irreducible. Then H0(G`, ε̄p ⊗ ad ρ̄f,p) 6= 0 if and only if there

is a prime p̄ of K̄p over p such that p̄ ∈ Cong(f).

Proof. By Lemma 4.11, the existence of obstructions at ` is equivalent to ρ̄f,p being unramified,

and this is equivalent to p̄ ∈ Cong(f) by [6, (B) of p.221]. �
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4.3.3 Supercuspidal Obstruction Conditions

We now consider case (3) of Proposition 4.8, where π` is supercuspidal. When p > 2, a su-

percuspidal π` is always induced from a quadratic extension of Qp, and these will be the focus of

Proposition 4.14 below. When ` = 2, there are additional supercuspidal representations, called

extraordinary representations, and we consider these first. The case where π` is extraordinary was

actually already dealt with in [20, Proposition 3.2] and causes no problems if p ≥ 5. We reproduce

Weston’s proof here.

Proposition 4.13 Suppose π` is extraordinary, so ` = 2, Then H0(G`, ε̄p ⊗ ad ρ̄f,p) = 0 if kp has

residue characteristic at least 5.

Proof. Let ρ : G2 → GL2(Q̄p) be the representation of G2 which is in Langlands correspondence

with π2. In this case, the projective image of inertia, proj ρ(I2), in PGL2(Q̄p) is isomorphic to

either A4 or S4, and the composition

proj ρ(I2) ↪→ PGL2(Q̄p)
ad0

−−→ GL3(Q̄p)

is an irreducible representation of proj ρ. Since proj ρ(I2) has order 12 or 24, it follows that ad0ρ̄f,p

is an irreducible F̄p-representation of I2 since char(kp) ≥ 5, thus H0(I2, ε̄p ⊗ ad0 ρ̄f,p) = 0 and the

proposition follows. �

We will henceforth assume p ≥ 5, so by this proposition there are no obstructions in the

extraordinary case.

Now we deal with the final remaining possibility for π`, which is the supercuspidal, non-

extraordinary case. This is the truly novel case that arises when removing the squarefree hypothesis

and thus is the crux of this chapter. Recall that for any character ψ, we write ψ̄ for its reduction

mod p.

Proposition 4.14 Suppose f is a newform of weight k ≥ 2 such that π` is supercuspidal but not

extraordinary. Suppose also that ` > 5. If `4 6≡ 1 (mod p), then H0(G`, ε̄p ⊗ ad ρ̄f,p) = 0.
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Proof. The Langlands correspondence (cf. [20, Proposition 3.2] or [12, Remark 3.11]) implies that

there is a quadratic extension E/Q` such that

ρf,p|G`
' IndG`

GE
χ

where GE =Gal(Ē/E) is the absolute Galois group of E and χ : GE → Q̄p is a continuous character.

Let χE : Gal(E/Q`)→ {±1} be the nontrivial character for E/Q`. Let χc be the Galois conjugate

character of χ, and let ψ = χ · (χc)−1. We have

ε̄p ⊗ ad0ρ̄f,p|ssG`
' ε̄pχE ⊕

(
ε̄p ⊗ IndG`

GE
ψ̄
)
.

Since p > 3, the first summand has no G`-invariants, so we may focus on the second summand. By

Mackey’s criterion, the induced representation IndG`
GE

ψ̄ is irreducible if and only if ψ̄ 6= ψ̄c. If it is

irreducible, then so is its twist and we are done.

So suppose that ψ̄ = ψ̄c. We first note that, since ψ̄ = χ̄(χ̄c)−1, we have ψ̄c = χ̄cχ̄−1, hence

ψ̄2 = ψ̄ψ̄c = [χ̄(χ̄c)−1] · [χ̄c(χ̄)−1] = 1.

Thus, ψ̄ is a quadratic character on GE .

Restricting the induced representation to GE we have

(IndG`
GE
ψ̄)|GE

' ψ̄ ⊕ ψ̄c = ψ̄ ⊕ ψ̄

where the first equality is a generality about induced representations and the second comes from our

assumption that ψ̄ = ψ̄c. So we already have H0(GE , ε̄p⊗IndG`
GE
ψ̄) = 0 unless ψ̄ = ε̄−1

p |GE
, in which

case ε̄p|GE
is quadratic. Since GE has index 2 in G`, this would imply that on G` the cyclotomic

character ε̄p has order at most 4. Evaluating at Frob`, this implies that `4 ≡ 1 (mod p). So if

`4 6≡ 1 (mod p), then the representation has no GE-invariants and hence it has no G`-invariants,
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completing the proof. �

4.4 Main Theorem

We are now ready to prove the first main theorem of this thesis, which removes the squarefree

hypothesis from Theorem 4.1. For a newform f of level N , recall that Cong(f) is the set of

congruence primes for f as defined in Section 3.3. We use φ to denote Euler’s totient function.

Theorem 4.15 Assume that ρ̄f,p is absolutely irreducible and p ≥ 5. If H2(GQ,Ŝ , ε̄p⊗ad ρ̄f,p) 6= 0

then one of the following holds:

1. p ≤ k;

2. p | N ;

3. p | φ(NS), where NS is the product of the primes in S;

4. p | (`+ 1) for some ` | N ;

5. a2
` ≡ (`+ 1)2pk−2ω(`) (mod p) for some ` ∈ S, ` - N , p 6= `;

6. p = k + 1 and f is ordinary at `;

7. k = 2 and a2
p ≡ ω(p) (mod p);

8. N = 1 and p | (2k − 3)(2k − 1);

9. p ∈ Cong(f);

10. `4 ≡ 1 (mod p) for some ` such that `2 | N .

Remark. We note that conditions (1)–(9) are essentially the same conditions from [21, Theorem

18]; these conditions deal with the non-supercuspidal primes in S, while condition (10) deals with

the (potentially) supercuspidal primes.
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Proof. Since the behavior of the local representation ρ̄f,p|Gp is extremely difficult to control when

p | N , this finite set of primes is hypothesized away by condition (2).

By equation (3.1), if H2(GQ,Ŝ , ε̄p ⊗ ad ρ̄f,p) 6= 0 then either dimkX1(GQ,Ŝ , ε̄p ⊗ ad0ρ̄) 6= 0 or

H0(G`, ε̄p ⊗ ad ρ̄f,p) 6= 0 for some ` ∈ Ŝ. By [21, Lemma 17], the former is only possible if p ∈

Cong(f). This is accounted for in condition (9).

Now let ` ∈ Ŝ. If N > 1 and ` - Np, then by Proposition 4.3, there can exist obstructions at `

only if conditions (3) and (5) are satisfied. If N = 1, then by [21, Proposition 17(3)], we need only

exclude the finitely primes in condition (8).

Suppose ` = p. If f is ordinary at p and k > 2, then Lemma 4.4 shows that condition (1)

or (6) must hold. If f is ordinary at p at k = 2, then Lemma 4.5 shows that condition (7) must

hold. Finally, if f is nonordinary at p, then since p > 3, Lemma 4.6 shows that there can be no

obstructions at p.

Now suppose ` ∈ S (so ` 6= p) and ` | N . By Lemma 4.7 we may assume f is `-minimal. Let π`

denote the corresponding local automorphic representation.

If π` is principal series, then Lemma 4.9 shows that there are no obstructions at ` as long as

` 6≡ 1 (mod p), and condition (3) ensures that this is the case.

If π` is special, then by Proposition 4.12 there can exist obstructions at ` only if condition (3)

or (4), along with condition (9), is satisfied.

If π` is supercuspidal, then by Proposition 4.14, there can exist obstructions at ` only if condition

(10) is satisfied.

This exhausts the possibilities for ` ∈ Ŝ and the structure of π`, and the proof is complete. �

We note that this theorem is extremely amenable to computer-aided computation. The only

primes which are not explicitly described in conditions (1)–(10) are the primes p for which ρ̄f,p is

reducible. The following well-known result (cf. [21, Lemma 21]) describes these final primes to be

excluded and is easy to implement by computer.

Lemma 4.16 Let f =
∑
anq

n be a newform of weight k and level N with associated number field
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K. Let p be a prime of K dividing the rational prime p. Suppose p is a reducible prime for f , so

that ρ̄f,p⊗ k̄p ' χ1⊕χ2 for some characters χ1, χ2 : GQ → k̄×p . If p - N , then each χi has conductor

dividing Np. If also p > k, then one of the χi has conductor dividing N , so that a` ≡ `k−1 + 1

(mod p) for all ` ≡ 1 (mod N).

30



C H A P T E R 5

LEVEL RAISING AND OBSTRUCTIONS

5.1 Minimal Deformation Problems and Optimal Levels

For any odd, continuous, absolutely irreducible representation ρ̄ : GQ → GL2(kp), with kp a

finite field of characteristic p, let H(ρ̄) be the set of newforms of level prime to p giving rise to

this representation, so if f ∈ H(ρ̄) then ρ̄f,p ' ρ̄. Among all such newforms, there is a least level

appearing, which we call the optimal level for H(ρ̄). In fact, this optimal level is the prime-to-p

Artin conductor of ρ̄ (see the introduction of [2]).

Let f and g be newforms in H(ρ̄) with associated minimal sets of primes S and S′, respectively.

We have an isomorphism of residual Galois representations ρ̄f,p ' ρ̄g,p, and if S ⊂ S′ then we

have an equality of deformation problems D(f, S′) = D(g). Furthermore, since S ⊂ S′, if D(f) is

obstructed then so is D(g). In fact, we prove the following theorem:

Theorem 5.1 If D(f) is unobstructed, then f is of optimal level for H(ρ̄).

In Section 5.3 we present the proof of this theorem; our strategy is to prove the contrapositive.

By Proposition 5.2 below, we know the factorization of any nonoptimal level. If g is a newform of

nonoptimal level, we compare it to an optimal level newform f . Since, as discussed above, D(g)

inherits any obstructions that D(f) might have, we may assume that D(f) is unobstructed, and

we show that even in this case, D(g) is necessarily obstructed.

This theorem is motivated by the following heuristic: If ρ̄ is `-ordinary and `-distinguished,

and if H(ρ̄) is the set of of all `-ordinary, `-stabilized newforms with mod ` Galois representation
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isomorphic to ρ̄, then H(ρ̄) is a dense set of classical points in a Hida family H. This object has a

geometric interpretation in which its irreducible components have associated integers, called levels,

which correspond to levels of modular forms. The components of non-minimal level have associated

(full) Hecke algebras of higher Λ = Z`JT K-rank than the minimal-level component (cf. [7, Section

2.4] for more details). Thus, if a general enough R = T theorem is known (or believed), then

this forces the deformation ring to grow as well. Our theorem shows that this sort of behavior is

not a special property of Hida families, and that it actually occurs independent of any geometric

structure.

It is worth pointing out that this theorem does not follow immediately from Theorem 4.15,

because condition (9) of that theorem is not a sharp obstruction criterion, i.e. it does not guarantee

the existence of obstructions.

5.2 Preliminaries

In this section we record the results which we will use to prove this chapter’s main theorem.

First, let us fix some notation.

Let f =
∑
anq

n be a newform of weight k ≥ 2, level N (prime to p), and nebentypus ω, and

let M be the conductor of ω. Let S be a finite set of places containing the primes which divide

Np∞. Let K = Q(an) be the number field associated to f , and fix a prime p of K̄ which lies over

the rational prime p. We have f ∈ H(ρ̄), where ρ̄f,p ' ρ̄.

Suppose f is of optimal level for H(ρ̄). If g ∈ H(ρ̄) is of nonoptimal level, we will want to know

what form its level can have. The following is a result of Carayol (see the introduction of [2]).

Proposition 5.2 Suppose ρ̄ : GQ → GL2(F̄p) is modular of weight k ≥ 2 and level N ′ prime to p.

Then

N ′ = N ·
∏

`α(`)

where N is the conductor of ρ̄, and for each ` with α(`) > 0, one of the following holds:
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1. ` - Np, `(tr ρ̄(Frob`)
2) = (1 + `)2det ρ̄(Frob`) in F̄p and α(`) = 1;

2. ` ≡ −1 mod p and one of the following holds:

(a) ` - N , tr (ρ̄(Frob`) = 0 in F̄p and α(`) = 2, or

(b) ` || N , det ρ̄ is unramified at `, and α(`) = 1;

3. ` ≡ 1 mod p and one of the following holds:

(a) ` - N and α(`) = 2, or

(b) `2 - N , or the power of ` dividing N is the same as the power dividing the conductor of

det ρ̄, and α(`) = 1.

Our goal, then, is to show that each of the possible supplementary primes appearing in Propo-

sition 5.2 gives rise to an obstruction. We collect some lemmas in this direction.

The first lemma is proved in [21, Section 3].

Lemma 5.3 If p | (`− 1) for some ` ∈ S, then D(f, S) is obstructed.

Proof. Since p | `− 1, we have H0(G`, ε̄p) 6= 0. Since ε̄p ⊗ ad ρ̄f,p ' ε̄p ⊕ (ε̄p ⊗ ad0 ρ̄f,p) this shows

that H0(G`, ε̄p ⊗ ad ρ̄f,p) 6= 0 and so D(f, S) is obstructed. �

We record one final lemma before proving our theorem.

Lemma 5.4 If ` || N , ` -M , and `2 ≡ 1 (mod p), then D(f, S) is obstructed.

Proof. As explained in [20, Section 5.2], in this case π` is special, associated to an unramified

character. By (2.3) this translates on the Galois side to the existence of an unramified character

χ : G` → K̄×p such that

ρf,p|G`
⊗ K̄λ '

εpχ ∗

0 χ

 ,
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with the upper right corner ramified. Upon reduction this matrix becomes either

A =

ε̄pχ̄ ν

0 χ̄

 or B =

χ̄ ν

0 ε̄pχ̄


for some ν : G` → k̄p. We note that by Lemma 4.10, possibility B can only occur if `2 ≡ 1 (mod

p).

Let C = ( 0 1
0 0 ). One computes

ACA−1 =

0 ε̄p

0 0

 and BCB−1 =

0 ε̄−1
p

0 0

 ,

and so

(ε̄p ⊗ ad ρ̄f,p) · C =

0 ε̄jp

0 0


for j = 0 or 2, so C ∈ H0(G`, ε̄p ⊗ ad ρ̄f,p). If j = 0, this is obvious; if j = 2, this follows from εp

is ramified only at p and hence factors through a group which is topologically generated by Frob`,

but εp(Frob`) = l, and `2 ≡ 1 (mod p). So in either case H0(G`, ε̄p ⊗ ad ρ̄f,p) 6= 0, hence D(f, S) is

obstructed. �

5.3 Optimal Level Deformation Problems

Let f ∈ Sk(Γ1(N)) and g ∈ Sk(Γ1(N ′)) be newforms in H(ρ̄) with f of optimal level and

N ′ > N ; by Proposition 5.2, N | N ′. Let S (resp. S′) be the set of places of Q dividing Np∞

(resp. N ′p∞), so S ⊂ S′.

Write f =
∑
anq

n. Let K be a field containing the Fourier coefficients of both f and g, and

let p be a prime of K over p such that f ≡ g (mod p) and hence ρ̄ ' ρ̄f,p ' ρ̄g,p. Write kp for the

residue field of p.
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Using this notation, we are now ready to prove Theorem 5.1. For the reader’s convenience, we

restate the theorem.

Theorem 5.5 If D(f) is unobstructed, then f is of optimal level for H(ρ̄).

Proof. We will prove the contrapositive. Keeping the notation from the beginning of Section 5.3,

let f and g be newforms in H(ρ̄), with f of optimal level and g of non-optimal level. We will show

that D(g) is obstructed.

If D(f) is obstructed, then as noted earlier, this implies D(g) is also obstructed. So in proving

the theorem, we may assume that D(f) is unobstructed.

We consider separately the primes ` ∈ S′ which appear in cases (1), (2), and (3) of Proposition

5.2. Note that we have an equivalence of deformation problems D(g, S′) = D(f, S′). We write D

for these equivalent deformation problems.

First, suppose ` | N ′ is as in case (3), so in particular ` ≡ 1 (mod p). Then by Lemma 5.3 we

see that D is obstructed.

Next, suppose ` | N ′ is as in case (1) of the proposition, so ` is a prime such that ` - Np,

α(`) = 1, and `a2
` ≡ (1 + `)2ω(`)`k−1 (mod p), or equivalently (since ` is invertible in k̄p),

a2
` ≡ (`+ 1)2`k−2ω(`) (mod p).

Then by Lemma 4.3 we see that D is obstructed.

Finally, suppose ` | N ′ is as in case (2), so ` ≡ −1 (mod p) and one of the following holds:

(a) ` - N , a` ≡ 0 (mod p), and α(`) = 2; or

(b) ` || N , det ρ is unramified at `, and α(`) = 1.

If ` were as in case (b), then actually ` ∈ S and ` - M , hence Lemma 5.4 shows that in fact

D(f, S) is obstructed. This contradicts our hypothesis on D(f), so we can ignore this case.

Finally, we must consider case (a), so that ` ≡ −1 (mod p), ` - N , a` ≡ 0 (mod p), and α(`) = 2.

Recalling that D = D(f, S′), Lemma 4.3 gives the obstruction since a` ≡ (`+ 1) ≡ 0 (mod p). �
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Remark. It is not the case that every minimal, optimal level deformation problem is unobstructed.

Indeed, for any prime ` we have

ε̄p ⊗ ad ρ̄f,p ' ε̄p ⊕ (ε̄p ⊗ ad0 ρ̄f,p)

and

H0(G`, ε̄p) 6= 0⇔ ` ≡ 1 (mod p),

so condition (3) of Theorem 4.15 is sharp.

Example. Let p = 5, ` = 11, and k = 3. The space S3(Γ1(11), 3) contains one newform defined

over Q and four newforms which are Galois conjugates defined over Q(α), where α is a root

of x4 + 5x3 + 15x2 + 15x + 5. The minimal set S for any of these newforms is S = {11,∞}.

Since S3(Γ1(1)) is empty, all of these newforms are of optimal level for their respective mod p

representations, but since ` ≡ 1 mod p their minimal deformation problems are obstructed.

Remark. The techniques in this paper cannot rule out the possibility that two (or more) congruent

modular forms of optimal level can exist for an unobstructed modular deformation problem.

Combining this result with the fact that Theorem 4.15 excludes only a finite set of primes, we

have the following corollary.

Corollary 5.6 Let f be a newform of level N and weight k ≥ 2. For infinitely many primes p, f

represents an optimal modular realization of a mod p representation ρ̄ : GQ → GL2(F̄p).

Proof. For infinitely many such p, D(f) is unobstructed by Theorem 4.15, and by Theorem 5.5,

this implies that f is of optimal level among modular forms realizing ρ̄. �

Remark. Actually, there is a much simpler proof of this fact: If f is of nonoptimal level for its

mod p representation, then there is a modular form g of lower level such that f is congruent to g

(mod p). But such a congruence can occur for only finitely many primes `, which follows from the

q-expansion principle and the fact that these spaces of modular forms are finite dimensional.
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We also get another corollary. For any integer N , let d(N) be the number of prime divisors of

N , i.e. d(N) =
∑
p|N

1.

Corollary 5.7 Fix a prime p with residue field k of characteristic p > 3, suppose ρ̄ : GQ → GL2(k)

is a modular mod p representation of prime-to-p conductor N , and let f be a newform of level N

such that ρ̄ ' ρ̄f,p. If g is a newform of level N ′ such that f ≡ g (mod p), then

dimkH
2(GQ,S , ad ρ̄) ≥ d

(
N ′/N

)
where S is any finite set of places containing the primes which divide N ′p∞.

Proof. The proof of Theorem 5.5 shows that if g is of nonoptimal level N ′, then for every prime

` dividing N ′/N , we have H0(G`, ε̄p ⊗ ad ρ̄f,p) 6= 0. By equation (3.1) we have

dimkH
2(GQ,S , ad ρ̄) ≥

∑
`∈S

dimkH
0(G`), ε̄p ⊗ ad ρ̄f,p)

and the corollary follows.

�
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C H A P T E R 6

EXAMPLES

Example.

Let k = 2, p = 11, and ` = 7. Consider the CM elliptic curve E with Cremona label 49a1; it is

given by

E : y2 + xy = x3 − x2 − 2x− 1,

and its associated modular form f ∈ S2(Γ0(49)) has q-expansion

f = q + q2 − q4 − 3q8 − 3q9 + · · · .

The mod p Galois representation ρ̄f,p is irreducible, and one checks that none of conditions (1)–(8)

of Theorem 4.15 are satisfied. Using Sage [16], one also verifies that p /∈ Cong(f) and so f is of

optimal level for this representation.

Loeffler and Weinstein have incorporated their results from [12] into the Local Components

package of [16]. Using this, one discovers that π` is supercuspidal. However, since `4 ≡ 3 (mod p),

condition (10) is also not satisfied. Thus D(f) is unobstructed.

Example.

This example shows that condition (10) of Theorem 4.15 is necessary but not sufficient for

producing local obstructions at supercuspidal primes. Let us fix k = 3, p = 5, and ` = 7. Note

that `2 ≡ −1 mod p and `4 ≡ 1 mod p.
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Using [16], one finds a newform f in S3(Γ1(49)) with a q-expansion that begins

f = q +

(
− 1

92
α3 +

5

92
α2 − 41

91
α+

229

92

)
q2 +

(
− 1

184
α3 +

5

184
α2 − 133

184
α+

229

184

)
q3 + · · ·

where α is a root of x4 − 4x3 + 82x2 − 188x+ 1841; let K = Q(α).

Using the Local Components package of [16], one discovers that π` is supercuspidal. Let E =

Q`(s) be the unramified quadratic extension of Q`. Let L = K(β) where β satisfies the polynomial

x2+

(
3

1288
α3 +

11

184
α2 − 153

1288
α+

467

184

)
x−1. Then the character χ associated to π` is characterized

by

χ : E× → L

s 7→ β, 7 7→ 7.

(Here we are viewing χ as a character of E× instead ofGE via local class field theory.) Let p be either

of the two primes of L which lies over p. Then using [16], one verifies that χ and its conjugate χc are

equivalent mod p by checking that β − βc has positive p-valuation. In the notation of Proposition

4.14, this shows that ψ̄ = 1; the induction of this character is a symmetric representation, and so

ε̄p ⊗ Ind
Gp

GE
ψ̄ is an invariant G`-representation, hence H0(G`, ε̄p ⊗ ad ρ̄f,p) = 0.
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A P P E N D I X

COHOMOLOGY AND DUALITY THEOREMS

Galois Cohomology

For the reader’s convenience, we recall here some definitions and well-known facts from Galois

cohomology which are used extensively throughout the rest of this thesis. The main source for the

first two sections is [17, Chapter VII]

Let G = Gal(K/L) be a Galois group and let M be a G-module. We let H0(G,M) = MG

denote the G-invariant elements of M . H0 is functorial in the sense that, if M and N are both G-

modules with a compatible morphism f : M → N , then there is an induced morphism H0(G,M)→

H0(G,N). This functor is left-exact, so given an exact sequence of G-modules

0 −→ A −→ B −→ C −→ 0,

the sequence

0 −→ AG −→ BG −→ CG

is also exact, and the right-derived functors of H0(G, ·) define the higher Galois cohomology groups

H i(G, ·), so that there is a long exact sequence of Galois cohomology groups:

0 −→ H0(G,A) −→ H0(G,B) −→ H0(G,C)

−→ H1(G,A) −→ H1(G,B) −→ H1(G,C)

−→ H2(G,A) −→ H2(G,B) −→ H2(G,C) −→ · · ·
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In this appendix we collect several important results in Galois cohomology which are used at

crucial points in this thesis. In the following sections, µ denotes the group scheme of roots of unity.

Inflation-Restriction

Let G be a group and H / G a normal subgroup. Let A be a G-module. For any i, there are

natural maps

Res : H i(G,A)→ H i(H,A)

Inf : H i(G/H,A)→ H i(G,A),

called restriction and inflation, respectively. The following result is a useful tool for computing

Galois cohomology groups.

Proposition A.1 (Inflation-Restriction Exact Sequence) The following sequence is exact:

0→ H1(G/H,AH)
Inf−−→ H1(G,A)

Res−−→ H1(H,A).

Let G` be a decomposition group above a rational prime `, let I` be its inertia group, and let

GF = G`/I`. Let kp denote a finite field of characteristic p 6= `, and let k̄p be its algebraic closure.

The following technical lemma is known to experts, but a published proof is hard to find. The

proof below was communicated to me by Adam Gamzon. Recall that the Tate twist k̄p(n) denotes

the G`-module which is identical to k̄ as a set, but whose Galois action is given by ε̄np .

Lemma A.2 If `2 6≡ 1 (mod p), then H1(G`, k̄p(−1)) = 0.

Proof. The Inflation-Restriction Exact Sequence in Galois cohomology yields

H1(GF, k̄p(−1)I`)→ H1(G`, k̄p(−1))→ H1(I`, k̄p(−1))GF ,
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where GF ' G`/I`. Since ε̄p is unramified at `, I` acts trivially on k̄(−1), hence this exact sequence

becomes

H1(GF, k̄p(−1))→ H1(G`, k̄p(−1))→ Hom(I`, k̄p(−1))GF .

We will show that both end terms are zero. First we compute Hom(I`, k̄p(−1))GF . Since the charac-

teristic of k̄ is p, any homomorphism in this group must factor through the maximal pro-p quotient

of I`, which is isomorphic as a G`-module to Zp(1) ' εp. Take any φ ∈ Hom(Zp(1), k̄p(−1))GF and

let g ∈ GF denote the Frobenius automorphism. Then since φ is invariant under the action of g,

for any α ∈ I` we have

φ(α) = (g · φ)(α) = g · φ(g−1 · α) = ε̄−2
p (g)φ(α) = `−2φ(α).

Thus, if `2 6≡ 1 (mod p) then Hom(I`, k̄p(−1))GF = 0.

Now we compute the first term. Suppose φ ∈ H1(GF, k̄(−1)). The cocycle condition implies

φ(gk) = φ(g)(1 + p−1 + · · ·+ p−(k−1))

for all k. Let n be the order of p−1 in k̄×, and set m =
(
p−(n−1) + · · ·+ p−1 + p−1

p−1−1
φ(g)

)
. We

will now show that for any r, φ(gr) is equal to the coboundary ε̄−1
p m−m = p−rm−m. Note that

in k̄p we have the identity

1 + p−1 + · · ·+ p−(n−1) = 0

so it suffices to check the claim for σ = gr with 1 ≤ r ≤ n− 1. We have

p−rm−m =

(
p−(r−1) + · · ·+ 1 + p−(n−1) + · · ·+ p−(r+1) +

p−(r+1)

p−1 − 1

)
φ(g)−m,

and since p−1 + · · ·+ p−(n−1) = −1 this is equal to

(
−p−r + 1 + p

(
p−r − 1

p−1 − 1

))
φ(g) = (1 + · · ·+ p−(r−1))φ(g) = φ(gr)
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as claimed.

So H1(GF, k̄(−1)) = 0, and this completes the proof of the lemma. �

Local Duality

Fix a finite extension K of Qp and let GK = Gal(K̄/K) be its absolute Galois group. Let M

be a finite GK-module. The Pontryagin dual of M is defined as

M∗ = Hom(M,µ(K̄)).

Then there is a canonical pairing

M ×M∗ → µ(K̄)

which induces a map (via cup-product)

H i(GK ,M)×H2−i(GK ,M
∗)→ H2(GK , µ(K̄) ' Q/Z

for i = 0, 1, 2.

Proposition A.3 (Tate Local Duality)

1. The map H i(GK ,M)×H2−i(GK ,M
∗)→ Q/Z is a perfect pairing of finite groups.

2. H i(GK ,M) = 0 for i ≥ 3.

Proof. See [14] Chapter 1, Corollary 2.3. �

Thus, there is an identification H i(GK ,M)∨ ' H2−i(GK ,M
∗) where H i(GK ,M)∨ is the Pon-

tryagin dual of H i(GK ,M). Let d = [K : Qp] be the degree of K over Qp. For any finite set X,

let [X] denote its order.

43



Proposition A.4 (Euler-Poincare Characteristic) The Euler-Poincare characteristic ofM (with

respect to K) is

χ(K,M) =
[H0(GK ,M)] · [H2(GK ,M)]

[H1(GK ,M)]
= p−νp([M ])·d.

Proof. See [15] Theorem 7.3.1. �

Poitou-Tate Duality

We now relate the Galois cohomology of a global field to the cohomology of its local completions.

Fix a finite extension K of Q, and for any set S of places of K containing the infinite place, let KS

denote the maximal extension of K unramified outside S. Set GS = Gal(KS/K). Write Sf for the

finite places in S and S∞ for S \ Sf . Let µ denote the group scheme of roots of unity.

Let M be a finite GS-module whose order is an S-unit in K. Let O×S denote the group of S-units

of KS , and again define the Pontryagin dual of M by M∗ = Hom(M,O×S ) = Hom(M,µ(KS)).

In addition to the Galois cohomology groups H i(GS ,M), we define some additional topological

groups. For a place v ∈ S, let Kv denote the corresponding completion, and write H i(Kv,M) in

place of H i(GKv ,M). Then we make the following definitions:

P 0(GS ,M) =
∏
v∈Sf

H0(Kv,M)×
∏
v∈S∞

Ĥ0(Kv,M),

P 1(GS ,M) =
∏̃
H1(Kv,M),

P 2(GS ,M) =
⊕
v∈S

H2(Kv,M).

In the above definitions, Ĥ i denotes the modified (Tate) Galois cohomology groups, and
∏̃

denotes

the topological restricted product.

We thus have homomorphismsH i(GS ,M)→ P i(GS ,M), whose kernels we denote by Xi(GS ,M).

This is the notation used in Section 3.3.

We come now to the main theorem of this appendix.
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Theorem A.5 (Poitou-Tate Exact Sequence) Let M be a finite GS-module such that the

order of M is an S-unit in K. Then there is a canonical exact sequence of topological groups

0 −→ H0(GS ,M) −→ P 0(GS ,M) −→ H2(GS ,M
∗)∨

−→ H1(GS ,M) −→ P 1(GS ,M) −→ H1(GS ,M
∗)∨

−→ H2(GS ,M) −→ P 2(GS ,M) −→ H0(GS ,M
∗)∨ −→ 0

Proof. See [15] Chapter VIII Section 6. �
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