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Abstract. A recent paper of Shekhar compares the ranks of elliptic curves
E1 and E2 for which there is an isomorphism E1[p] � E2[p] as Gal(Q̄/Q)-
modules, where p is a prime of good ordinary reduction for both curves. In
this paper we prove an analogous result in the case where p is a prime of good
supersingular reduction.

1. Introduction

Let p be a prime, write GQ = Gal(Q̄/Q), and let E1 and E2 be two elliptic
curves defined over Q. We say that E1 and E2 are congruent mod p if there is an
isomorphism of GQ-modules

E1[p] � E2[p].

In this case, it is interesting to study what other properties of E1 and E2 are
entangled. For instance, Greenberg and Vatsal [8] showed that if p is a prime of
good ordinary reduction for both curves, then information about the p-primary
Selmer group (over the cyclotomic Zp-extension of Q) of one curve often gives
information about the p-primary Selmer group of the other.

Let Ni denote the conductor of Ei, let N̄i denote the prime-to-p Artin conductor
of the Galois module Ei[p] over Q, and let Σ be any finite set of primes containing
p, ∞, and any prime at which E1 or E2 has bad reduction. Inside of Σ we find a
subset

(1) Σ0 = {v ∈ Σ : v | N1/N̄1 or v | N2/N̄2}.
The strategy of [8] was used in a recent paper of Shekhar [20] to prove that if

E1[p] � E2[p] for p a prime of good ordinary reduction, then the analytic rank of
E1 over Q is related to the analytic rank of E2 over Q. To be more precise, write
ran(Ei/Q) for the analytic rank of Ei over Q, and let Si be the set of primes in Σ0

for which Ei has split multiplicative reduction. Let |Si| denote the cardinality of
Si. Then under some additional technical hypotheses, Shekhar proved that

E1[p] � E2[p] =⇒ ran(E1/Q) + |S1| ≡ ran(E2/Q) + |S2| mod 2.

The proof of this result relies on Iwasawa-theoretic techniques. It has long been
known that the Iwasawa theory for elliptic curves has fewer complications when
working with primes of good ordinary reduction; however, every elliptic curve over
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Q also has infinitely many good supersingular primes [2], so these should not be ne-
glected. In this paper, we prove an analogue of Shekhar’s result in the supersingular
setting.

Theorem 1.1. Let E1 and E2 be elliptic curves over Q, and suppose p ≥ 3 is a
prime such that

• E1[p] and E2[p] are isomorphic as GQ-modules, and
• E1 (and hence also E2) is supersingular at p.

Then there exist two explicit and computable finite sets of primes S1 and S2 such
that

ran(E1/Q) + |S1| ≡ ran(E2/Q) + |S2| mod 2.

See Theorem 4.4 for a more precise statement.

1.1. Outline. We follow the strategy of [20] closely, but we must overcome some
complications that arise from working with supersingular primes. We begin by
reviewing the theory of ±-Selmer groups, recalling some important results on al-
gebraic Iwasawa invariants in the supersingular setting. After translating many
results into the setting of supersingular elliptic curves, we obtain our main theo-
rem as a consequence of the parity conjecture. We conclude with some explicit
examples.

1.2. Notation. Throughout this paper we fix an odd prime p ≥ 3. Write Q∞ for
the cyclotomic Zp-extension of Q, and write Qn for the nth layer of this extension,
so the Galois group Gn := Gal(Qn/Q) � Z/pnZ and G∞ := Gal(Q∞/Q) � Zp.
We denote the Iwasawa algebra by Λ = Zp[[G∞]].

1.3. Assumptions. Throughout the paper, E will refer to an elliptic curve such
that

• E is defined over Q, and
• E is supersingular at p.

E1 and E2 will refer to a pair of such curves which are also congruent mod p. The
assumption that ap(E) = 0 is necessary to apply some crucial results of Kim [11].
While many of the preliminary results can be proven in slightly more generality, we
will need the full strength of Kim’s results to prove our main theorem, so we set this
assumption at the beginning. It is possible that this hypothesis can be removed by
using ideas of Sprung [21], but the statement of the theorem would likely be more
complicated, and since ap(E) = 0 is automatic whenever p ≥ 5, we work under this
slightly more restrictive setting.

2. Algebraic Iwasawa invariants

When studying the Iwasawa theory of an elliptic curve at a prime p, a careful
distinction must be made depending on whether p is ordinary or supersingular.
Recall that E is supersingular at p if p | ap(E); by the Riemann hypothesis for
elliptic curves over finite fields, if p ≥ 5, then this is equivalent to ap(E) = 0.
We begin with an overview of the ordinary case before initiating our study of the
supersingular setting.
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2.1. The ordinary case. We quickly recall some definitions and facts about Selmer
groups of elliptic curves in the ordinary case; since this is all standard, we omit ref-
erences and direct the interested reader to [6] or [7] for more details. Let E be an
elliptic curve defined over Q with good ordinary reduction at p, and let Σ be any
finite set of primes containing p, ∞, and all primes of bad reduction for E. For
any field K, denote by KΣ the maximal extension of K unramified outside Σ. For
every n ≥ 0, the p-Selmer group of E over Qn, denoted Selp(E/Qn), is defined as

Selp(E/Qn) = ker

(
H1(Qn, E[p∞]) −→

∏
�

H�(Qn)

)

= ker

(
H1(QΣ/Qn, E[p∞]) −→

∏
�∈Σ

H�(Qn)

)

where

(2) H�(Qn) :=
∏
η|�

H1(Qn,η, E[p∞])

E(Qn,η)⊗Qp/Zp
.

Here Qn,� is the completion of Qn at �; note that E(Qn,�)⊗Qp/Zp = 0 for � 
= p
[6, Proposition 2.1]. Similarly we define

Selp(E/Q∞) = lim−→ Selp(E/Qn)

= ker

(
H1(QΣ/Q∞, E[p∞]) −→

∏
�∈Σ

H�(Q∞)

)
,

where

H�(Q∞) :=
∏
η|�

H1(Q∞,η, E[p∞])

E(Q∞,η)⊗Qp/Zp
.

Remark 2.1. All finite primes are finitely decomposed in Q∞, so this is a finite
product. Since E[p∞] is a divisible group and GQ∞,η

has p-cohomological dimension
1, it follows from [6, Lemma 4.5] that H�(Q∞) is a divisible group.

The Pontryagin dual of Selp(E/Q∞), denoted X (E/Q∞), is a finitely-generated
Λ-module. When p is a prime of good ordinary reduction for E, Kato proved
that X (E/Q∞) is actually a torsion Λ-module (and we say that Selp(E/Q∞) is Λ-
cotorsion). Recall that Λ can be identified with a formal power series ring Zp[[T ]]
under the map γ �→ (T + 1) for γ a topological generator of G∞. The structure
theorem for Λ-modules then implies that there is a map

X (E/Q∞) →
(

n⊕
i=1

Λ/(fi(T ))
ai

)
⊕

⎛
⎝ m⊕

j=1

Λ/(pμj )

⎞
⎠

with finite kernel and cokernel. (Such a map is called a pseudo-isomorphism; if X
is pseudo-isomorphic to Y , then we write X ∼ Y .) The ai are positive integers,
and the fi are irreducible monic polynomials.

The algebraic Iwasawa invariants of E are defined as

(3) λE =
n∑

i=1

ai · deg(fi(T )) and μE =
m∑
j=0

μj .
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The characteristic polynomial for X (E/Q∞) is then

fE(T ) = pμE ·
n∏

i=1

fi(T )
ai .

It is important to note that the p-Selmer group of an elliptic curve is determined
by E[p∞] but not by E[p]. One of the key observations of [8] is that it is useful to
define a “non-primitive” Selmer group

SelΣ0
p (E/Q∞) = ker

⎛
⎝H1(QΣ/Q∞, E[p∞]) −→

∏
�∈Σ\Σ0

H�(Q∞)

⎞
⎠ ,

where Σ0 is a subset of Σ not containing p or ∞.
Greenberg conjectures that μE = 0 whenever p is ordinary and E[p] is absolutely

irreducible. If μE vanishes, there are several important consequences. The first is
that both Selp(E/Q∞)[p] and SelΣ0

p (E/Q∞)[p] are finite. One can then show that

both Selp(E/Q∞) and SelΣ0
p (E/Q∞) are divisible groups, with Selp(E/Q∞) �

(Qp/Zp)
λE . Finally, the Fp-dimension of Selp(E/Q∞)[p] is exactly λE , and we

denote the Fp-dimension of SelΣ0
p (E/Q∞)[p] by λΣ0

E .
Furthermore, one has a split exact sequence

0 → Selp(E/Q∞) → SelΣ0
p (E/Q∞) →

∏
�∈Σ0

H�(Q∞, E[p∞]) → 0,

so that

(4) SelΣ0
p (E/Q∞)/Selp(E/Q∞) �

∏
�∈Σ0

H�(Q∞) � (Qp/Zp)
δ(E,Σ0)

where δ(E,Σ0) is a non-negative integer. Thus

λΣ0

E = λE + δ(E,Σ0).

One of the main results of [8] is that if E1[p] � E2[p] and Σ0 contains all primes of
bad reduction, then

SelΣ0
p (E/Q∞) � SelΣ0

p (E2/Q∞),

and so

(5) λE1
+ δ(E1,Σ0) = λE2

+ δ(E2,Σ0).

Thus, knowledge of the Iwasawa invariants for one elliptic curve reveals infor-
mation about the Iwasawa invariants of congruent elliptic curves.

A result of Guo (see [6, Proposition 3.10]) shows that

(6) corankZp
Selp(E/Q) ≡ λE mod 2.

The main idea in [20] is to use (5) and (6) in conjunction with the parity conjecture
to obtain a result about the variation of rank parity among congruent elliptic curves.

2.2. The supersingular case. For the rest of the paper, we now suppose that p
is an odd prime of good supersingular reduction for an elliptic curve E defined over
Q; in fact, we impose the stronger assumption that ap(E) = 0. As mentioned in
Section 1.3, this is automatic in the supersingular case for p ≥ 5.

In the supersingular setting, we can and do make all of the same definitions as
in Section 2.1, but it turns out that Selp(E/Q∞) is never Λ-cotorsion. To obtain
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results analogous to those in the ordinary setting, we must work with plus/minus
Selmer groups. These refined Selmer groups were first studied by Kobayashi [13].

Retain the definition of Σ from Section 2.1. For any n ≥ 0, we write Qn,p for the
completion of Qn at the unique prime of Q∞ above p. For notational convenience,
also let Q−1,p = Q0,p = Qp. For n ≥ m, let Trn,m denote the trace map from
E(Qn,p) to E(Qm,p). Define the finite-level plus/minus norm groups as follows:

E+(Qn,p) ={x ∈ E(Qn,p) | Trn,m+1(x) ∈ E(Qm,p) for every 0 ≤ m ≤ n, m even},
E−(Qn,p) ={x ∈ E(Qn,p) | Trn,m+1(x)∈E(Qm,p) for every − 1≤m≤n, m odd}.
Furthermore, we define the infinite-level plus/minus norm groups:

E±(Q∞,p) =
⋃
n≥0

E±(Qn,p).

For every integer n ≥ 0, set

H±
n,p = (E±(Q∞,p)⊗Qp/Zp)

Gal(Q∞/Qn) ⊂ H1(Qn,p, E[p∞]).

Define the plus/minus cohomology subgroups H±
� for each prime � by

H±
� (Qn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
H�(Qn) � 
= p,

H1(Qn,p, E[p∞])

H±
n,p

� = p.

Then we define the plus/minus Selmer groups in a manner completely analogous
to the ordinary case.

Definition 2.2. For n ≥ 0 or n = ∞, we define

Sel±p (E/Qn) = ker

(
H1(QΣ/Qn, E[p∞]) →

∏
�∈Σ

H±
� (Qn)

)
.

Remark 2.3. Recall that if T is the p-adic Tate module of E, and if we set V =
T ⊗Zp

Qp and A = V/T , then A � E[p∞]. By a result of Kim [12, Proposition
3.4], the local conditions H±

n,p are their own annihilators under the autoduality of
E and the Tate pairing

H1(Qn,p, A)×H1(Qn,p, T (1)) → Qp/Zp.

This fact plays a crucial role in the proof of Proposition 4.1, since it allows us
to invoke a theorem of Flach which guarantees the existence of a non-degenerate,
skew-symmetric pairing on our Selmer groups.

Remark 2.4. The Selmer groups we have defined agree with Kobayashi’s at infinite
level, but at finite levels they may differ. A discussion of this can be found in
[17, Remark A.1]. In this paper, we only use a result of Kobayashi at infinite level,
and all finite-level results rely on the work of Kim, whose conventions we have
adopted.

Remark 2.5. Note that for n = 0 we have

E−(Qn,p) = E(Qp),

hence Sel±p (E/Q) = Selp(E/Q).
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These refined Selmer groups Sel±p (E/Qn) have many of the desirable properties
that Selp(E/Qn) has in the ordinary setting. In particular, Kobayashi proved

Theorem 2.6 ([13, Theorem 2.2]). The Pontryagin dual X±(E/Q∞) of
Sel±p (E/Q∞) is a finitely-generated torsion Λ-module.

We therefore have pseudo-isomorphisms

X+(E/Q∞) ∼
(⊕

Λ/(fi(T ))
ai

)
⊕
(⊕

Λ/(pμj )
)

and

X−(E/Q∞) ∼
(⊕

Λ/(gk(T ))
bk
)
⊕
(⊕

Λ/(pμl)
)
.

In analogy with (3), we can define pairs of Iwasawa invariants.

Definition 2.7.

λ+
E =

∑
ai · deg(fi(T )), μ+

E =
∑

μj ,

λ−
E =

∑
bk · deg(gk(T )), μ−

E =
∑

μl.

Assumption. We now assume for the rest of the paper that μ±
E = 0.

Remark 2.8. The μ-invariants are always expected to vanish [15, Conjecture 7.1].

In [11], Kim shows that many of the results from the ordinary case carry over
to the supersingular setting provided one uses the plus/minus Selmer groups. If
μ±
E = 0, then just as in the ordinary case we have

λ±
E = dimFp

Sel±p (E/Q∞)[p] = corankZp
Sel±p (E/Q∞).

We can also define non-primitive plus/minus Selmer groups. As in Section 2.1,
let Σ0 be a subset of Σ which does not contain p or ∞.

Definition 2.9. For n ≥ 0 or n = ∞, we define

SelΣ0,±
p (E/Qn) = ker

⎛
⎝H1(QΣ/Qn, E[p∞]) →

∏
�∈Σ\Σ0

H±
� (Qn)

⎞
⎠ .

In analogy with (4), we have

Proposition 2.10 ([11, Corollary 2.5]).

(7) Sel±,Σ0
p (E/Q∞)/Sel±p (E/Q∞) �

∏
�∈Σ0

H±
� (Q∞).

Remark 2.11. We point out that this quotient is independent of the choice of ±
since p /∈ Σ0, so

Sel±,Σ0
p (E/Q∞)/Sel±p (E/Q∞) �

∏
�∈Σ0

H�(Q∞) � (Qp/Zp)
δ(E,Σ0)

just as in the ordinary case.

We define

λ±,Σ0

E := dimFp
Sel±,Σ0

p (E/Q∞)[p].

Kim has shown that the strategy of Greenberg and Vatsal carries over to the su-
persingular setting.
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Proposition 2.12 ([11, Corollary 2.13]). Suppose p is a prime of good supersingular
reduction for E1 and E2 such that E1[p] � E2[p] as GQ-modules. Then μ±

E1
= 0 if

and only if μ±
E2

= 0. If both μ-invariants vanish, then λ±,Σ0

E1
= λ±,Σ0

E2
.

We thus obtain an analogue of (5) in the supersingular setting.

Proposition 2.13. Suppose p is a prime of good supersingular reduction for E1 and
E2 such that E1[p] � E2[p] as GQ-modules. If μ±

E1
= 0 (or equivalently μ±

E2
= 0),

then

(8) λ±
E1

+ δ(E1,Σ0) = λ±
E2

+ δ(E2,Σ0)

where δ(Ei,Σ0) is a non-negative integer.

Proof. This follows immediately from (7) and Proposition 2.12. �

We will study the integers δ(Ei,Σ0) in more detail in the next section.

3. Local Galois cohomology: δ(E, �)

In this section we study the local Galois cohomology groups

H�(Q∞) � (Qp/Zp)
δ(E,�)

for primes � 
= p (see Remark 2.1). Once we have determined these values, we can
compute the values

δ(E,Σ0) =
∑
�∈Σ0

δ(E, �)

from equation (8). In fact, we will ultimately be interested in this value mod 2.
For each prime η | � of Q∞, let τ (E, η) be defined by

H1(Q∞,η, E[p∞]) � (Qp/Zp)
τ(E,η),

so that by (2) we have

δ(E, �) =
∑
η|�

τ (E, η).

The following lemma is proved in a discussion in [20, Section 3].

Lemma 3.1. For any η | � of Q∞,

δ(E, �) ≡ τ (E, η) mod 2.

Proof. Let η1, η2 be two primes of Q∞ over �. Any map φ ∈ G∞ = Gal(Q∞/Q)
which satisfies φ(η1) = η2 induces an isomorphism H1(Q∞,η1

, E[p∞]) �
H1(Q∞,η2

, E[p∞]), so τ (E, η1) = τ (E, η2). Let s� denote the number of primes
of Q∞ over �. Then this implies δ(E, �) = sl · τ (E, η) for any η | �. But s� is equal
to the index of the open decomposition group D� of � in Q∞, hence s� is a power
of p. In particular, s� is odd, which proves the lemma. �

To compute τ (E, �), we first need to introduce some notation. Let Tp denote
the p-adic Tate module of E, and let Vp = Tp ⊗Qp. Write Qunr

� for the maximal
unramified extension of Q�. Let I� := Gal(Q̄�/Q

unr
� ) denote the inertia subgroup

of Gal(Q̄�/Q�), and let Frob� denote the arithmetic Frobenius automorphism of
Gal(Qunr

� /Q�). Finally, let (Vp)I� denote the maximal quotient of Vp on which
I� acts trivially. The following proposition of Greenberg-Vatsal explains how to
compute τ (E, η).
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Proposition 3.2. Let P�(X) = det((1 − Frob�X|(Vp)I�
)) ∈ Zp[X]. Let ˜ denote

reduction mod p. Then τ (E, η) is equal to the multiplicity of X = �̃−1 as a root of

P̃� ∈ Fp[X].

Proof. This is [8, Proposition 2.4]. �

We can now compute the parity of τ (E, �) for all � ∈ Σ0. First we deal with
primes of good reduction.

Lemma 3.3. If � is a prime of good reduction, then τ (E, η) ≡ 1 mod 2 if and only
if �+ 1 ≡ a�(E) mod p and � 
≡ 1 mod p.

Proof. If � is a prime of good reduction, then (Vp)I� = Vp is two-dimensional, and
it is a standard result that P� is given by

P�(X) = 1− a�(E)X + �X2.

By Proposition 3.2, τ (E, η) is odd if and only if �̃−1 is a simple root of P̃�(X).
Since the product of the roots is �−1, we have

�̃−1 is a root ⇐⇒ 1 is a root,

and since the sum of the roots is �−1a�(E), this implies

�̃−1 is a root ⇐⇒ �+ 1 ≡ a�(E) mod p.

In this case, we see that �̃−1 is a simple root if and only if �−1 
≡ 1 mod p, which
is equivalent to � 
≡ 1 mod p, proving the lemma. �

We now handle primes of bad reduction.

Lemma 3.4. τ (E, η) ≡ 1 mod 2 if and only if one of the following is true:

(1) � is a prime of split multiplicative reduction and � ≡ 1 mod p.
(2) � is a prime of non-split multiplicative reduction and � ≡ −1 mod p.

Proof. If � is a prime of additive reduction, then (Vp)I� = 0, so Proposition 3.2
shows that τ (E, η) = 0.

Now suppose � is a prime of multiplicative reduction. In this case, (Vp)I� is
one-dimensional, and the trace of Frob� on (Vp)I� is still given by a�(E), so that
P�(X) = 1− a�(E)X. We have

al(E) =

{
1 if � is split,

−1 if � is non-split.

It follows that, in the notation of Proposition 3.2,

P�(�
−1) = 1∓ �−1

with ± determined by whether � is split or non-split. The lemma now follows from
Proposition 3.2. �

We summarize this section of the paper.

Proposition 3.5. For � ∈ Σ0, we have δ(E, �) ≡ 1 mod 2 if and only if one of
the following is true:

(1) � is a prime of good reduction such that � + 1 ≡ a�(E) mod p and � 
≡ 1
mod p.

(2) � is a prime of split multiplicative reduction and � ≡ 1 mod p.
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(3) � is a prime of non-split multiplicative reduction and � ≡ −1 mod p.

Proof. This follows immediately from Lemmas 3.1 and 3.4. �
Given two curves E1, E2 which are congruent mod p, let Σ0 be a set of primes

as in (1).

Definition 3.6. Define Si to be the subset of � ∈ Σ0 such that one of the conditions
of Proposition 3.5 is satisfied.

Thus, Si is the set of � ∈ Σ0 for which δ(Ei, �) ≡ 1 mod p.

4. Main result

In order to prove our main result, we will need the following analogue of [6,
Proposition 3.10]. We follow Greenberg’s argument closely.

Proposition 4.1. Let E be an elliptic curve, defined over Q and supersingular at
p.

Then
corankZp

Selp(E/Q) ≡ λ±
E mod 2.

Proof. By Kobayashi’s control theorem [13, Theorem 9.3], for n ≥ 0 we have that
corankZp

Sel±p (E/Qn) is bounded above by λ±
E . Let λ̄± denote the maximum

of these Zp-coranks, so that corankZp
Sel±p (E/Qn) = λ̄± for all n � 0. Let

S±
n = Sel±p (E/Qn), let T

±
n = (S±

n )div, and let U±
n = S±

n /T±
n . The restriction maps

S±
0 → (S±

n )Gn and T±
0 → (T±

n )Gn

have trivial kernels and finite cokernels. Since the non-trivial Qp-irreducible repre-
sentations of Gn have degree divisible by p− 1, we have

corankZp
T±
n ≡ corankZp

T±
0 mod (p− 1),

and since p is odd this gives a congruence mod 2. Since S±
0 = Selp(E/Q) (see

Remark 2.5), it follows that

(9) corankZp
Selp(E/Q) ≡ λ̄± mod 2.

Let S±
∞ = Sel±p (E/Q∞) and T±

∞ = lim−→Tn. By the definition of λ̄± we have

T±
∞ � (Qp/Zp)

λ̄±
. Write U±

∞ = lim−→U±
n = S±

n /T±
n . For n � 0 the map T±

n → T±
∞

is surjective, so
|ker(U±

n → U±
∞)| ≤ |ker(S±

n → S±
∞)|.

By [13, Lemma 9.1], the right-hand side is zero, so the maps U±
n → U±

∞ are also
injective. By Remark 2.3, Flach’s generalized Cassels-Tate pairing

U±
n × U±

n → Qp/Zp

forces |U±
n | to be a square [4, Corollary to Theorem 2]; combined with the in-

jectivity of U±
n → U±

∞, it follows (as in the proof of [6, Proposition 3.10]) that
u = corankZp

U±
∞ is even. Since u = λ±

E − λ̄±, we have

λ±
E ≡ λ̄± mod 2.

Combining this with (9) gives the desired result. �

Before continuing, we note an interesting corollary which we have not seen in
the literature.
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Corollary 4.2. For E and p as in the proposition, we have

λ+
E ≡ λ−

E mod 2.

Proof. This follows immediately from the preceding proposition. �
Let ran(E/Q) denote the analytic rank of E over Q, which is the order of vanish-

ing at s = 1 of L/Q(E, s), its Hasse-Weil L-function over Q. The following theorem
is a special case of the parity conjecture for elliptic curves.

Theorem 4.3 (Parity conjecture). Let p ≥ 3 be an odd prime, and let E be an
elliptic curve defined over Q for which p is supersingular. Then

corankZp
Selp(E/Q) ≡ ran(E/Q) mod 2.

Proof. This is a deep result of Nekovár̆ [14, Theorem A]. �
We are now in a position to prove our main result.

Theorem 4.4. Let E1 and E2 be two elliptic curves defined over Q which have good
supersingular reduction at a prime p ≥ 3. Suppose E1[p] and E2[p] are isomorphic
as GQ-modules. Assume that μ±

E1
= 0 (hence also μ±

E2
= 0). Define Σ0 as in (1),

and let Si be as in Definition 3.6. Then

ran(E1/Q) + |S1| ≡ ran(E2/Q) + |S2| mod 2,

where |Si| denotes the cardinality of Si.

Proof. The hypotheses of the theorem allow us to apply Proposition 2.13, so that

λ+
E1

+ δ(E1,Σ0) = λ+
E2

+ δ(E2,Σ0).

By Theorem 4.3, we have λ+
Ei

≡ ran(Ei/Q) mod 2 for i = 1, 2. By Proposition
3.5, δ(Ei,Σ0) ≡ |Si| mod 2, and the theorem follows. �

5. Examples

In these final two sections of the paper, we refer to a computer algebra system,
or a CAS, to mean either Magma [1] or Sage [19], whichever the reader prefers.

5.1. p = 5. Let
E1 : y2 + xy + y = x3 − x− 1

be the curve labeled 69a in the Cremona database, and let

E2 : y2 + xy + y = x3 + 130884x− 59725523

be the curve labeled 897d. Let p = 5; one checks that both E1 and E2 are
supersingular at p. Using Sturm’s bound and a CAS, it can be verified that
E1[p] � E2[p]. By using a CAS, or by simply referring to Pollack’s data [16],
we find that μ±

E1
= μ±

E2
= 0, so Theorem 4.4 applies to these two curves.

Using a CAS, we find that

ran(E1/Q) = 0 and ran(E2/Q) = 1.

The prime-to-p conductor of Ei[p] is 69 for both i = 1, 2, hence Σ0 = {13}. Let
� = 13. Since � ≡ 3 mod p and E2 has (split) multiplicative reduction at �, we see
that |S2| = 0. On the other hand, since � � 69, E1 has good reduction at �. One
finds that a�(E1) = −6 ≡ 4 mod p, and so

�+ 1 ≡ a�(E1) mod p with � 
≡ 1 mod p,
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hence |S1| = 1. Thus

ran(E1/Q) + |S1| ≡ ran(E2/Q) + |S2| mod 2.

5.2. p = 3. Consider the elliptic curve

ED : y2 = x3 −Dx

where D is a non-negative integer. In [18], Rubin and Silverberg construct an
explicit family of

E(t) : y2 = x3 +D(27D2t4 − 18Dt2 − 1)x+ 4D2t(27D2t4 + 1)

such that ED and Et are congruent mod p for every t. For the rest of the paper, let
E1 = E1, which Sage confirms has analytic rank 0. One checks that ap(E1) = 0,
so E1 is supersingular at p. If 3 | t, then it is clear from the affine equations given

above that |Ẽ(Fp)| = |Ẽ(t)(Fp)|, so ap(Et) = 0 as well.
Let E2 = E(207). Sage fails to compute the analytic rank of E2/Q, but it quickly

returns an upper bound of 1.
For the pair E1, E2, we have Σ0 = {37, 83, 4035637}.
First let � = 37 ≡ 1 mod 3. Then E1 has good reduction at �, and a�(E1) =

−2 ≡ 1 mod p. Since �+ 1 
≡ a�(E1) mod 3, we have � /∈ S1. On the other hand,
� ≡ 1 mod 3, but E2 has non-split multiplicative reduction at �, so � /∈ S2. as well.

Next let � = 83 ≡ 2 mod 3. Then a�(E1) = 0, E1 has good reduction at �,
and � + 1 ≡ a�(E1) mod p, so we have � ∈ S1. Since E2 has split multiplicative
reduction at �, we see � /∈ S2.

Finally, let � = 4035637 ≡ 1 mod 3. Again E1 has good reduction, but a�(E1) =
3598 ≡ 1 mod 3, so � + 1 
≡ a�(E1) mod p, hence � /∈ S1. Since E2 has non-split
multiplicative reduction, we also have � /∈ S2.

Thus
ran(E1/Q) = 0 and |S1| = 1,

0 ≤ ran(E2/Q) ≤ 1 and |S2| = 0.

Therefore, by Theorem 4.4 we must have ran(E2/Q) = 1.
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