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For a cuspidal newform f =
P

anqn of weight k ≥ 3 and a prime λ of Q(an), the
deformation problem for its associated mod λ Galois representation is unobstructed for
all primes outside some finite set. Previous results gave an explicit bound on this finite
set for f of squarefree level; we modify this bound and remove the squarefree hypothesis.
We also show that if the λ-adic deformation problem for f is unobstructed, then f is not
congruent mod λ to a newform of lower level.
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1. Introduction

Let f =
∑
anq

n be a cuspidal newform of weight k ≥ 2 and level Γ1(N). Write K =
Q(an) for the number field generated by its Fourier coefficients. Let λ be a prime of
K, and let � be the characteristic of its residue field kλ. For any finite set S of places
which contains the primes dividing N∞, let QS∪{�} be the maximal extension of Q
unramified outside S ∪ {�}, and let GQ,S∪{�} be its Galois group over Q. By work
of Deligne, there is an associated semisimple residual Galois representation

ρ̄f,λ : GQ,S∪{�} → GL2(kλ)

and this representation is absolutely irreducible for almost all primes λ.
Given such a representation ρ̄, it is interesting to study its lifts to other coefficient

rings. If A is a local ring with residue field kλ, we say ρ is a lift of ρ̄ if the following
diagram commutes:

GQ
ρ ��

ρ̄f,λ �����
���

���
GL2(A)

��
GL2(kλ)

273

http://dx.doi.org/10.1142/S1793042116500160


December 30, 2015 20:17 WSPC/S1793-0421 203-IJNT 1650016

274 J. Hatley

The vertical arrow is induced by the reduction map A → kλ; we consider two lifts
equivalent if they are conjugate to one another by a matrix in the kernel of this
induced map. An equivalence class of lifts is called a deformation of ρ̄.

The study of the deformation theory of such Galois representations, which began
with Mazur’s seminal paper [5], has been the subject of much important research in
number theory; in particular, it featured prominently in the proof of the Taniyama–
Shimura conjecture, and more recently, in the proof of Serre’s Conjecture. See Sec. 2
for a brief introduction to deformation theory and the terms used below.

In a pair of papers [7, 8], Weston proved that for any newform f of weight k ≥ 2,
the deformation problem for ρ̄f,λ is unobstructed for infinitely many primes λ, and
when the level of f is squarefree, he gave an explicit description of the obstructed
primes. In fact, when k ≥ 3, there are only finitely many obstructed primes, while
for k = 2 the obstructed primes are a set of density zero. The first main result of
this paper is the removal of the squarefree hypothesis from Weston’s result; only a
minor modification of the bound given in [8] is necessary. See Theorem 3.6 in Sec. 3
for the full statement.

While Theorem 3.6 gives sufficient conditions for a deformation problem to be
unobstructed, the second main result of this paper focuses on a necessary condition.
For any modular Galois representation ρ̄ : GQ → GL2(F̄�), there is an optimal
(least) level N coprime to � such that ρ̄ arises from a newform of level N . Call
a deformation problem minimal if the set S of primes (as in the first paragraph)
contains only those places dividing N∞. We show in Theorem 4.1 that minimal
deformation problems are only unobstructed when they arise from modular forms
of optimal level. This is analogous to a similar phenomenon which occurs in Hida
Hecke algebras.

Notation. We fix an algebraic closure Q̄ of Q, and for each rational prime �, we fix
an embedding Q̄ ↪→ Q̄�. Let GQ = Gal(Q̄/Q) and let G� = Gal(Q̄�/Q�). Whenever
S is a finite set of primes, GQ,S denotes the Galois group (over Q) of the maximal
extension of Q which is unramified outside of S.

We write ε� for the �-adic cyclotomic character. For any character ψ we denote
its reduction mod λ by ψ̄, where λ is made clear in context.

If ρ : G→ V is a representation, the adjoint representation ad ρ : G→ End(V )
is defined by letting g ∈ G act on End(V ) via conjugation by ρ(g); we write ad0ρ

for the trace-zero component of the adjoint.

2. Deformation Theory

Consider an odd, continuous Galois representation ρ̄ : GQ,S → GL2(F), where F
is some finite field and S is a finite set of primes containing the characteristic of
F and the infinite place. Let C be the category whose objects are local rings which
are inverse limits of artinian local rings with residue field F, and whose morphisms
A→ B are continuous local homomorphisms inducing the identity map on residue
fields. As explained in the introduction, if A ∈ C, then we say ρ : GQ,S → GL2(A)
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is a lift of ρ̄ if the composition

GQ,S
ρ−→ GL2(A) → GL2(F)

is equal to ρ̄. Two lifts ρ1, ρ2 of ρ̄ to A are considered equivalent if they are conjugate
to one another by a matrix in the kernel of the map GL2(A) → GL2(F), and a
deformation of ρ̄ to A is an equivalence class of lifts of ρ̄ to A. There is an associated
deformation functor

DS
ρ̄ : C → Sets

which sends a ring A to the set of deformations of ρ̄ to A. When ρ̄ is absolutely
irreducible, this functor is representable by a ring Rρ̄ ∈ C [5, 2].

For i = 1, 2, let di be the F-dimension of the Galois cohomology group
Hi(GQ,S , ad ρ̄). Mazur showed that d1 − d2 ≥ 3 and

Rρ̄ �W (F)�T1, . . . , Td1�/(r1, . . . , rd2), . . . , rd2),

where W (F) is the ring of Witt vectors of F. When d2 = 0, it can be shown that
d1 = 3, so Rρ̄ is simply a power series ring in three variables. In this case, the
deformation problem for ρ̄ is said to be unobstructed.

Let � be the characteristic of F. As in [8, Lemma 2.5], an application of the
Poitou–Tate exact sequence allows one to show that

dimFH
2(GQ,S , adρ̄) ≤ dimFX1(GQ,S , ε̄� ⊗ ad0ρ̄)

+
∑
p∈S

dimFH
0(Gp, ε̄� ⊗ ad ρ̄) (2.1)

with equality if � 	= 3. Here X1(GQ,S , ε̄� ⊗ ad0ρ̄) is a sort of Selmer group; when
ρ̄ = ρ̄f,λ for some newform f , this term can be controlled by the set Cong(f) of
congruence primes for f , as described in [8, Sec. 4]. Our focus will instead be on
the local invariants H0(GQ,S , ε̄� ⊗ ad ρ̄) for p ∈ S, which we refer to as obstructions
at p.

3. Removing the Squarefree Hypothesis

We fix some notation to be used throughout Sec. 3. Let f =
∑
anq

n be a newform
of level N and weight k ≥ 2. Let ω be its nebentypus character, and let M be
the conductor of ω. Let K be its associated number field, and fix a prime λ in K

with residue field kλ of characteristic � such that (N, �) = 1 and ρ̄f,λ is absolutely
irreducible. Let S be a finite set of places containing the primes dividing N∞. We
wish to study the conditions under which the deformation problem for

ρ̄f,λ : GQ,S∪{�} → GL2(kλ)

is unobstructed, and as described in Sec. 2, as long as λ /∈ Cong(f), then this
amounts to determining when H0(Gp, ε̄� ⊗ ad ρ̄) 	= 0 for p ∈ S.

Let π be the automorphic representation associated to f , and write π =
⊗′

πp

for its decomposition into admissible complex representations πp of GL2(Qp). By
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the local Langlands correspondence, the classification of each πp allows us to study
ρ̄f,λ|Gp in an explicit fashion. In [8], the assumption that N be squarefree aided
in the determination of πp for each p ∈ S; in particular, in this case it is easy to
determine when πp is an unramified principal series, a principal series with one
ramified character and one: Unramified character, or a special (twist of Steinberg)
representation, and these are the only possibilities. When p2 |N , it is not so easy
to determine the structure of πp. However, determining the exact structure of πp

turns out to be unnecessary.

3.1. Twists and p-primitive newforms

Recall that for any primitive Dirichlet character χ of conductor M , we may twist
the newform f to obtain a newform f ⊗χ =

∑
bnq

n, where bn = χ(n)an for almost
all n. The level of f ⊗χ is at most NM2, but it may be smaller. For any newform f

and any prime p, one says that f is p-primitive if the p-part of its level is minimal
among all its twists by Dirichlet characters. We have the following lemma.

Lemma 3.1. Let f be a newform and let fp be a p-primitive twist. Then

H0(Gp, ε̄� ⊗ ad ρ̄f,λ) = H0(Gp, ε̄� ⊗ ad ρ̄fp,λ).

In particular, f has local obstructions at p if and only if fp has local obstructions
at p.

Proof. For some Dirichlet character χ we have fp = f ⊗ χ. It follows that ρ̄fp,λ �
χ ⊗ ρ̄f,λ, and a straightforward matrix calculation then shows that ad(ρ̄fp,λ) �
ad(ρ̄f,λ). The lemma follows.

By Lemma 3.1, when studying local obstructions at p for a newform f , we may
assume that f is p-primitive. The utility of considering p-primitive newforms is
given by the following result, which comes from [4, Proposition 2.8].

Proposition 3.2. Let πp be the local component of a p-primitive newform f ∈
Sk(Γ1(Npr)) with p � N and r ≥ 1. Then one of the following conditions holds.

(1) πp � π(χ1, χ2) is principal series, where χ1 is unramified and χ2 is ramified;
(2) πp � St ⊗ χ is special (twist of Steinberg) with χ unramified;
(3) πp is supercuspidal.

Proof. See [4, Proposition 2.8] for the proof.

Remark 3.3. If the level of a newform f is divisible by p2, it may be difficult
to explicitly determine its p-minimal twist. Loeffler and Weinstein have made this
computationally feasible in many cases; see [4]. We will avoid this extra difficulty
and simply determine where obstructions might occur in all three cases of the above
proposition.
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3.2. Supercuspidal obstruction conditions

The arguments used by Weston in [8] are robust enough to carry over into the
non-squarefree setting when we are cases (1) and (2) of Proposition 3.2. We instead
focus on case (3), where πp is supercuspidal. We will frequently make use of the
fact that

dimkH
0(Gp, ε̄� ⊗ (ad0ρ̄f,λ)ss) ≤ dimkH

0(Gp, ε̄� ⊗ ad0 ρ̄f,λ).

When p > 2, a supercuspidal πp is always induced from a quadratic extension
of Qp, and these will be the focus of Proposition 3.5 below. When p = 2, there are
additional supercuspidal representations, called extraordinary representations, and
we consider these first. The case where πp is extraordinary was actually already
dealt with in [7, Proposition 3.2] and are not a problem if � ≥ 5. We reproduce the
proof here.

Proposition 3.4. Suppose πp is extraordinary, so p = 2. Then H0(Gp, ε̄� ⊗
ad ρ̄f,λ) = 0 if λ has residue characteristic at least 5.

Proof. Let ρ : G2 → GL2(Q̄�) be the representation of G2 which is in Langlands
correspondence with π2. In this case, the projective image of inertia, proj ρ(I2), in
PGL2(Q̄�) is isomorphic to either A4 or S4, and the composition

proj ρ(I2) ↪→ PGL2(Q̄�)
ad0

−−→ GL3(Q̄�)

is an irreducible representation of proj ρ. Since projρ(I2) has order 12 or 24, it
follows that ad0ρ̄f,λ is an irreducible F̄�-representation of I2 since char(λ) ≥ 5, thus
H0(I2, ε̄� ⊗ ad0 ρ̄f,λ) = 0 and the proposition follows.

We will henceforth assume � ≥ 5, so by this proposition there are no obstructions
in the extraordinary case.

Now we deal with the final remaining possibility for πp, which is the supercuspi-
dal, non-extraordinary case. Since extraordinary supercuspidal representations only
occur in the case p = 2, this is a very weak hypothesis. Recall that for any character
ψ, we write ψ̄ for its reduction mod λ.

Proposition 3.5. Suppose f is a newform of weight k ≥ 2 such that πp is super-
cuspidal but not extraordinary. Suppose also that � > 5. If p4 	≡ 1 (mod �), then
H0(Gp, ε̄� ⊗ ad ρ̄f,λ) = 0.

Proof. The Langlands correspondence (cf. [7, Proposition 3.2] or [4, Remark 3.11])
implies that there is a quadratic extension E/Qp such that in characteristic zero
we have

ρf,λ|Gp � IndGp

GE
χ,

where GE = Gal(Ē/E) is the absolute Galois group of E and χ : GE → Q̄� is a
continuous character. Let χE : Gal(E/Qp) → {±1} be the non-trivial character for
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E/Qp. Let χc be the Galois conjugate character of χ, and let ψ = χ · (χc)−1. We
have

ε̄� ⊗ ad0(ρ̄f,λ)|ssGp
� ε̄�χE ⊕ (ε̄� ⊗ IndGp

GE
ψ̄).

Since � > 3, the first summand has no Gp-invariants, so we may focus on the second
summand. By Mackey’s criterion, the induced representation IndGp

GE
ψ̄ is irreducible

if and only if ψ̄ 	= ψ̄c. If it is irreducible, then so is its twist and we are done.
So suppose that ψ̄ = ψ̄c. We first note that, since ψ̄ = χ̄(χ̄c)−1, we have ψ̄c =

χ̄cχ̄−1, hence

ψ̄2 = ψ̄ψ̄c = [χ̄(χ̄c)−1] · [χ̄c(χ̄)−1] = 1.

Thus, ψ̄ is a quadratic character on GE .
Restricting the induced representation to GE we have

(IndGp

GE
ψ̄)|GE � ψ̄ ⊕ ψ̄c = ψ̄ ⊕ ψ̄

where the first equality is a generality about induced representations and the sec-
ond comes from our assumption that ψ̄ = ψ̄c. So we already have H0(GE , ε̄� ⊗
IndGp

GE
ψ̄) = 0 unless ψ̄ = ε̄�|−1

GE
, in which case ε̄�|GE is quadratic. Since GE has

index 2 in Gp, this would imply that on Gp the cyclotomic character ε̄� has order
at most 4. Evaluating at Frobp, this implies that p4 ≡ 1 (mod �). So if p4 	≡ 1 (mod
�), then the representation has no GE-invariants and hence it has no Gp invariants,
completing the proof.

We are now ready to prove the first main theorem, which removes the squarefree
hypothesis from [8, Theorem 4.3]. For a newform f of level N , Cong(f) is the set
of congruence primes for f , i.e. the primes λ such that there exists a newform g

(which is not a Galois conjugate of f) of level dividing N with f ≡ g (mod λ).

Theorem 3.6. Assume that ρ̄f,λ is absolutely irreducible and � > 3. If
H2(GQ,S∪{�}, ε̄� ⊗ ad ρ̄f,λ) 	= 0 then one of the following conditions holds:

(1) � ≤ k;
(2) � |N ;
(3) � |φ(NS), where NS is the product of the primes in S;
(4) � | (p+ 1) for some p |N ;
(5) a2

p ≡ (p+ 1)2pk−2ω(p)(modλ) for some p ∈ S, p � N, p 	= �;
(6) � = k + 1 and f is ordinary at λ;
(7) k = 2 and a2

� ≡ ω(�)(modλ);
(8) N = 1 and � | (2k − 3)(2k − 1);
(9) λ ∈ Cong(f);

(10) p4 ≡ 1 (mod �) for some p such that p2 |N.
Remark 3.7. We note that conditions (1)–(9) are essentially the same conditions
from [8, Theorem 4.3]; these conditions deal with the non-supercuspidal primes in
S, while condition (10) deals with the (potentially) supercuspidal primes.
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Proof. By Eq. (2.1), if H2(GQ,S∪{�}, ε̄� ⊗ ad ρ̄f,λ) 	= 0 then either
dimkX1(GQ,S , ε̄� ⊗ ad0ρ̄) 	= 0 or H0(Gp, ε̄� ⊗ ad ρ̄f,λ) 	= 0 for some p ∈ S. By
[8, Lemma 17], the former is only possible if λ ∈ Cong(f). This is accounted for in
condition (9).

Now, let p ∈ S. While determining whether H0(Gp, ε̄� ⊗ ad ρ̄f,λ) = 0, Lemma
3.1 allows us to replace f by its p-minimal twist. In this case, by Lemma 3.2, there
are only three possibilities for the local representation πp.

If πp is principal series or special as in cases (1) and (2) of Lemma 3.2, then
the local Galois representation has exactly the same form as the cases handled
by Weston (see [8, Theorem 4.3]). This accounts for conditions (1)–(9). The only
difference occurs in condition (4). In Weston’s original condition, it is only necessary
to avoid � | (p + 1) for primes p dividing N/M , where M is the conductor of the
nebentypus character of f . Since we have replaced f by its p-minimal twist fp, and
we do not know the conductor of the character of fp, we replace Weston’s original
condition with our coarser condition.

If πf,p is supercuspidal, then Proposition 3.5 yields condition (10). This covers
all the possibilities for πf,p, thus completing the proof.

4. Minimal Deformation Problems and Optimal Levels

Given a modular form f , a prime λ of K̄, and a finite set of places S, let us
write D(f, S) for the corresponding deformation problem. (We suppress λ from the
notation, as it will always be clear from context.) If S contains only the primes
dividing the level of f and the infinite place, then we may simply write D(f), and
we call this the minimal deformation problem for f .

For any odd, continuous, absolutely irreducible representation ρ̄ : GQ →
GL2(kλ), with kλ a finite field of characteristic �, let H(ρ̄) be the set of newforms of
level prime to � giving rise to this representation. Among all such newforms, there
is a least level appearing, which we call the optimal level for H(ρ̄). In fact, this
optimal level is the prime-to-� Artin conductor of ρ̄ (see [1]).

Let f and g be newforms in H(ρ̄) with associated minimal sets of primes S
and S′, respectively. We have an isomorphism of residual Galois representations
ρf,λ � ρg,λ, and if S ⊂ S′ then we have an equality of deformation problems
D(f, S′) = D(g). Furthermore, since S ⊂ S′, if D(f) is obstructed then so is D(g).
In fact, we prove the following theorem.

Theorem 4.1. If D(f) is unobstructed, then f is of optimal level for H(ρ̄).

In Sec. 4.2 we present the proof of this theorem; our strategy is to prove the
contrapositive. By Proposition 4.3 below, we know the factorization of any non-
optimal level. If g is a newform of non-optimal level, we compare it to an optimal
level newform f . Since, as discussed above, D(g) inherits any obstructions that
D(f) might have, we may assume that D(f) is unobstructed, and we show that
even in this case, D(g) is necessarily obstructed.
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This theorem is motivated by the following heuristic: If ρ̄ is �-ordinary and �-
distinguished, and if H(ρ̄) is the set of of all �-ordinary, �-stabilized newforms with
mod � Galois representation isomorphic to ρ̄, then H(ρ̄) is a dense set of classical
points in a Hida family H. This object has a geometric interpretation in which its
irreducible components have associated integers, called levels, which correspond to
levels of modular forms. The components of H of non-minimal level have associated
(full) Hecke algebras of higher Λ = Z��T �-rank than the minimal-level component
(see [3, Sec. 2.4] for more details). Thus, if a general enough R = T theorem is
known (or believed), then this forces the deformation ring to grow as well. Our
theorem shows that this sort of behavior is not a special property of Hida families,
and that it actually occurs independent of any geometric structure.

Remark 4.2. It is worth pointing out two things about this theorem. The first
is that it does not follow immediately from Theorem 3.6, because condition (9)
of that theorem is not a sharp obstruction criterion, i.e. it does not guarantee the
existence of obstructions. The other noteworthy aspect is that in [8], congruence
primes are primarily shown to (potentially) give rise to global obstruction classes,
whereas our proof uses the existence of a newform congruence to produce local
obstruction classes.

4.1. Preliminaries

In this section we record the results which we will use to prove the theorem. Let us
first set some notation to be used throughout Sec. 4.

Let f =
∑
anq

n be a newform of weight k ≥ 2, level N (coprime to �), and
nebentypus ω, and let M be the conductor of ω. Let S be a finite set of places
containing the primes which divide N∞. Let K = Q(an), and fix a prime λ of K̄
which lies over �. We have f ∈ H(ρ̄), where ρ̄f,λ � ρ̄.

Suppose f is of optimal level for H(ρ̄). If g ∈ H(ρ̄) is of non-optimal level, we
will want to know what form its level can have. The following is a result of Carayol
(see the introduction of [1]).

Proposition 4.3. Suppose ρ : GQ → GL2(F̄�) is modular of weight k ≥ 2 and level
N ′ coprime to �. Then

N ′ = N ·
∏

pα(p),

where N is the conductor of ρ̄, and for each p with α(p) > 0, one of the following
conditions holds :

(1) p �N�, p(trρ(Frobp)2) = (1 + p)2detρ(Frobp) in F̄� and α(p) = 1;
(2) p ≡ −1 mod � and one of the following conditions holds:

(a) p �N, tr(ρ(Frobp) = 0 in F̄� and α(p) = 2, or
(b) p |N, det ρ is unramified at p, and α(p) = 1;
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(3) p ≡ 1 mod � and one of the following conditions holds:

(a) p � N and α(p) = 2, or
(b) p2 � N, or the power of p dividing N is the same as the power dividing the

conductor of det ρ, and α(p) = 1.

Our goal, then, is to show that each of the possible supplementary primes appear-
ing in Proposition 4.3 gives rise to an obstruction. We collect some lemmas in this
direction.

The first two lemmas come from [8].

Lemma 4.4. If � | (p− 1) for some p ∈ S, then D(f, S) is obstructed.

Proof. This is proved in the discussion at the beginning of [8, Section 3]. Since
� | p− 1, we have H0(Gp, ε̄�) 	= 0. Since ε̄� ⊗ ad ρ̄g,λ � ε̄� ⊕ (ε̄� ⊗ ad0ρ̄g,λ) this shows
that H0(Gp, ε̄� ⊗ adρ̄g,λ) 	= 0 and so D(f, S) is obstructed.

The previous lemma gives us a tool we can use when p ≡ 1 (mod �). The next
lemma deals with the case when p 	≡ 1 (mod �) and p 	= �.

Lemma 4.5. Assume p �N� and p 	≡ 1 (mod �). Then H0(Gp, ε̄� ⊗ ad ρ̄f,λ) 	= 0 if
and only if a2

p ≡ (p+ 1)2pk−2ω(p)(mod λ).

Proof. This is Lemma 3.1 of [8].

We record one final lemma before proving our theorem.

Lemma 4.6. If p ‖N, p � M, and p2 ≡ 1(mod �), then D(f, S) is obstructed.

Proof. As explained in [7, Sec. 5.2], in this case πp is special, which translates on
the Galois side to the existence of an unramified character χ : Gp → K̄×

λ (where K
is the field of Fourier coefficients of f and Kλ is its completion at λ) such that

ρf,λ|Gp ⊗ K̄λ �
(
ε�χ ∗
0 χ

)
,

with the upper right corner ramified. Upon reduction this matrix becomes either

A =

(
ε̄�χ̄ ν

0 χ̄

)
or B =

(
χ̄ ν

0 ε̄�χ̄

)

for some ν : Gp → k̄λ. We note that by Lemma 5.1 of [7], possibility B can only
occur if p2 ≡ 1 (mod �).

Let C =
(

0 1

0 0

)
. One computes

ACA−1 =
(

0 ε̄�
0 0

)
and BCB−1 =

(
0 (ε̄�)−1

0 0

)
,
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and so

(ε̄� ⊗ ad ρ̄f,λ) · C =

(
0 ε̄j�

0 0

)

for j = 0 or 2, so C ∈ H0(Gp, ε̄� ⊗ ad ρ̄f,λ). If j = 0, this is obvious; if j = 2, this
follows from the facts that, since ε� is ramified only at �, it factors through a group
which is topologically generated by Frobp, but ε�(Frobp) = p and p2 ≡ 1 (mod �).
So in either case H0(Gp, ε̄� ⊗ ad ρ̄f,λ) 	= 0, hence D(f, S) is obstructed.

4.2. Optimal level deformation problems

Let f ∈ Sk(Γ1(N), ω) and g ∈ Sk(Γ1(N ′)) be newforms in H(ρ̄) with f of optimal
level and N ′ > N ; by Proposition 4.3, N |N ′. Let S (respectively, S′) be the set of
places of Q dividing N∞ (respectively, N ′∞), so S ⊂ S′.

Write f =
∑
anq

n. Let K be a field containing the Fourier coefficients of both
f and g, and let λ be a prime of K over � such that f ≡ g (mod λ) and hence
ρ̄ � ρ̄f,λ � ρ̄g,λ. Write kλ for the residue field of λ.

Using this notation, we are now ready to prove Theorem 4.1. For the reader’s
convenience, we restate the theorem.

Theorem 4.1. If D(f) is unobstructed, then f is of optimal level for H(ρ̄).

Proof. We will prove the contrapositive. Keeping the notation from the beginning
of Sec. 4.2, let f and g be newforms in H(ρ̄), with f of optimal level and g of
non-optimal level. We will show that D(g) is obstructed.

If D(f) is obstructed, then as noted earlier, this implies D(g) is also obstructed.
So in proving the theorem, we may assume that D(f) is unobstructed.

We consider separately the primes p ∈ S′ which appear in cases (1), (2), and
(3) of Proposition 4.3. Note that we have an equivalence of deformation problems
D(g, S′) = D(f, S′). We write D� for these equivalent deformation problems.

First, suppose p |N ′ is as in case (3), so in particular p ≡ 1 (mod �). Then by
Lemma 4.4 we see that D� is obstructed.

Next, suppose p |N ′ is as in case (1) of the proposition, so p is a prime such that
p � N�, α(p) = 1, and pa2

p ≡ (1 + p)2ω(p)pk−1 (mod λ), or equivalently (since p is
invertible in F̄�),

a2
p ≡ (p+ 1)2pk−2ω(p) (modλ).

Then by Lemma 4.5 we see that D� is obstructed.
Finally, suppose p |N ′ is as in case (2), so p ≡ −1 (mod �) and one of the

following holds:

(a) p � N , ap ≡ 0 (mod λ), and α(p) = 2; or
(b) p ‖N , det ρ is unramified at p, and α(p) = 1.
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If p were as in case (b), then actually p ∈ S, and Lemma 4.6 shows that D(f, S)
is obstructed. This contradicts our hypothesis on D(f), so we can ignore this case.

Finally, we must consider case (a), so that p ≡ −1 (mod �), p � N , ap ≡ 0 (mod
λ), and α(p) = 2. Recalling that D = D�(f, S′), Lemma 4.5 gives the obstruction
since ap ≡ (p+ 1) ≡ 0 (mod λ).

Remark 4.7. It is not the case that every minimal, optimal level deformation
problem is unobstructed. Indeed, for any prime p we have

ε̄� ⊗ ad ρ̄f,λ � ε̄� ⊕ (ε̄� ⊗ ad0 ρ̄f,λ)

and

H0(Gp, ε̄�) 	= 0 ⇔ p ≡ 1 (mod �),

so condition (3) of Theorem 4.1 is sharp. Let � = 5, p = 11, and k = 3. The space
S3(Γ1(11), 3) contains one newform defined over Q and four newforms which are
Galois conjugates defined over Q(α), where α is a root of x4 +5x3 +15x2 +15x+5.
The minimal set S for any of these newforms is S = {11,∞}. Since S3(Γ1(1))
is empty, all of these newforms are of optimal level for their respective mod �

representations, but since p ≡ 1 mod � their minimal deformation problems are
obstructed.

Remark 4.8. The techniques in this paper cannot rule out the possibility that two
(or more) congruent modular forms of optimal level can exist for an unobstructed
modular deformation problem.

Combining this result with Weston’s result (Theorem 1 of [7]), we have the
following corollary.

Corollary 4.9. Let f be a newform of level N and weight k ≥ 2. For infinitely many
primes �, f represents an optimal modular realization of a mod � representation
ρ̄ : GQ → GL2(F̄�).

Proof. For infinitely many such �, D(f) is unobstructed (by Weston), and by The-
orem 4.1, this implies that f is of optimal level among modular forms realizing ρ̄.

Remark 4.10. Actually, there is a much simpler proof of this fact: If f is of non-
optimal level for its mod � representation, then there is a modular form g of lower
level such that f ≡ g. But such a congruence can occur for only finitely many primes
�, which follows from the q-expansion principle and the fact that these spaces of
modular forms are finite dimensional.

We also get another corollary. For any integer N , let d(N) be the number of
prime divisors of N , i.e. d(N) =

∑
p |N 1.

Corollary 4.11. Fix a prime λ with residue field k of characteristic � > 3, suppose
ρ̄ : GQ → GL2(k) is a modular mod λ representation of prime-to-� conductor N,
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and let f be a newform of level N such that ρ̄ � ρ̄f,λ. If g is a newform of level N ′

such that f ≡ g (modλ), then

dimkH
2(GQ,S , ad ρ̄) ≥ d(N ′/N)

where S is a finite set of places containing the primes which divide N ′∞.

Proof. The proof of Theorem 4.1 shows that if g is of non-optimal level N ′, then
for every prime p dividing N ′/N , we have H0(Gp, ε̄� ⊗ad ρ̄f,λ) 	= 0. By Eq. (2.1) we
have

dimkH
2(GQ,S , ad ρ̄) ≥

∑
p∈S

dimkH
0(Gp, ε̄� ⊗ ad ρ̄f,λ)

and the corollary follows.

5. Explicit Computations in the Supercuspidal Case

Example 5.1. Let k = 2, � = 11, and p = 7. Consider the CM elliptic curve E
with Cremona label 49a1; it is given by

E : y2 + xy = x3 − x2 − 2x− 1,

and its associated modular form f ∈ S2(Γ0(49)) has q-expansion

f = q + q2 − q4 − 3q8 − 3q9 + · · · .
The mod � Galois representation ρ̄f,� is irreducible, and one checks that none of
conditions (1)–(8) of Theorem 3.6 are satisfied. Using Sage [6], one also verifies that
� /∈ Cong(f) and so f is of optimal level for this representation.

Loeffler and Weinstein have incorporated their results from [4] into the Local
Components package of [6]. Using this, one discovers that πp is supercuspidal. How-
ever, since p4 ≡ 3 (mod �), condition (10) is also not satisfied. Thus D(f) is unob-
structed.

Example 5.2. This example shows that condition (10) of Theorem 3.6 is necessary
but not sufficient for producing local obstructions at supercuspidal primes. Let us
fix k = 3, � = 5, and p = 7. Note that p2 ≡ −1 mod � and p4 ≡ 1 mod �.

Using [6], one finds a newform f in S3(Γ1(49)) with a q-expansion that begins

f = q +
(
− 1

92
α3 +

5
92
α2 − 41

91
α+

229
92

)
q2

+
(
− 1

184
α3 +

5
184

α2 − 133
184

α+
229
184

)
q3 + · · · .

Using the Local Components package of [6], one discovers that πp is supercus-
pidal. Let E = Qp(s) be the unramified quadratic extension of Qp. Let L = K(β)
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where β satisfies the polynomial x2 + ( 3
1288α

3 + 11
184α

2 − 153
1288α + 467

184 )x − 1. Then
the character χ associated to πp is characterized by

χ : E → L

s �→ β, 7 �→ 7.

(Here we are viewing χ as a character of E× instead of GE via local class field
theory.) Let λ be either of the two primes of L which lies over �. Then using [6], one
verifies that χ and its conjugate χc are equivalent mod λ by checking that β − βc

has positive λ-valuation. In the notation of Proposition 3.5, this shows that ψ̄ = 1;
the induction of this character is a symmetric representation, and so ε̄� ⊗ IndGp

GE
ψ̄

is an invariant Gp-representation, hence H0(Gp, ε̄� ⊗ ad ρ̄f,λ) = 0.
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