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Elliptic curves are fascinating mathematical objects which occupy the intersec-
tion of number theory, algebra, and geometry. An elliptic curve is an algebraic
variety upon which an abelian group structure can be imposed. By considering
the ring of endomorphisms of an elliptic curve, a property called complex mul-
tiplication may be defined, which some elliptic curves possess while others do
not. Given an elliptic curve E and a prime p, denote by Np the number of points
on E over the finite field Fp. It has been conjectured that given an elliptic curve
E without complex multiplication and any modulus M , the primes for which
Np is a square modulo p are uniformly distributed among the residue classes
modulo M . This paper offers numerical evidence in support of this conjecture.

1. Introduction

Let F(x, y)= y2
−a1xy−a3 y− x3

−a2x2
+a4x−a6 where the ai ∈C. Consider

the set of points
E = {(x, y) ∈ C2

: F(x, y)= 0}.

We also wish to associate with the set E a special point O∈ E , called the point at in-
finity, an idea which is made rigorous by projective geometry and whose existence
is justified below. Provided there are no points (x, y) such that

∂F
∂x

∣∣∣∣
(x,y)
=
∂F
∂y

∣∣∣∣
(x,y)
= 0,

we say that F is nonsingular, and when F is nonsingular, we call E an elliptic
curve. Through some substitutions, the equations defining elliptic curves can be
put into the form F(x, y) = y2

− x3
− ax − b for some a, b ∈ C, which is called

Weierstrass normal form.
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If one were to graph the real points (x, y) ∈ R2 of E , the graph would form an
ordinary-looking plane curve which is symmetric about the x-axis:
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However, elliptic curves are far from ordinary and are the focus of much research
due to some remarkable properties they possess. In particular, an addition law
can be defined for points on the curve under which the points form an abelian
group with identity element O. The addition law can be described in the following
geometric way: given two points on the curve, p1 and p2, draw the line connecting
these two points:
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We define p3 = p1 ∗ p2 to be the third point of intersection between this line and
the curve E . (If p1 = p2, we take the tangent line to the curve E at that point,
which exists since E is nonsingular.)

This third point is guaranteed to exist by the following theorem.

Theorem (Bézout). Let C and D be two curves in the projective space CP2 of
degrees n and m, respectively, which have no common component (that is, there
do not exist curves C1, D1, and E of degrees at least 1 such that C = C1 ∪ E and



UNIFORM DISTRIBUTION OF POWER RESIDUES FOR ELLIPTIC CURVES 307

D = D1 ∪ E). Then C and D have precisely nm points of intersection counting
multiplicities.

This theorem is about curves in projective space; projective space and its role
in the study of elliptic curves is discussed below. For a detailed discussion of
projective space, multiplicity, and Bézout’s theorem, see [Kirwan 1992].

Bézout’s theorem states that two algebraic curves of degrees n and m intersect
in exactly nm points (counting multiplicity), provided the curves do not share a
common component. Now, the degree of a curve is simply the degree of the homo-
geneous polynomial defining it. (Homogeneous polynomials are discussed below.)
Since E is defined by a polynomial of degree 3, E is of degree 3, and since a line
is of degree 1, Bézout’s theorem implies that the two curves should intersect in
exactly 3 points; hence precisely one such point p3 is guaranteed to exist. Then
p1+ p2 is defined to be the reflection of p3 about the x-axis:
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This method of addition is frequently referred to as the chord and tangent method.
This addition law can be stated succinctly in the following way: three points on E
sum to the identity, O, if and only if they are collinear. With this formulation, and
the understanding that O exists “at the top of the y-axis” as discussed below, we
see that p1 ∗ p2 = −(p1 + p2), and the reflection of this point across the y-axis,
which we defined to be p1+ p2, is the third point of E on the line between p1 ∗ p2

and O.
It is now necessary to consider O, the point at infinity. For our purposes, it

suffices to think of O as the point at which all vertical lines in the x − y plane
intersect. Consider the line connecting p1 ∗ p2 and p1+ p2. This is a vertical line,
and clearly only intersects E twice. However, Bézout’s Theorem assures us that
there are three points of intersection. In this case, that third point is O.

To make this more rigorous, we consider the homogenized form of the curve E
defined by

E : F(x, y)= y2
− x3
− ax − b.
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A homogeneous curve of degree n defined by an equation in three variables x, y, z
is one in which, for every monomial αx i y j zk , we have i+ j+k=n. To homogenize
F , we make the substitutions x = X/Z and y = Y/Z and multiply F by Z3,
obtaining the curve

Ē : F(X, Y, Z)= Y 2 Z − X3
− aX Z2

− bZ3.

Furthermore, we consider the curve in the complex projective space of degree two,
denoted CP2, where two 3-tuples [x, y, z] and [x ′, y′, z′] in CP2 are considered
equivalent if they differ by a constant multiple; that is, we have the equivalence
relation

[x, y, z] ∼ [x ′, y′, z′] ⇐⇒ [x, y, z] = λ[x ′, y′, z′]

for some complex, nonzero constant λ 6= 0. We do not consider [0, 0, 0] to be an
element of CP2. To summarize, we have

CP2 =
{
[x, y, z] : x, y, z ∈ C−{[0, 0, 0]}

}/
∼ .

Because of this equivalence, we see that as long as Z 6= 0, we may divide by Z
and obtain our original curve, since in projective space

[X, Y, Z ] =
1
Z
[X, Y, Z ] = [x, y, 1],

and plugging this point into our homogeneous equation yields

E : F(X, Y, 1)= y2
− x3
− ax − b.

If Z = 0, then we have

F(X, Y, 0)= X3.

Since points on the curve are those for which F(X, Y, Z)= 0, we must have X = 0,
and Y is free to take any nonzero value, hence we obtain the homogeneous point
[0, Y, 0] = [0, 1, 0] corresponding to the line Z = 0; this is the point at infinity, O.
In projective space, all curves intersect, including parallel lines, which intersect at
O. Bézout’s theorem, stated above, is actually a statement about projective space,
but we extend its implications to C2 using O.

As an illustration, note that if we have two parallel projective lines, y=αx+β1z
and y=αx+β2z, where β1 6=β2, then to find their intersection, we solve these two
equations simultaneously. These lines coincide when z = 0, so just as we claimed,
these lines intersect at the point at infinity.

To make the addition law rigorous, let us now describe it algebraically. We wish
to find the formula for p1+ p2, the sum any of two points on our curve, E , which
is given by the equation y2

= x3
+ ax + b. There are several cases to consider.



UNIFORM DISTRIBUTION OF POWER RESIDUES FOR ELLIPTIC CURVES 309

CASE 1: Let p1 = (x1, y1) and p2 = (x2, y2), and suppose p1 6= p2 and neither
point is equal to O. To find p1+ p2, we must first find p1 ∗ p2 = p3 = (x3, y3), the
third point of intersection of the line between p1 and p2 with E . The line between
p1 and p2 is given by

y = λx + ν, where λ=
y2− y1

x2− x1
and ν = y1− λx1.

Now, we wish to find the points where this line intersects our curve, so we make
the following substitution:

y2
= (λx + ν)2 = x3

+ ax + b.

Subtracting gives us

0= x3
− λ2x2

+ (a− 2λ)x + (b− ν2).

The x-coordinates of the three points of intersection of the line and E are given by
the roots of this equation. Factoring, we obtain

x3
− λ2x2

+ (a− 2λ)x + (b− ν2)= (x − x1)(x − x2)(x − x3),

and by identifying coefficients, we know that the sum of the roots is equal to the
negative of the coefficient of x2; that is,

x1+ x2+ x3 = λ
2
⇒ x3 = λ

2
− x1− x2.

By the equation of our line, this allows us to find y3:

y3 = λx3+ ν.

Thus, we have p3 = (x3, y3). Now, the definition of our group law tells us that
since p1, p2, and p3 are collinear, their sum must be equal to the group identity,
which is O. Thus

p1+ p2+ p3 = O.

But this implies that p3 =−(p1+ p2). By the definition of the inverse of a group
element, we know that

(p1+ p2)+ p3 = (p1+ p2)− (p1+ p2)= O.

Using the definition of our group law again, as well as the fact that O is the identity
element, we see that

(p1+ p2)+ p3+O= O,

which, geometrically, means that p1 + p2 is the third point of intersection of E
with the line between p3 and O; but by our definition of O, this is just a vertical
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line, and since E is symmetric about the x-axis, we conclude that p1+ p2 is simply
the reflection of p3 about the x-axis. Thus,

p1+ p2 =−p3 = (x3,−y3),

where x3 and y3 are given by

x3 = λ
2
− x1− x2, y3 = λx3+ ν. (1)

CASE 2: Let p1 = p2 = (x1, y1) 6= O. Then the line “connecting” p1 and p2 is
simply the line tangent to E at p1. Since E is given by

y2
= x3
+ ax + b,

implicit differentiation yields

∂y
∂x
=

3x2
− a

2y
.

Then the formulas in (1) hold, by the exact same arguments, with λ= ∂y/∂x . Note
that λ blows up if y = 0; that is, the tangent line is vertical. So if p = (x, 0), then
p + p = 2p = O. Thus, the points of order two on E are precisely those with
y-coordinate equal to zero.

CASE 3: If p1 = O, then since O is the identity element of the group, we have

p1+ p2 = O+ p2 = p2.

As an example, consider the curve E defined by

E = {(x, y) ∈ C2
: y2
= x3
+ 17}.

It is easy to check that the points p1 = (2, 5) and p2 = (−1, 4) are on the curve.
Applying the addition formulas given above, we see that λ= 1

3 , ν = 13
3 , and p1+

p2 = (−
8
9 ,

109
27 ), which is also easily verified to be on the curve.

To summarize, under the chord-and-tangent addition law and the inclusion of
O, E forms an abelian group with identity element O, where p1 + p2 + p3 = O if
and only if p1, p2, p3 ∈ E are the three points of intersection of some line with E .
A wonderful introduction to elliptic curves can be found in [Silverman and Tate
1992].

Frequently, one prefers to look at the set

E(Q)= {(x, y) ∈Q2
: y2
= x3
+ ax + b with a, b ∈Q} ∪ {O}

of rational points on the curve. Here again, O is the point at infinity with projective
coordinates O = [0, 1, 0], and under the chord-and-tangent method of addition,
the algebraic description of which is given in (1), E(Q) forms an abelian group
with identity element O. In fact, this is a subgroup of the original group E , and
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interestingly, the Mordell–Weil theorem tells us that it is finitely-generated. More
generally, given a field K , one might look at the group

E(K )= {(x, y) ∈ K 2
: y2
= x3
+ ax + b with a, b ∈ K } ∪ {O}

of K -rational points on the curve. Once again, O= [0, 1, 0] is the point at infinity.
If K = Fp is the finite field with p elements, where p is an odd prime, then E(K )
is called the reduction modulo p of E . An examination of our derivation of the
algebraic formulas for the addition law, given in (1), reveals that the formulas hold
in any field, provided the field has characteristic other than 2. Under this addition
law, E(K ) forms an abelian group with identity element O.

Let p be an odd prime. Given an elliptic curve E reduced modulo p, it is
common to ask how many points Np lie on the curve (equivalently, what the order
is of the group given by the curve). Clearly this number is finite, since for each of
the p possible values of x there are only two possible values of y, plus the point
at infinity O; hence there are at most 2p+1 points on the curve. A better estimate
for Np might be derived in the following way. An element a of Fp is said to be a
quadratic residue if there exists a nonzero b ∈ Fp such that b2

≡ a (mod p). In Fp,
there are exactly (p−1)/2 quadratic residues. Finding points (x, y) on E amounts
to finding those values of x such that x3

+ax+b is a quadratic residue modulo p;
hence we might expect x3

+ax+b to be a square modulo p about half of the time.
Since each such square yields the two pairs (x, y) and (x,−y), we should expect
about p− 1 such points. We might also have x3

+ ax + b = 0, in which case we
get the point (x, 0). Finally, there is the point at infinity. Adding these points up,
we get an estimate of Np = p+ 1. Of course, this is a heuristic argument, so we
should expect an error term. A theorem due to Hasse and Weil bounds this error
term:

Theorem (Hasse, Weil). If E is an elliptic curve defined over the finite field Fp,
then the number of points on E with coordinates in Fp is p + 1− ap, where the
“error term” ap satisfies |ap| ≤ 2

√
p.

Returning to our previous example, let us look at the curve

Ē = {(x, y) ∈ F5 : y2
= x3
+ 2}.

In this case, brute force suffices to show that

E = {(2, 0), (3, 2), (3, 3), (4, 1), (4, 4),O},

hence Np = 6. Since p + 1 = 6, the error term from the Hasse–Weil theorem is
in this case ap = 0, and our heuristic argument gave us Np exactly. This does not
happen in general, however.
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In this paper, we are particularly interested in the set

QE = {odd primes p ∈ Z : Np is a quadratic residue modulo p}.

We have just shown that for the elliptic curve E which we have been considering,
N5= 6≡ 1≡ 12 (mod 5), so 5∈ QE . Note that, in general, for two different curves
E1 and E2 we have QE1 6= QE2 .

Recall that an endomorphism of a group G is a homomorphism
φ : G → G. Now, since an elliptic curve E/C defined over C forms a group, it
is natural to study End(E), the ring of endormorphisms of E . (To be precise, we
actually only look at rational endomorphisms, those which are defined by rational
functions with entries in C. These are also called isogenies.) For each integer n,
the multiplication-by-n map φn : E → E defined by φn(x, y) = n(x, y) (where
n(x, y) represents repeated chord-and-tangent addition) defines an endomorphism
of E , hence φn ∈ End(E). For most curves, these are the only endomorphisms;
however, some curves do have additional endormorphisms, and these curves are
said to have complex multiplication, or simply CM. Curves for which End(E)∼= Z

are said to be non-CM.
Returning to our example curve E defined by the polynomial

y2
= x3
+ 17,

let φ : E→ E be the homomorphism defined by

φ(x, y)=
(
−1+

√
−3

2
x,−y

)
.

This is not a multiplication-by-n map, and since (−1+
√
−3

2 )3 = 1 and (−y)2 = y, if
(x, y) ∈ E then also φ(x, y) ∈ E ; hence E has CM.

Conjecture. Let E be a non-CM curve, fix a modulus M , and let r1, . . . , rs denote
the residue classes modulo M such that gcd(ri ,M) = 1 for each i . Now, look at
the reduction of E modulo p for each p in the set Pn = {3, 5, . . . , pn} of the first n
odd primes, calculate Np for each p, and let QE be defined as before. Let

Ri = {p ∈ QE ∩ Pn | p ≡ ri (mod M)}.

Let #Ri denote the cardinality of this set. Then the residues of the elements of QE

modulo M are uniformly distributed among the ri ; that is, for every 1≤ i, k ≤ s we
have

lim
n→∞

#Ri

#R j
= 1.

This conjecture, suggested to Martin by Ramakrishna, is based on [Weston
2005], which investigates a similar problem involving the distribution of power
residues for ap ≡ Np − 1 (mod p).



UNIFORM DISTRIBUTION OF POWER RESIDUES FOR ELLIPTIC CURVES 313

To test this conjecture, we wrote a program using William Stein’s project Sage
which takes as input an elliptic curve E , a range of moduli M , and a large number
B. For each modulus M , the program looks at the reduction of E modulo p for
every prime p < B and computes the number of points Np on the reduced elliptic
curve. Finally, it takes those p such that Np is a quadratic residue modulo p and
looks at their residues modulo M . The output data consists of 1) the number of
primes congruent to ri for each residue class ri relatively prime to M , and 2) the
maximum percent deviation of the size of each #Ri from the expected size (were
the Np distributed uniformly among the ri ).

In this paper, we present data from our program for several curves without CM,
arguing that the trends in the data as B increases strongly suggest the truth of the
conjecture.

2. The program

2.1. What the programs do. To get the data we needed, we wrote a program that
takes an elliptic curve and a few other parameters, computes a subset of the prime
numbers, called QE , and, given a modulus M , computes a count for each residue.
The count is the number of elements in QE that, when reduced modulo M , have
that residue. The program also computes the largest percent difference from the
expected value.

More specifically, given an elliptic curve E , a range of prime numbers P , and a
range of moduli M , the program computes the set

QE = {p ∈ P | Np is a quadratic residue modulo p}.

Then for all m ∈ M , the program computes for each residue r ,

#R = #{p ∈ P | p ≡ r (mod m)}.

This information is written to a file. Then the program computes some statistical
information. First, it computes the expected count for each residue. If a residue, r ,
is not relatively prime to the modulus, m, then p ∈ QE will have p≡ r (mod m)⇔
r ∈ QE . This means that #R = 0, 1 for all residues, r , that are not relatively prime
to m. So we are really only interested in residues relatively prime to the modulus.
If the conjecture were true for non-CM elliptic curves, we would expect that

#Ri =
#QE

ϕ(m)
,

where ϕ(m) = #{r ∈ Z | 0 ≤ r < m and gcd(r,m) = 1} denotes the Euler-phi
function and r1, . . . , rs are the residues relatively prime to m. For each modulus,
m, the program computes the percent difference of the actual count, #Ri , from the
expected count, C = (#QE)/ϕ(m). So the percent difference for each residue is
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|1− #Ri/C | · 100. The program then picks out the largest percent difference. We
are interested in the largest percent difference because it tells us how far off the
actual count is from the expected count. Finally, the program writes to a file each
modulus and its corresponding largest percent difference.

For example, consider the elliptic curve E defined by

F(x, y)= y2
+ xy+ y− x3

− 4x + 6.

Then given

P = {p ∈ Z+ | p < 106, p prime},

M = {m ∈ Z | 3≤ m < 301}, and

QE = {p ∈ P | Np is a quadratic residue modulo p},

the program computed that #QE = 40593. Now consider a specific modulus, say
m = 9. Then the residues relatively prime to m are r1 = 1, r2 = 2, r3 = 4, r4 =

5, r5 = 7, r6 = 8, so ϕ(m)= 6. Thus the expected count for each residue is

C =
#QE

ϕ(m)
=

40593
6
= 6765.5.

In fact, the program computed that the actual counts are

#R1 = 6551, #R2 = 6876, #R3 = 6802,

#R4 = 6850, #R5 = 6632, #R6 = 6882.

So there are 6551 primes p less than one million such that Np is a quadratic
residue modulo p and p ≡ 1 (mod 9). In fact, of these six counts, #R1 is the
farthest off from the expected count C = 6765.5. So #R1 will yield the biggest
percent difference, which is ∣∣∣1− #R1

C

∣∣∣ · 100≈ 3.17.

2.2. Outline of programs and efficiency. We organized the programs to try to
maximize efficiency. The original programs we wrote were slow. Using them,
we could not have computed nearly the same amount of data that we did with
our newer version. By timing the original programs, we were able to see that the
process that took the most time was generating and storing the set QE . Since this
set was not even an output of our programs, we decided to generate one part of
QE at a time. It worked like this:

while counter < limit:
compute part of QE beginning with counter
read in previously computed data (if any)
compute counts for this part of QE
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save these data
delete current part of QE

compute percentages for all data

Note that counter and limit are simply variables to keep track of which piece of
QE has been computed.

This while loop lends itself to division into two programs: 1) a program to return
a part of the set QE and 2) a program to maintain a count of the residue classes
in the set QE over the various moduli in some set M . After running initial tests
on various curves for primes strictly less than one hundred thousand, which ran in
under five minutes, and then for primes strictly less than one million, which ran for
more than two hours, we realized that the second run of these tests was recomputing
data. This led us to modify the second program to look for output files generated
by previous runs of the program and start with an updated count and then proceed
from there. This also meant that if the program crashed in the middle of running,
we wouldn’t lose all previous data. Finally, there are several driver programs that
run the tests for various elliptic curves, various ranges of moduli and various ranges
of prime numbers.

2.3. How the main programs work. The main program, called residueCounter, is
the second program described in the preceding paragraph. It takes as parameters
a starting number and upper bound to specify which range of prime integers to
look at, a starting modulus and ending modulus to specify which range of moduli
to test, a list of five integers to specify an elliptic curve, and finally a boolean to
specify whether or not to look for files containing data that this program can use.
The program stores all of the output in a dictionary, called dataDict. The keys of
the dictionary are the moduli in the range specified by the parameters. Given a
modulus, m, dataDict[m] evaluates to a list of lists. This list is a count for each
residue of m.

The program starts by deciding whether or not to look for old files based on the
boolean passed as a parameter.

if True:
find all files generated by previous runs of residueCounter
pick the most relevant file
initialize dataDict to include all of the data computed from this file
exclude the primes already checked by this file

if False:
initialize a blank dataDict

Note that the most relevant file is the file whose range of moduli match that of
the current program and of the files whose ranges match; the one with the highest
upper bound has the most data and hence will save the most time.
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The program needs to find the set QE and update dataDict to include the count
from this set. However, as mentioned in the previous section, the program runs
too slowly to do this all at once. So, instead it runs a loop that calls a different
function, the first one mentioned above, to return a piece of QE , update dataDict
to get all the counts for this piece, and then repeat this over and over until dataDict
has all the data needed.

More precisely, the program has a variable current prime to keep track of what
part of QE has been retrieved. It then runs the following while loop:

while current prime is strictly less than the upper bound:
call function
this function returns a new current prime and a piece of QE

update dataDict for this piece of QE

get rid of that piece of QE to clear up memory space
try to run loop again

The program then calculates the largest percent difference for each modulus, as
described in Section 2.1. Finally, it writes this information to two different files,
one for the data, one for the statistical information. The file names are keyed to
include the elliptic curve, the upper bound, the range of moduli and what kind of
file it is.

The function called in the last while loop is the one that actually deals with the
elliptic curves. The elliptic curves we are looking at have the form y2

+ a1xy +
a3 y = x3

+a2x2
+a4x +a5 for some a1, a2, a3, a4, a6 ∈ Z. This way we can look

at the curves reduced modulo p for odd primes p. A standard way to reference a
specific curve is by a list of the coefficients [a1, a2, a3, a4, a6].

This function takes as parameters an elliptic curve in the form [a1, a2, a3, a4, a6],
the current prime, how many primes to check and the upper bound. It then calcu-
lates the conductor of the elliptic curve. Every elliptic curve has a unique integer
associated with it, called the conductor. Essentially, the conductor tells you which
primes to avoid; every prime divisor of the conductor has what is known as ‘bad
reduction’, meaning that the reduction of E modulo these primes is singular and
therefore not an elliptic curve. Accordingly, this function skips all of these primes.
Also, we are only interested in primes p such that Np is a quadratic residue modulo
p. Luckily, there is a quick way to find out if Np is a quadratic residue. A result due
to Euler says that a necessary and sufficient condition for a ∈ Fp to be a quadratic
residue is:

a(p−1)/2
≡ 1 (mod p).

The numbers Np are calculated in Sage via the command cardinality using
either the Schoof–Elkies–Atkins algorithm or the baby-step-giant-step algorithm
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of Mestre and Shanks. Sage decides which algorithm to use by heuristically deter-
mining which will be more computationally efficient.

That said, here is a sketch of the program:

compute conductor of elliptic curve
initialize blank list to store primes of interest
while (current prime < upper bound) and (counter < how many primes to check):

if current prime doesn’t divide conductor:
if the coefficients define an elliptic curve:

if N (p−1)/2
p ≡ 1 (mod p):

add current prime to list
set current prime to the next prime

3. The data

Let us recall the conjecture on which we are working.

Conjecture. Given a non-CM elliptic curve E , a modulus M , and a list QE of
all the primes p for which the number of points Np on the reduction of E modulo
p are quadratic residues modulo p, the elements of QE are uniformly distributed
among the residue classes of M.

Due to the nature of the conjecture, the data we collect is bound to have some
experimental error, since we can only look at a finite subset of QE at a time. When
this subset of QE is large with respect to the modulus M , we should expect less
error, and when this subset is small with respect to M , we should expect greater
variance in the distribution of the primes, and hence greater error.

When we ran our program, to obtain our subset of QE we took all of the primes
in QE below some fixed bound B. We then looked at their distribution among
the residue classes of moduli from 3 to 300. The preceding discussion suggests
that by increasing the size of B, we should expect to see our experimental error
decrease. Consider Figure 1, which shows the data for F(x, y)= y2

+ y−x3
+x , a

curve lacking complex multiplication. The bars in the graph indicate the maximum
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Figure 1. Prime distribution on the non-CM curve y2
+y= x3

−x
of conductor 37 and rank 1, for different values of the bound B.
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percent deviation from the expected (uniform) distribution among the moduli; a
higher bar indicates higher deviation. The first important thing to note is that, in
all three figures, we can see that the error does indeed increase as the modulus
increases. The second thing to note is that as we increase B (and thus the size of
our subset of QE ), the error decreases for every modulus. The three parts of the
figure show the error when B = 105, 106, and 3×106. As B increases, the graphs
“flatten out”, indicating a decrease in the error. This suggests that the deviation is
simply “experimental error”.

We tested our program on several non-CM curves of varying ranks and conduc-
tors. The data for some of these curves is presented on this and the next two pages.
The data for all of the curves tested strongly suggest that the conjecture is correct.
However, we have no proof of it at this time.

All of our data and program code is available upon request.
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y2
+ y = x3

+ x2
− 2x
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4. Future research ideas

Several related problems might be considered in the future. It would be beneficial
to find an efficient way to run a program like ours for larger primes for further
data collection. The data presented in is paper is for values of B at the limit of
our program’s reasonable run time. We plan to modify our program to test the
conjecture regarding ap rather than Np; furthermore, Weston [2005] conjectures
that a similar result holds for primes for which the ap are higher power residues. A
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slight modification of our program, or any similar program, would allow for data
collection for these cases.
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