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Groups of generalized G-type and applications to torsion
subgroups of rational elliptic curves over infinite extensions of Q

Harris B. Daniels, Maarten Derickx and Jeffrey Hatley

Abstract

Recently, there has been much interest in studying the torsion subgroups of elliptic curves base-
extended to infinite extensions of Q. In this paper, given a finite group G, we study what
happens with the torsion of an elliptic curve E over Q when changing base to the compositum
of all number fields with Galois group G. We do this by studying a group theoretic condition
called generalized G-type, which is a necessary condition for a number field with Galois group H
to be contained in that compositum. In general, group theory allows one to reduce the original
problem to the question of finding rational points on finitely many modular curves. To illustrate
this method, we completely determine which torsion structures occur for elliptic curves defined
over Q and base-changed to the compositum of all fields whose Galois group is A4.

1. Introduction

At the foundation of the study of arithmetic geometry is the Mordell–Weil Theorem, which
states that given an elliptic curve E defined over a number field K, the set of K-rational points
on E, denoted E(K), forms a finitely generated abelian group. That is to say, there exists an
integer r � 0 and a finite abelian group, which we will denote E(K)tors, such that

E(K) � Zr ⊕ E(K)tors.

The positive integer r is called the rank of E over K, while E(K)tors is called the torsion
subgroup of E over K. Many interesting and difficult questions can be asked about the ranks
of elliptic curves, but the central objects of study in this paper will be the torsion subgroups
of elliptic curves.

A natural first question one can ask in this direction is whether there are restrictions on
what groups can arise as the torsion subgroup of an elliptic curve. This question is brought
into sharper focus by a theorem which states that, for every number field K, there are positive
integers a and b such that E(K)tors � Z/aZ ⊕ Z/abZ for any elliptic curve E defined over K.
In order to obtain more precise results, one needs to put restrictions on the field of definition of
the elliptic curve. The first such result is the following that restricts to the case when K = Q.

Theorem 1.1 (Mazur [24]). Let E/Q be an elliptic curve. Then

E(Q)tors �
{

Z/MZ 1 � M � 10 or M = 12, or

Z/2Z ⊕ Z/2MZ 1 � M � 4.
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More results of this nature can be found in [14, 19], where the torsion structures that occur
when K is allowed to be a quadratic extension of Q are completely classified. Since then much
work has been put into classifying the torsion structures of elliptic curves defined over cubic
extensions of Q with results recently announced by Etropolski, Morrow and Zureick-Brown, and
independently by the second author. The case where [K : Q] = 4 is still completely wide open.

Another approach is to start with an elliptic curve defined over Q and consider what torsion
subgroups occur when it is base-extended to a field K/Q. The cases when E is defined over Q
and K is a number field of degree d with d = 2, 3, 4, 5, 7 or d is not divisible by 2,3,5,7 have
been completely settled in [3, 11–13, 26]. There have been a number of papers that consider
the question of what torsion structures occur over a fixed infinite extension of Q. For example,
in [9, 10, 20] all the possible torsion structures that occur when E/Q is base-extended to the
compositum of all quadratic extensions of Q are classified. More recently, in [7] all of the torsion
structures that occur when E/Q is base-extended to the compositum of all degree 3 extensions
of Q are classified. It is worth noting at this point that when working over an infinite extension
of Q, we no longer have the Mordell–Weil Theorem to ensure that the torsion subgroup remains
finite. Because of this we have to make sure that we choose an infinite extension of Q carefully.

In this paper, we provide a general framework for studying the torsion subgroups of rational
elliptic curves over certain infinite extensions of Q. Before proceeding we remind the reader of
the following definition.

Definition 1.2. For n ∈ N and groups G1, . . . , Gn, let πi : G1 × · · · ×Gn → Gi be the
standard projection maps. A subgroup K of G1 × · · · ×Gn is a subdirect product of G1, . . . , Gn

if for all i, πi(K) = Gi.

With this and inspired by [5, 7], we give the following definition.

Definition 1.3. Let G be a transitive subgroup of Sd for some d � 2. We say that a finite
group H is of generalized G-type if it is isomorphic to a quotient of a subdirect product of
transitive subgroups of G. Given a number field K/Q and its Galois closure K̃, we say that
K/Q is of generalized G-type if Gal(K̃/Q) is a group of generalized G-type. Let Q(G∞) be the
compositum of all fields that are of generalized G-type.

Immediately from this definition we get the following lemma.

Lemma 1.4. Let G be a finite group. The extension Q(G∞)/Q is a Galois extension and
the set S ⊆ N consisting of the integers n such that Q(ζn) ⊆ Q(G∞) is finite.

Proof. Let λ(n) be the exponent of Gal(Q(ζn)/Q) � (Z/nZ)×; then λ(2e) = 2e−2 for e � 3
and λ(pe) = (p− 1)pe−1 for odd primes p > 2 and e � 1. If Q(ζn) ⊆ Q(G∞), then Q(ζn) must
be of generalized G-type, and hence we must have λ(n) | exp(G), where exp(G) is the exponent
of G. As exp(G) is finite, the set S ⊆ {n ∈ N : λ(n)|exp(G)} is clearly finite as well, and the
lemma follows. �

With this lemma we have that for any finite group G we can now apply the following theorem
to the torsion subgroups of rational elliptic curves base-extended to Q(G∞).

Theorem 1.5 [7, Theorem 4.1]. Let E/Q be an elliptic curve and let F be a (possibly
infinite) Galois extension of Q that contains only finitely many roots of unity. Then E(F )tors is
finite. Moreover, there is a uniform bound B, depending only on F , such that #E(F )tors � B
for every elliptic curve E/Q.
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In light of Theorem 1.5, it is natural to ask the following question.

Question 1.6. Given a finite group G, what groups (up to isomorphism) occur as the
torsion subgroup of an elliptic curve E/Q base-extended to Q(G∞)?

We start the study of this question in Section 2 by first introducing the notions of weak and
strong generalized G-type. Armed with these two new concepts, we find computable necessary
and sufficient conditions to determine if a given finite group H is of generalized G-type. These
necessary and sufficient conditions drastically generalize the conditions used in [5, Lemma 3.2;
7, Lemma 3.2] where the cases of G = S3 and D4 are studied.

Once these necessary and sufficient conditions are established, Question 1.6 reduces to
classifying rational points on modular curves. In fact, since there is a computable uniform
bound on #E(Q(G∞))tors depending only on Q(G∞) (and so really depending only on G),
Question 1.6 is reduced to finding the rational points on a finite and computable list of modular
curves depending on G. To explicitly illustrate our method we fully answer Question 1.6 in the
case when G = A4 by proving the following theorem.

Theorem 1.7. Let E/Q be an elliptic curve. The torsion subgroup E(Q(A∞
4 ))tors is finite

and

E(Q(A∞
4 ))tors �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z/MZ with M = 1, 3, 5, 7, 9, 13, 15, 21 or

Z/2Z ⊕ Z/2MZ with 1 � M � 9 or

Z/3Z ⊕ Z/3MZ with M = 1, 3 or

Z/4Z ⊕ Z/4MZ with 1 � M � 4, M = 7 or

Z/6Z ⊕ Z/6Z or

Z/8Z ⊕ Z/8Z.

All but 4 of the 26 torsion structures listed above occur for infinitely many Q-isomorphism
classes of elliptic curves E/Q. The torsion structures that occur finitely often are

Z/21Z, Z/15Z, Z/2Z ⊕ Z/14Z, and Z/3Z ⊕ Z/9Z

which occur for 4,2,2, and 1 Q-isomorphism classes, respectively.

The proof of Theorem 1.7 gives a concrete demonstration of the general strategy for
determining the torsion subgroups for curves which have been base-extended to Q(G∞) for
more general G. Thus, the results of this paper provide a framework for determining the torsion
subgroups for elliptic curves E/Q base-extended to a large family of infinite extensions of Q.
We note here that we do not have an algorithm to classify these groups up to isomorphism since
there is not an algorithm to find all the rational points on a general modular curve, although
in practice this is possible.

To finish off the classification over Q(A∞
4 ), in Table 1 we give elliptic curves of minimal

conductor with each of the 26 possible torsion structures when base-extended to Q(A∞
4 ).

Further, in Table 5 we find a complete list of (possibly constant) rational maps that classify
the j-invariants of elliptic curves which contain a subgroup isomorphic to one of the possible
26 torsion structures. More information about Table 5 can be found in Section 6.

Once we have settled the classification of torsion over Q(A∞
4 ), it is not hard to determine

which torsion structures arise over the compositum of all A4-extensions of Q, which we denote
by QA4 . As we explain in Section 7, since we have a proper containment QA4 ⊆ Q(A∞

4 ), this
comes down to determining which torsion subgroups from Theorem 1.7 still arise over the
smaller field QA4 . The fact that QA4 contains no subextensions which are quadratic over Q
plays a major role. We obtain the following theorem.



GROUPS OF GENERALIZED G-TYPE 25

Theorem 1.8. Let E/Q be an elliptic curve. The torsion subgroup E(QA4)tors is finite and

E(QA4)tors �
{

Z/MZ with 1 � M � 10 or M = 12, 13, 14, 18, 21 or

Z/2Z ⊕ Z/2MZ with 1 � M � 4 or M = 7.

We conclude in Section 7.4 with an observation about torsion over cyclic cubic fields. In
particular, letting Q(C∞

3 ) denote the compositum of all cyclic cubic extensions of Q, we obtain
for free a classification of all torsion subgroups arising as E(Q(C∞

3 ))tors for an elliptic curve
E/Q (see Corollary 7.14).

All of the computations in this paper were done with the help of the computer program
Magma [1] and the code has been made available at [6].

2. Groups and fields of generalized G-type

Starting in Section 2.1, we will make a general study of groups and fields of generalized G-type
by introducing the concepts of weak and strong G-type. With these we find necessary and
sufficient conditions to show a group is of generalized G-type. After doing this general study,
in Section 2.3 we will examine the particular case when G = A4 in order to gain more specific
information to prove Theorem 1.7.

2.1. Strong and weak G-types

Definition 2.1. Let G be a group. Then a group H is of weak G-type if there is an integer
n such that H is isomorphic to a subquotient of Gn. Further, H is of strong G-type if there is
an integer N such that H is isomorphic to a quotient of a subdirect product of GN .

The notion of generalized G-type is dependent on a choice of an embedding of G in Sd, while
in contrast the notions of strong and weak G-type depend only on the group G itself as an
abstract group. Immediately from these definitions we get the following lemma.

Lemma 2.2. Let G,H and I be groups with G ⊆ Sd a transitive subgroup.

(1) One has the implications:

H is of strong G-type ⇒ H is of generalized G-type ⇒ H is of weak G-type.

Table 1. Examples of minimal conductor for each possible torsion structure over Q(A∞
4 ).

E/Q E(Q(A∞
4 ))tors E/Q E(Q(A∞

4 ))tors

11a2 {O} 30a1 Z/2Z ⊕ Z/12Z
44a1 Z/3Z 49a1 Z/2Z ⊕ Z/14Z
11a1 Z/5Z 210e1 Z/2Z ⊕ Z/16Z
26b1 Z/7Z 14a3 Z/2Z ⊕ Z/18Z
19a2 Z/9Z 19a1 Z/3Z ⊕ Z/3Z
147b1 Z/13Z 27a1 Z/3Z ⊕ Z/9Z
50a3 Z/15Z 17a1 Z/4Z ⊕ Z/4Z
162b1 Z/21Z 15a2 Z/4Z ⊕ Z/8Z
46a1 Z/2Z ⊕ Z/2Z 30a2 Z/4Z ⊕ Z/12Z
17a3 Z/2Z ⊕ Z/4Z 210e2 Z/4Z ⊕ Z/16Z
20a1 Z/2Z ⊕ Z/6Z 1922c1 Z/4Z ⊕ Z/28Z
15a5 Z/2Z ⊕ Z/8Z 14a1 Z/6Z ⊕ Z/6Z
66c1 Z/2Z ⊕ Z/10Z 15a1 Z/8Z ⊕ Z/8Z

http://www.lmfdb.org/EllipticCurve/Q/11a2
http://www.lmfdb.org/EllipticCurve/Q/30a1
http://www.lmfdb.org/EllipticCurve/Q/44a1
http://www.lmfdb.org/EllipticCurve/Q/49a1
http://www.lmfdb.org/EllipticCurve/Q/11a1
http://www.lmfdb.org/EllipticCurve/Q/210e1
http://www.lmfdb.org/EllipticCurve/Q/26b1
http://www.lmfdb.org/EllipticCurve/Q/14a3
http://www.lmfdb.org/EllipticCurve/Q/19a2
http://www.lmfdb.org/EllipticCurve/Q/19a1
http://www.lmfdb.org/EllipticCurve/Q/147b1
http://www.lmfdb.org/EllipticCurve/Q/27a1
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/17a1
http://www.lmfdb.org/EllipticCurve/Q/162b1
http://www.lmfdb.org/EllipticCurve/Q/15a2
http://www.lmfdb.org/EllipticCurve/Q/46a1
http://www.lmfdb.org/EllipticCurve/Q/30a2
http://www.lmfdb.org/EllipticCurve/Q/17a3
http://www.lmfdb.org/EllipticCurve/Q/210e2
http://www.lmfdb.org/EllipticCurve/Q/20a1
http://www.lmfdb.org/EllipticCurve/Q/1922c1
http://www.lmfdb.org/EllipticCurve/Q/15a5
http://www.lmfdb.org/EllipticCurve/Q/14a1
http://www.lmfdb.org/EllipticCurve/Q/66c1
http://www.lmfdb.org/EllipticCurve/Q/15a1


26 HARRIS B. DANIELS, MAARTEN DERICKX AND JEFFREY HATLEY

(2) If all subgroups of G are of generalized G-type then H is of generalized G-type if and
only if it is of weak G-type.

(3) If all transitive subgroups of G are of strong G-type then H is of strong G-type if and
only if it is of generalized G-type. In particular, if G = Sd then the notions of strong G-type
and generalized G-type agree.

(4) Let T1, . . . Tn be the transitive subgroups, (respectively, all subgroups) of G. Then
the notions of strong T1 × · · · × Tn-type and generalized G-type (respectively, weak G-type)
coincide.

(5) The notion of weak G-type is closed under taking subgroups, quotients and products,
that is, if H is of weak G-type then so is any subgroup of H and any quotient of H, and if H ′

is another subgroup of weak G-type then so is H ×H ′.
(6) The notions of strong and generalized G-type are closed under taking quotients and

subdirect products, that is, if H is of strong (respectively, generalized) G-type then so is every
quotient of H, and if H ′ is of strong (respectively, generalized) G-type then so is any subdirect
product of H ×H ′.

(7) The notions of being of weak, generalized and strong G-type are transitive, that is, if H
is of weak (respectively, generalized, strong) G-type and I is of weak (respectively, generalized,
strong) H-type then I is of weak (respectively, generalized, strong) G-type.

(8) Let I1, . . . , In be finite groups and H a subdirect product of I1 × · · · × In. Then H is of
weak (respectively, generalized, strong) G-type if and only if I1, . . . , In are.

Remark 2.3. Using part 2 of the above lemma one can show that the notions of generalized
G-type and weak G-type agree for D4, A4, S4 ⊆ S4. Using part 3 one can show that the notions
of strong D4-type and generalized D4-type also agree. However, this is not true for A4 (see
Lemma 2.16).

For the rest of this section we will denote the free group with k generators by Fk. Also, if H
is a group and h1, . . . , hk ∈ H are elements, then the morphism Fk → H which sends the ith
generator of Fk to hi is denoted by evalh1,...,hk

.

Definition 2.4. Let G be a finite group and (H,h1, . . . , hk) be a group of weak (respectively,
generalized or strong) G-type with k distinguished elements. Then (H,h1, . . . , hk) is called a
universal group of weak (respectively, generalized or strong) G-type if, for every other group of
weak (respectively, generalized or strong) G-type with k distinguished elements (I, i1, . . . , ik),
there exists a unique φ : H → I such that φ(hj) = ij for all 1 � j � k.

Lemma 2.5. Let G be a group. Define

πG,k : Fk → GHom(Fk,G)

x �→ (f(x))f∈Hom(Fk,G)

and let Guniv
k = πG,k(Fk). Then (Guniv

k , πG,k(x1), . . . , πG,k(xk)) is a universal group of weak
G-type with k distinguished elements.

Note that if G is finite then it is possible to compute Guniv
k explicitly as a subgroup of

GHom(Fk,G). In practice however one does not need a copy of G for every element of Hom(Fk, G),
since the kernel of a morphism does not change if we compose it with an automorphism of its
range. More generally, if f, g ∈ Hom(Fk, G) are such that ker(g) ⊆ ker(f), then the image of
Guniv

k maps isomorphically onto the projection where the copy of G corresponding to f is
omitted.
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Corollary 2.6. (1) Let G,H be finite groups and suppose that H is k-generated. Then H
is of weak G-type if and only if H is isomorphic to a quotient of Guniv

k .
(2) If G can be generated by k elements then the notion of weak G-type and weak Guniv

k -type
agree.

Remark 2.7. Since Guniv
k is computable and it is possible to enumerate all normal subgroups

of Guniv
k , this also gives an (possibly very slow) algorithm to check whether a k-generated

group H is of weak G-type. One just needs to check whether there is a normal subgroup N of
Guniv

k such that H � Guniv
k /N . How practical this algorithm is depends on how easily one can

compute Guniv
k in practice, or whether one can give a nice theoretical description of Guniv

k for
the given group G. For example, if it is easy to write down a finite set of generators g1, . . . , gn
for ker(πG,k), then determining whether H is of generalized G-type just comes down to checking
whether evalh1,...,hk

(gi) = 0 for all 1 � i � n.

Remark 2.8. Let G be a group, then Lemma 2.5 shows that a universal k-generated group
of weak G-type exists, but its true power lies in that it gives a concrete description of Guniv

k .
The equivalent of Lemma 2.5 obtained by replacing weak G-type with strong G-type and
replacing Hom(Fk, G) by the surjective homomorphisms does not hold. However, the universal
strong G-type group still exists. Indeed, this is a quite formal consequence of the fact that
the notion of strong G-type is closed under quotients and subdirect products, so that one can
describe the universal strong G-type group as the image of Guniv

k (or Fk) under the product
of all surjective maps to strong G-type groups. What goes wrong with the naive generalization
of Lemma 2.5 can be seen by computing that Z/2Z is the universal strong G-type group with
1 distinguished element where G is Z/2Z × Z/2Z or SL2(Fp) with p � 5.

Definition 2.9. (1) An element x ∈ Fk in the kernel of πG,k is called a weak G-type relation
of rank k, or alternatively, it is said that G satisfies the relation x. In this case IG,k := ker(πG,k)
is called the group of G-type relations, so that Guniv

k = Fk/IG,k.
(2) If k1, . . . , kn are integers, x1, . . . , xn are in Fk1 , . . . Fkn

, respectively, and (G, g1, . . . , gk)
is a group with k distinguished elements such that G is of x1, . . . , xn-type, then the tuple
(G, g1, . . . , gk) is called a universal group with k-generators satisfying relations x1, . . . , xn if for
every other group (H,h1, . . . , hk) of x1, . . . , xn-type with k distinct elements there is a unique
homomorphism φ : G → H such that φ(gi) = hi for 1 � i � k.

(3) If k′1, . . . , k
′
n′ is another set of integers and x′

1, . . . , x
′
n′ ∈ Fk1 , . . . Fkn

is another set of
relations, then x1, . . . , xn are said to generate the relations x′

1, . . . x
′
n′ if every group H of

x1, . . . , xn-type also of x′
1, . . . x

′
n′-type. The x1, . . . , xn and x′

1, . . . x
′
n′ are called equivalent if

they both generate each other.

Example 2.10. • If G is a group of exponent n then xn
1 ∈ F1 is a weak G-type relation of

rank 1.
• If G is an abelian group then [x1, x2] := x−1

1 x−1
2 x1x2 ∈ F2 is a weak G-type relation of

rank 2.
• More general if G is of nilpotency class k then [x1, [x2, [x3, . . . [xk−1, xk]]]] is a weak G-type

relation.
• If G is an abelian group of exponent n then the notions of strong, weak and generalized

G-type agree, and a group H is of weak G-type if and only if it satisfies the relations xn
1 and

[x1, x2], that is, xn
1 and [x1, x2] generate the weak G-type relations.

The above language can be used to restate the classification of groups of generalized D4-type
given in [5]. There the first author shows that a group G is of generalized D4 type if and only
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if it has exponent 4 and is of nilpotency class at most 2. Since all subgroups of D4 are of
generalized D4-type one has that the notions of generalized D4-type and weak D4-type agree
and so a group is of generalized-D4 type if and only if it satisfies the relations x4

1, [x1, [x1, x2]]]
and [x2, [x1, x2]]].

2.2. Semidirect products of elementary abelian p and q groups

Let N , H be groups and ρ : H → AutN be a group action of H on N . Suppose that f :
N � H → G is a group morphism. Then the action of H on f(N) via conjugation in G turns
f |N : N → f(N) into a morphism of group actions of H. More precisely, for all n ∈ N and
h ∈ H one has f(ρ(h)(n)) = f(h)f(n)f(h)−1. In fact, this is the universal property of the
semidirect product.

Proposition 2.11 [2, Proposition 27]. Let N,H and G be groups and ρ : H → AutN
be a group action of H on N and suppose that f1 : N → G and f2 : H → G are two group
homomorphisms such that f1(ρ(h)(n)) = f2(h)f1(n)f2(h)−1. Then there exists a unique f :
N � H → G such that f |N = f1 and f |H = f2.

To simplify the notion that is to come we give the following definition.

Definition 2.12. Let G be a finite group and p a prime. Then we let λp(G) be the 1st term
in the lower central p-series of G; that is,

λp(G) = [G,G]Gp.

Let p and q be distinct primes, let ζp be a p-th root of unity, let ρp,q : Z/pZ → Fq(ζp)∗

denote the action of Z/pZ on Fq(ζp) defined by ρp,q(i) = ζip, and let Dp,q := Fq(ζp) �ρ Z/pZ
denote the corresponding semidirect product of Z/pZ and Fq(ζp) as groups. The following is a
generalization of Proposition 2.19 and also of [7, Lemma 3.2].

Proposition 2.13. Let p, q be distinct primes and H a finite group. Then the following are
equivalent.

(1) H is isomorphic to a subgroup of Dk
p,q for some integer k.

(2) H is of weak Dp,q-type.
(3) λq(λp(H)) = {e}.
(4) H is isomorphic to (Z/qZ)n �ρ (Z/pZ)m for some action ρ : (Z/pZ)m → GLn(Z/qZ).

Proof. The implication (1) ⇒ (2) is by definition, (2) ⇒ (3) follows because λq(λp(Dp,q)) =
{e}, and (3) ⇒ (4) follows from the Schur–Zassenhaus Theorem, so the only thing left to prove
is (4) ⇒ (1).

View V := (Z/qZ)n as a vector space over Fq so that ρ can be seen as an Fq-linear
representation. Since the order of (Z/pZ)m is coprime to q, V decomposes into a direct
sum of irreducible representations of (Z/pZ)m. Let Vtriv � (Z/qZ)s be the part on which
(Z/pZ)m acts trivially, write V = Vtriv ⊕W , and let G := W � (Z/pZ)m. Then H decomposes
as a direct product H = Vtriv ×G, and since Vtriv � (Z/qZ)s ⊆ Ds

p,q it suffices to show
that G is isomorphic to a subgroup of Dr

p,q for some r. Now write W =
⊕r

i=1 Wi with Wi

irreducible representations of (Z/pZ)m. Then every Wi is non-trivial by definition of W .
All non-trivial irreducible Fq-linear representations of (Z/pZ)m are of the form ρp,q ◦ π for
some π : (Z/pZ)m → Z/pZ; let πi : (Z/pZ)m → Z/pZ be the map such that Wi is isomorphic
to the representation ρp,q ◦ πi and let fi : Wi → Fq(ζp) be an Fq-linear map witnessing this



GROUPS OF GENERALIZED G-TYPE 29

isomorphism. From the morphisms fi and πi one gets a morphism φi : G → Dp,q by the
universal property of the semidirect product.

Let φ = (φ1, . . . , φr) : G → Dp,q. Since φ|W = (f1, . . . , fr) is an isomorphism one sees that
kerφ has empty intersection with W and in particular this means that φ together with the
quotient map qW gives an injection (φ, qW ) : G ↪→ Dr

p,q ×G/W and the desired implication
finally follows since G/W = (Z/pZ)m ↪→ Dm

p,q. �

From the above proof it also follows that as soon as H is non-commutative then H has a
surjective map to Dp,q, so that in this case Dp,q is of strong H-type, and in particular we have
the following corollary.

Corollary 2.14. Let H be a non-commutative group such that λq(λp(H)) = {e}. Then
the notions of weak H-type and weak Dp,q-type are equivalent.

Remark 2.15. This simple criterion for checking whether a given group is of weak Dp,q-type
is one of the primary advantages of this theory. For instance, since A4 � D3,2 and for A4 ⊆ S4

the notions of weak and generalized G-type agree, one immediately has Proposition 2.19.

Lemma 2.16. Let p, q be distinct primes and H a group of weak Dp,q-type. Write
H � (Z/qZ)n �ρ (Z/pZ)m for some integers n,m and let ρ : (Z/pZ)m → GLn(Z/qZ) be a
representation. Then the following are equivalent.

(1) H is of strong Dp,q-type.
(2) The trivial representation does not occur as a subrepresentation of ρ.
(3) The trivial representation does not occur as quotient representation of ρ.
(4) H does not have a quotient isomorphic to Z/qZ.
(5) H/[H,H] = (Z/pZ)m.

Note that pH � (Z/qZ)n and H/pH � (Z/pZ)m. Furthermore, since pH is abelian, ρ only
depends on a choice of basis for pH and H/pH and not on the choice of the section H/pH → H
that was used to write H as a semidirect product. In particular, items (2) and (3) do not depend
on the way in which H was written as a semidirect product.

Proof. The equivalence of (4) and (5) is trivial. The equivalence of (2) and (3) follows
because q is coprime to #(Z/pZ)m and hence V can be written as a direct sum of
irreducible representations.

The equivalence of (3) and (4) follows directly from the universal property. Indeed, let
f1 : (Z/pZ)m → Z/qZ be a morphism. Then f1 = 0, so conjugation by f1(x) on Z/qZ is the
trivial action for all x ∈ (Z/pZ)m. In particular, f1 can be extended to a surjective map f :
(Z/qZ)n � (Z/pZ)m → Z/qZ if and only if the trivial representation is a quotient of V .

The implication (2) ⇒ (1) is similar to the proof of (4) ⇒ (1) in Proposition 2.13 and the
same notation will be used. Since Vtriv = 0 by assumption one has that the G and H in that
proof are the same. Now since the πi and the fi are surjective, one sees that the φi : G → Dp,q

are surjective. In particular, G is a subdirect product of
∏r

i=1 Dp,q ×G/W . Thus, H = G from
Lemma 2.2 (6) because Dr

p,q and G/W = (Z/pZ)m are both of strong Dp,q-type.
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Now we consider the implication (1) ⇒ (2). Since the representation ρp,q : Z/pZ → Fq(ζp)∗

corresponding to Dp,q does not contain the trivial representation as a subrepresentation it
suffices to show that the property of not having a trivial subrepresentation is maintained
under taking quotients and subdirect products.

First we handle quotients. Let H be a group of strong Dp,q-type such that the associated
representation ρ does not have a trivial subrepresentation and H → H ′ is a surjective map of
groups. If H does not have a quotient isomorphic to Z/qZ then neither does H ′ so that now
the fact that the representation ρ′ associated to H ′ does not have a trivial subrepresentation
follows from the equivalence between (2) and (4).

For the invariance under subdirect products let H1, H2 be groups of strong Dp,q-type
such that for i = 1, 2 the associated representations ρi : Hi/pHi → AutFq

(pHi) do not contain
a trivial subrepresentation and let H ⊂ H1 ×H2 be a subdirect product. Define Htriv :=
(pH)H/pH to be the part of pH on which H/pH acts trivially. Since H → Hi is surjective
one has that H/pH → Hi/pHi is surjective and hence the image of Htriv → Hi is contained in
(pHi)H/pH = (pHi)Hi/pHi = 0 so that Htriv = 0. �

Corollary 2.17. A group H is of strong Dp,q-type if and only if H is isomorphic to a
subdirect product of Dk

p,q for some integer k.

Proof. The extra fact that a strong Dp,q-type group has no quotient isomorphic to Z/qZ
shows that in the proof of the equivalence of (1) and (2) in Proposition 2.13 one can replace
subgroup by subdirect product. �

2.3. The case G = A4

Using the general theory that we developed in the previous subsections, we now turn our
attention to studying the infinite extension Q(A∞

4 )/Q.
We begin by examining the relationship between Q(A∞

4 ) and its more natural counterpart,
the compositum of all A4 extensions of Q, which we will denote by QA4 . It is natural to ask
whether Q(A∞

4 ) is equal to QA4 . Indeed, when A4 is replaced by D4, the analogous statement
turns out to be true [5, Theorem 1.11]. However, in our present setting the situation is as follows.

First, recall that A4 has no normal subgroup of index 2. The same remains true for groups
of strong A4-type by Lemma 2.16 and the fact that A4 � D3,2. In particular, we have the
following.

Corollary 2.18. The compositum of all A4 extensions QA4 contains no subfields Q ⊆ K ⊆
QA4 such that [K : Q] = 2.

On the other hand, the following characterization of groups of generalized A4-type follows
immediately from Proposition 2.13; see also Remark 2.15.

Proposition 2.19. A finite group G is of generalized A4-type if and only if λ2(λ3(G)) is
the trivial group.

As an immediate consequence, we have the following corollary.

Corollary 2.20. If G is of generalized A4-type then the exponent of G divides 6.

We also have the following useful lemma.

Lemma 2.21. Given any square-free d ∈ Z, we have Q(
√
d) ⊆ Q(A∞

4 ).
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Proof. For any such d, Gal(Q(
√
d)/Q) � Z/2Z which is of generalized A4-type by

Proposition 2.19. �

With this result in hand, the relationship between Q(A∞
4 ) and QA4 becomes clearer.

Proposition 2.22. Let QA4/Q be the compositum of all A4 extensions of Q. Then QA4 �
Q(A∞

4 )

Proof. Since the only transitive proper normal subgroup of A4 is isomorphic to the Klein
four-group V4, the field Q(A∞

4 ) can be viewed as the compositum of all A4 and V4 extensions
of Q. With this we immediately get that QA4 ⊆ Q(A∞

4 ). To see the strict inclusion, note that
if QA4 were to contain any V4 extensions of Q, then QA4 would contain a quadratic extension
of Q, but this can’t be the case from Corollary 2.18. �

In fact, we have the following description of Q(A∞
4 ).

Corollary 2.23. Let Q(2∞) be the compositum of all quadratic extensions of Q and let
QA4 be as in Proposition 2.22. Then Q(A∞

4 ) is the compositum of QA4 and Q(2∞).

For n � 1, for the rest of the paper we will write ζn for an nth root of unity.

Lemma 2.24. Let n ∈ N. Then Q(ζn) ⊆ Q(A∞
4 ) if and only if n divides 504.

Proof. Let λ(n) be the exponent of Gal(Q(ζn)/Q) � (Z/nZ)×; then λ(2e) = 2e−2 for
e � 3 and λ(pe) = (p− 1)pe−1 for odd primes p > 2 and e � 1. It follows that for n a
prime power, λ(n) divides 6 if and only if n ∈ {2, 3, 4, 7, 8, 9}. Thus, if Q(ζn) ⊆ Q(A∞

4 ) then
n ∈ {2, 3, 4, 7, 8, 9} by Corollary 2.20. But now it is easy to check that for each such n and G =
(Z/nZ)× we have that λ2(λ3(G)) is trivial, and the result follows from Proposition 2.19. �

3. Growth of the torsion subgroup of elliptic curves by base extensions

Here we collect some results from other papers which will be useful in the subsequent sections.
We direct the interested reader to the corresponding papers for their proofs. We begin with a
result on the relationship between torsion subgroups and roots of unity.

Proposition 3.1 [29, Chapter III, Corollary 8.1.1]. Let E/L be an elliptic curve with
L ⊆ Q̄. For each integer n � 1, if E[n] ⊆ E(L) then Q(ζn) ⊆ L.

Throughout the rest of the paper we will make extensive use of the classification of isogenies
of elliptic curves defined over Q. Given such a curve, we will say that it possesses an n-isogeny
if it admits a degree n-isogeny with cyclic kernel.

Theorem 3.2 [15–18, 25]. Let E/Q be an elliptic curve with a rational n-isogeny. Then

n � 19 or n ∈ {21, 25, 27, 37, 43, 67, 163}.

Lemma 3.3 [7, Lemma 4.6]. Let E and F be as in Theorem 1.5, let p be a prime, and let k
be the largest integer for which E[pk] ⊆ E(F ). If E(F )tors contains a subgroup isomorphic to
Z/pkZ ⊕ Z/pjZ with j � k, then E admits a rational pj−k-isogeny. Moreover, j − k � 4, 3, 2 if
p = 2, 3, 5, respectively, j − k � 1 if p = 7, 11, 13, 17, 19, 43, 67, 163, and j = k otherwise.
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Lemma 3.4 [7, Lemma 5.12]. Let E/Q be an elliptic curve and let p > 2 be a prime for
which E admits a rational p-isogeny. Then [Q(E[p]) : Q] is relatively prime to p if and only
if E admits two rational p-isogenies (with distinct kernels). For p > 5 the latter is impossible
and hence p | [Q(E[p]) : Q].

Lemma 3.5 [7, Lemma 4.8]. Let E/Q be an elliptic curve that admits a rational n-isogeny
φ, and let R ∈ E[n] be a point of order n in the kernel of φ, and write Q(R) = Q(x(R), y(R)) for
the field of definition of R. The field extension Q(R)/Q is Galois with Galois group isomorphic
to a subgroup of (Z/nZ)×. In particular, if n is prime then Gal(Q(R)/Q) is cyclic and its order
divides n− 1.

Proposition 3.6 [23, Theorem 2.1]. Let E/Q be an elliptic curve and let p � 11 be a
prime other than 13. Let R ∈ E[p] be a torsion point of exact order p and let Q(R) be as in
Lemma 3.5. Then

[Q(R) : Q] � p− 1
2

unless j(E) = −7 · 113 and p = 37, in which case [Q(R) : Q] � (p− 1)/3 = 12.

Finally, we observe that torsion structures for E(Q(A∞
4 )) are almost entirely determined by

the j-invariant j(E).

Proposition 3.7. Let E/Q be an elliptic curve with j(E) �= 0, 1728. The isomorphism type
of E(Q(A∞

4 ))tors depends only on the Q̄-isomorphism class of E, equivalently, on j(E).

Proof. Recall that for j(E) �= 0 or 1728, if j(E) = j(E′) for some E′/Q then E′ is a quadratic
twist of E, hence isomorphic to E over an extension of Q of degree at most 2, and quadratic
fields are of generalized A4-type. �

Putting these results together, we obtain a bound on the primes which may divide
#E(Q(A∞

4 ))tors.

Proposition 3.8. Let E/Q be an elliptic curve, and let p be a prime dividing the cardinality
of E(Q(A∞

4 ))tors. Then p ∈ {2, 3, 5, 7, 13}.

Proof. First, by Proposition 3.1 and Lemma 3.3, the non-trivialtiy of the p-primary
component E(Q(A∞

4 ))(p) of the torsion subgroup of E(Q(A∞
4 )) implies that either Q(ζp) ⊆

Q(A∞
4 ) or that E has a rational p-isogeny. Thus, by Lemma 2.24 and Theorem 3.2, the only

primes which may divide the cardinality of E(Q(A∞
4 ))tors are the primes in the set

S = {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}.
By Lemma 3.5, if E(Q(A∞

4 ))[p] = 〈R〉 � Z/pZ, then Q(R)/Q is a cyclic extension, and it must
also be of generalized A4-type, hence it is an extension of degree dividing 6. Combining this
with Proposition 3.6 completes the proof. �

4. The maximal p-primary components of E(Q(A∞
4 ))tors

In this section we obtain bounds on the p-primary components of E(Q(A∞
4 ))tors for elliptic

curves E defined over Q. Taken together, the results of this section establish the following
theorem.



GROUPS OF GENERALIZED G-TYPE 33

Theorem 4.1. Let E/Q be an elliptic curve. Then E(Q(A∞
4 ))tors is isomorphic to a

subgroup of

Tmax = (Z/8Z ⊕ Z/16Z) ⊕ (Z/3Z ⊕ Z/9Z) ⊕ Z/5Z ⊕ Z/7Z ⊕ Z/13Z

and Tmax is the smallest group with this property.

4.1. Primes without the possibility of full p-torsion (p = 5, 13)

By Lemma 2.24 and Proposition 3.1, we see that if p ∈ {5, 13} then the full p-torsion E[p]
cannot be defined over Q(A∞

4 ). We now study each of these cases in detail.

4.1.1. The case when p = 13.

Proposition 4.2. Suppose that E/Q is an elliptic curve such that 13 divides
#E(Q(A∞

4 ))tors. Then E(Q(A∞
4 ))(13) � Z/13Z and there exists t ∈ Q such that

j(E) =
(t4 − t3 + 5t2 + t + 1)P (t)3

t13(t2 − 3t− 1)
, (1)

where P (t) = t8 − 5t7 + 7t6 − 5t5 + 5t3 + 7t2 + 5t + 1.

Proof. Since Q(ζ13) � Q(A∞
4 )) by Lemma 2.24, Proposition 3.1 implies that

E(Q(A∞
4 ))[13] � Z/13Z. Suppose that R is a point that generates E(Q(A∞

4 ))[13]. By Lem-
mas 3.3 and 3.5, we see that Q(R)/Q must be a cyclic extension of degree dividing 12.
Furthermore, since R is defined over Q(A∞

4 ), Corollary 2.20 implies that this cyclic extension
must have degree dividing 6. Thus, identifying E[13] with column vectors, the image of ρ̄E,13

is conjugate to a subgroup of GL2(Z/13Z) contained inside the matrices of the form (a
2 ∗
0 ∗).

The elliptic curves defined over Q with this property have been completely classified in [32],
and they correspond to the curves with j-invariant of the form given in (1). Further, since
there are no elliptic curves defined over Q with a cyclic 169-isogeny, it is not possible for the
13-primary component of E(Q(A∞

4 )) to be any larger. �

4.1.2. The case when p = 5.

Proposition 4.3. Suppose that E/Q is an elliptic curve such that 5 divides
#E(Q(A∞

4 ))tors. Then E(Q(A∞
4 ))(5) � Z/5Z and there exists t ∈ Q such that

j(E) =
(t4 − 12t3 + 14t2 + 12t + 1)3

t5(t2 − 11t− 1)
. (2)

Proof. As in the previous proposition, since Q(ζ5) � Q(A∞
4 ) by Lemma 2.24, it follows

from Proposition 3.1 that E(Q(A∞
4 ))[5] is cyclic of order 5j for some j, and by Lemma 3.3 and

Theorem 3.2 we must have j � 2.
Suppose j = 1, so E(Q(A∞

4 ))(5) = Z/5Z, and let R be a point of order 5. Then by Lemma 3.3,
E admits a rational 5-isogeny, and by Lemma 3.5 its field of definition Q(R) is an extension
of Q of degree at most 4. It follows from Corollary 2.20 that R is defined over a quadratic
extension of Q, or in other words, there is a quadratic twist of E that has a rational point of
order 5. Such curves are parametrized by the genus 0 modular curve X1(5), and the j-map for
this curve is given in [32] as (2).

Now suppose E(Q(A∞
4 )) contains a point R of order 25; then E admits a rational 25-isogeny,

and by Lemma 3.5 the field of definition Q(R) is Galois with Galois group isomorphic to a
subgroup of (Z/25Z)×, which has order 20. But since Q(R) ⊆ Q(A∞

4 ), by Corollary 2.20 we
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must have that Q(R)/Q is a field extension of degree dividing 6. These facts together imply R
is defined over a quadratic extension of Q. If E has a point of order 25 defined over a quadratic
extension of Q, then there is a quadratic twist of E with a rational point of order 25, but this
cannot happen by Theorem 1.1. �

4.2. Primes with the possibility of full p-torsion (p = 2, 3, 7)

We now consider the primes p for which the full p-torsion E[p] may be defined over Q(A∞
4 ).

4.2.1. The case when p = 7.

Proposition 4.4. Suppose that E/Q is an elliptic curve such that 7 divides
#E(Q(A∞

4 ))tors. Then E(Q(A∞
4 ))tors � Z/7Z and there exists some t ∈ Q× such that

j(E) =
(t2 + 13t + 49)(t2 + 5t + 1)3

t
. (3)

Proof. The proof is essentially the same as that of [7, Lemma 5.13], replacing Q(3∞) by
Q(A∞

4 ). We begin by noting that Lemma 2.24 and Proposition 3.1 imply that E[49] � Q(A∞
4 ),

so by Lemma 3.3 we have E(Q(A∞
4 )) � Z/7kZ ⊕ Z/7jZ with k � 1 and k � j � k + 1.

If j > k then Lemma 3.3 implies that E admits a rational 7-isogeny, and then Lemma 3.4
implies that [Q(E[7]) : Q] is divisible by 7. But then the exponent of Gal(Q(E[7])/Q) does
not divide 6, so by Corollary 2.20 we see that Q(E[7]) � Q(A∞

4 ). Therefore k = 0, j = 1, and
E(Q(A∞

4 )) � Z/7Z. This also rules out the case k = 1 and j = 2 proving the first statement in
the theorem.

If j = k, then E cannot admit a rational 7-isogeny; to see this, assume a rational 7-isogeny
does exist, and let R be a non-trivial point in its kernel. Then by Lemma 3.5, Gal(Q(R)/Q)
is cyclic of order dividing 6, hence Q(R) ⊆ Q(A∞

4 ). But then we must have j = k = 1, so
Q(E[7]) ⊆ Q(A∞

4 ), and so by Lemma 3.4 the degree [Q(E[7]) : Q] is divisible by 7, contradicting
the fact that Q(E[7]) ⊆ Q(A∞

4 ). Thus k = 0 and j = 1 if and only if E admits a rational 7-
isogeny, and such elliptic curves correspond to points on the modular curve X0(7), whose j-map
is given in [23, Table 3] as (3).

Now suppose j = k = 1. Then Q(E[7]) ⊆ Q(A∞
4 ), so Gal(Q(E[7])/Q) has exponent dividing

6 by Corollary 2.20. This implies that for every prime p �= 7 of good reduction for E, the elliptic
curve Ep/Fp obtained by reducing E modulo p has its 7-torsion defined over an Fp-extension
of degree dividing 6, and in particular, admits an Fp-rational 7-isogeny. Thus E/Q admits
a rational 7-isogeny locally everywhere but not globally, and as proved in [30], this implies
j(E) = 2 268 945/128. It is also proved in [30] that, conversely, for every elliptic curve E/Q
with this j-invariant the group Gal(Q(E[7])/Q) is isomorphic to a subgroup of GL2(F7) with
surjective determinant map whose image in PGL2(F7) is isomorphic to S3; up to conjugacy
there are exactly two such groups (labeled 7NS.2.1 and 7NS.3.1 in [31]). However, one checks
using Magma that neither of these groups is of generalized A4-type, and so the case j = k = 1
is impossible. �

4.2.2. The case when p = 3.

Lemma 4.5. Let E/Q be an elliptic curve. Then the 3-primary component E(Q(A∞
4 ))(3)

is non-trivial if and only if E admits a rational 3-isogeny. Furthermore, if E[3] is defined over
Q(A∞

4 ), then E admits two distinct rational 3-isogenies.

Proof. Suppose that E(Q(A∞
4 ))(3) is non-trivial. If Q(E[3]) � Q(A∞

4 ), then by Lemma 3.3
E(Q(A∞

4 ))(3) can only be non-trivial if E admits a rational 3-isogeny. On the other hand,
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suppose E(Q(A∞
4 ))[3] = E[3], or equivalently Q(E[3]) ⊆ Q(A∞

4 ). Since Gal(Q(E[3])/Q) �
Im ρ̄E,3, this implies Im ρ̄E,3 ⊆ GL2(Z/3Z) must

(i) be of generalized A4-type;
(ii) have surjective determinant map; and
(iii) contain an element of trace 0 and determinant −1.

The first condition comes from the assumption that E(Q(A∞
4 ))[3] = E[3], while conditions (ii)

and (iii) are always satisfied by the image of a Galois representation coming from an elliptic
curve. Enumerating these groups, one finds that the addition of conditions (ii) and (iii) forces
G to be conjugate to a subgroup of the split Cartan subgroup, proving the last statement of
the lemma. �

Lemma 4.6. Let E/Q be an elliptic curve. Then E[9] � E(Q(A∞
4 )).

Proof. Suppose that E(Q(A∞
4 ))[9] = E[9]; then the subgroup G = Im ρ̄E,9 ⊆ GL2(Z/9Z)

must satisfy the following conditions:

(i) G has a surjective determinant map and an element with trace 0 and determinant −1;
and

(ii) G is of generalized A4-type.

Enumerating these groups, one finds that, up to conjugation, there is exactly one maximal
subgroup H ⊆ GL2(Z/9Z) with this property, and it has the following generating set:

H =
〈(

1 0
0 8

)
,

(
1 0
0 4

)
,

(
8 0
0 8

)
,

(
7 0
0 4

)〉
.

Thus H is contained in the split Cartan subgroup, and so E has two distinct rational 9-
isogenies. We thus have elliptic curves E1 and E2, both defined over Q, and the isogeny graph
of E contains a subgraph of the form

E1
9←→ E

9←→ E2,

where the number over the arrow indicates the degree of the isogeny. But this implies the
existence of a rational 81-isogeny between E1 and E2, and this is impossible by Theorem 3.2. �

Lemma 4.7. Suppose that E/Q is an elliptic curve such that 3 divides #E(Q(A∞
4 ))tors.

Then E(Q(A∞
4 ))(3) is isomorphic to a subgroup of

Z/3Z ⊕ Z/9Z.

Proof. By Lemma 4.5, if E(Q(A∞
4 ))(3) contains a subgroup isomorphic to Z/3Z ⊕ Z/3Z,

then E must admit two distinct rational 3-isogenies. If E(Q(A∞
4 ))(3) contained a subgroup

isomorphic to Z/3Z ⊕ Z/27Z, then by Lemmas 3.3 and 4.5 we see that E would admit a 3- and
a 9-isogeny where the kernel of the 3-isogeny is not contained in the kernel of the 9-isogeny (by
abuse of terminology we call such isogenies independent). So in fact E would be isogenous to
a curve which admits a rational 27-isogeny. Since X0(27) is a rank 0 genus 1 curve, there are
only finitely many Q-isomorphism classes of elliptic curves that are 3-isogenous to an elliptic
curve with a 27-isogeny. Checking the field of definition of these points of order 27, we see
that none of them have a point of order 27 defined over Q(A∞

4 ). Thus, in light of Lemma 4.6,
E(Q(A∞

4 ))(3) is indeed a subgroup of Z/3Z ⊕ Z/9Z. �

The next lemma shows that this bound is sharp. See also Proposition 5.1.
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Lemma 4.8. If E(Q(A∞
4 ))(3) � Z/3Z ⊕ Z/9Z, then E is isogenous to the elliptic curve with

Cremona label 27a1.

Proof. Suppose that E(Q(A∞
4 ))(3) � Z/3Z ⊕ Z/9Z; then the subgroup G = Im ρ̄E,9 ⊆

GL2(Z/9Z) must satisfy the following conditions:

(i) G has a surjective determinant map and an element with trace 0 and determinant −1;
and

(ii) G contains a normal subgroup N that acts trivially on a Z/9Z-submodule of Z/9Z ⊕
Z/9Z isomorphic to Z/3Z ⊕ Z/9Z for which G/N is of generalized A4-type.

Enumerating these groups, one finds that, up to conjugation, there is exactly one maximal
subgroup H ⊆ GL2(Z/9Z) with this property, and it has the following generating set:

H =
〈(

1 0
0 8

)
,

(
1 0
0 4

)
,

(
8 0
0 8

)
,

(
7 0
0 4

)
,

(
4 3
0 4

)〉
.

Thus E admits independent 3- and 9-isogenies, so in fact it is isogenous to a curve E′ which
admits a 27-isogeny. From [23, Table 3] we see j(E′) = −12 288 000, and a simple computation
shows that j(E) = 0. Magma confirms that if E is the elliptic curve with Cremona label 27a1,
then E(Q(A∞

4 ))(3) � Z/3Z ⊕ Z/9Z. �

Remark 4.9. If E is the curve with Cremona label 54b3, then E(Q(A∞
4 ))tors � Z/9Z.

4.2.3. The case when p = 2. The last case we must is when p = 2. In this section alone,
in order to use the results of [27], we will make the assumption that E does not have complex
multiplication; since we will deal with CM elliptic curves in a separate section (see Section 5.1),
this assumption will not ultimately impede our progress.

Recall that by Lemma 2.24 and Proposition 3.1, the largest full 2-power torsion that can
be contained in E(Q(A∞

4 )) is E[8]. Thus, by Theorem 3.2 and Lemma 3.3, E(Q(A∞
4 ))[2] may

be as big as Z/8Z ⊕ Z/128Z. To determine the torsion structures that actually appear, we
make use of the results of Rouse and Zureick-Brown [27]. Using Magma, we are able to search
through their data and classify all 2-torsion structures that can occur over Q(A∞

4 ), yielding
the following proposition.

Proposition 4.10. Let E/Q be an elliptic curve such that 2 divides #E(Q(A∞
4 ))tors. Then

E(Q(A∞
4 ))(2) is isomorphic to one of the following eight groups:

{O}, Z/2Z ⊕ Z/2Z, Z/2Z ⊕ Z/4Z, Z/2Z ⊕ Z/8Z, Z/2Z ⊕ Z/16Z,

Z/4Z ⊕ Z/4Z, Z/4Z ⊕ Z/8Z, Z/4Z ⊕ Z/16Z, Z/8Z ⊕ Z/8Z.

Corollary 4.11. Let E/Q be an elliptic curve. Using the notation in [27], for each T listed
in Proposition 4.10 the group E(Q(A∞

4 )) contains a subgroup isomorphic to T if and only if
E corresponds to a rational point on the modular curve given in Table 2.

Table 2. Parameterizations of the possible non-trivial 2-primary components.

T Modular curve T Modular curve

Z/2Z ⊕ Z/2Z X6 Z/4Z ⊕ Z/4Z X2, X27

Z/2Z ⊕ Z/4Z X13 Z/4Z ⊕ Z/8Z X25, X92

Z/2Z ⊕ Z/8Z X36 Z/4Z ⊕ Z/16Z X193

Z/2Z ⊕ Z/16Z X235 Z/8Z ⊕ Z/8Z X58

http://www.lmfdb.org/EllipticCurve/Q/54b3
http://www.lmfdb.org/EllipticCurve/Q/54b3
http://www.lmfdb.org/EllipticCurve/Q/54b3
http://users.wfu.edu/rouseja/2adic/X6.html
http://users.wfu.edu/rouseja/2adic/X2.html
http://users.wfu.edu/rouseja/2adic/X27.html
http://users.wfu.edu/rouseja/2adic/X13.html
http://users.wfu.edu/rouseja/2adic/X25.html
http://users.wfu.edu/rouseja/2adic/X92.html
http://users.wfu.edu/rouseja/2adic/X36.html
http://users.wfu.edu/rouseja/2adic/X193.html
http://users.wfu.edu/rouseja/2adic/X235.html
http://users.wfu.edu/rouseja/2adic/X58.html
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5. Determining the possible torsion structures

With Proposition 2.19 in hand, we must now determine which subgroups of Tmax actually
occur as torsion subgroups of elliptic curves over Q(A∞

4 ). The main task is to determine which
combinations of the possible p-primary components are realized by elliptic curves E/Q upon
base extension to Q(A∞

4 ).

5.1. The case when E has complex multiplication

If E/Q is an elliptic curve with complex multiplication by an imaginary quadratic field
of discriminant D, then D belongs to the set {−3,−4,−7,−8,−11,−19,−43,−67,−163};
representative curves for each of these discriminants, along with their j-invariants, are given
in [28, Appendix A, § 3]. By Proposition 3.7, if E/Q has j �= 0, 1728, then the isomorphism
type of E(Q(A∞

4 ))tors depends only on j. Thus, apart from j = 0, 1728, the torsion structures
associated to curves with complex multiplication can be computed directly in Magma, and
they are given (organized by Cremona label) in Table 3.

5.1.1. CM curves with j = 0. Let E/Q be an elliptic curve with j(E) = 0. Let us first
suppose that p ∈ {5, 7, 13}. By considering [23, Table 3], we see that no curve with j(E) = 0
has a p-isogeny, so if p | #E(Q(A∞

4 ))tors, then E[p] ⊆ E(Q(A∞
4 )), and the only possibility is

p = 7. But by Proposition 4.4, E[7] ⊆ E(Q(A∞
4 )) implies j(E) �= 0, which is a contradiction.

Thus, for a curve with j(E) = 0, we need only consider the primes p = 2 or 3.
Now, every elliptic curve E/Q with j(E) = 0 is isomorphic over Q to a curve of the form

Es : y2 = x3 + s

for some s ∈ Z \ {0} that is 6th-power free. Our analysis will proceed as in the proof of
[5, Lemma 5.5]. The 3-division polynomial of Es is given by f3(x) = 3x(x3 + 4s), so generically
such a curve has a point of order 3 defined over a quadratic field and hence over Q(A∞

4 ). It
follows that such a curve always has a rational 3-isogeny.

Now, if the factor x3 + 4s is irreducible, then the full 3-torsion will be defined over a field
contained in an S3 extension, which is not of generalized A4-type. On the other hand, if
4s = t3 for some t ∈ Q, then we have E[3] ⊆ E(Q(A∞

4 )) since this would mean its full 3-torsion
is defined over a 2-elementary extension of Q. In this case E has two separate 3-isogenies, and
so Im ρ̄E,3 is conjugate to a subgroup of the split Cartan subgroup of GL2(Z/3Z). In fact, if
4s is a cube, the factorization of the 9-division polynomial of Es shows that Es has 3- and
9-isogenies that are independent of each other. Note also that if t, r ∈ Z \ {0}, then the curves
E2t3 and E2r3 are isomorphic over Q(

√
rt) ⊆ Q(A∞

4 ). Therefore, all of these curves have the
same torsion subgroup over Q(A∞

4 ) as E2, and using Magma we find that

E2(Q(A∞
4 ))tors = Z/3Z ⊕ Z/9Z.

As noted before, the only other isogeny type that Es can have is a 2-isogeny, which occurs
precisely when s = t3 for some t ∈ Z and thus Es has a point of order 2 defined over Q.

Table 3. Torsion structures of CM curves with j �= 0, 1728.

E/Q E(Q(A∞
4 ))tors E/Q E(Q(A∞

4 ))tors

27a4 Z/9Z 361a1 {O}
32a4 Z/2Z ⊕ Z/4Z 784h2 Z/2Z ⊕ Z/14Z
36a2 Z/2Z ⊕ Z/6Z 1849a1 {O}
49a1 Z/2Z ⊕ Z/14Z 4489a1 {O}
121b1 {O} 26569a1 {O}
256a1 Z/2Z ⊕ Z/2Z

http://www.lmfdb.org/EllipticCurve/Q/27a4
http://www.lmfdb.org/EllipticCurve/Q/361a1
http://www.lmfdb.org/EllipticCurve/Q/32a4
http://www.lmfdb.org/EllipticCurve/Q/784h2
http://www.lmfdb.org/EllipticCurve/Q/36a2
http://www.lmfdb.org/EllipticCurve/Q/1849a1
http://www.lmfdb.org/EllipticCurve/Q/49a1
http://www.lmfdb.org/EllipticCurve/Q/4489a1
http://www.lmfdb.org/EllipticCurve/Q/121b1
http://www.lmfdb.org/EllipticCurve/Q/26569a1
http://www.lmfdb.org/EllipticCurve/Q/256a1


38 HARRIS B. DANIELS, MAARTEN DERICKX AND JEFFREY HATLEY

As before, if t, r ∈ Z \ {0}, then Et3 is isomorphic to Er3 over Q(
√
rt) ⊆ Q(A∞

4 ), and so
Et3(Q(A∞

4 ))tors � Er3(Q(A∞
4 ))tors. Thus for every r ∈ Z \ {0}, we have

Er3(Q(A∞
4 ))tors � E1(Q(A∞

4 ))tors � Z/2Z ⊕ Z/6Z,

where the second isomorphism was computed using Magma.
Putting this all together, we obtain the following result.

Proposition 5.1. There are three possible torsion structures over Q(A∞
4 ) for an elliptic

curve E/Q with j(E) = 0. These structures are

Z/3Z ⊕ Z/9Z, Z/2Z ⊕ Z/6Z, and Z/3Z,

and they are realized by the curves 27a1, 36a1, and 108a1, respectively.

5.1.2. CM curves with j = 1728. Now let E/Q be an elliptic curve with j(E) = 1728. Then
E is isomorphic over Q to

Es : y2 = x3 + sx,

where s ∈ Z \ {0} is 4th-power free. Let us first study the possible 2-torsion for this curve.
We see that Es(Q) contains the 2-torsion point (0,0), and another 2-torsion point is defined

over the quadratic field Q(
√
−s) ⊆ Q(A∞

4 ), so we always have Es[2] ⊆ Es(Q(A∞
4 )).

In fact, by considering the 4-division polynomial of Es, one verifies with Magma that
Q(Es[4]) = Q(i, 4

√
s,
√

2), yielding the following lemma.

Lemma 5.2. If Es/Q is an elliptic curve with j(E) = 1728, then Es[4] ⊆ Es(Q(A∞
4 )) if and

only if ±s is a non-zero rational square.

Otherwise, if ±s is not a rational square, Es(Q(A∞
4 )) cannot have a point of order 4.

To see this, we start by noting that if Es(Q(A∞
4 )) did have a point of order 4, then the

2-primary component of Es(Q(A∞
4 )) would be isomorphic to Z/2Z ⊕ Z/4Z by the previous

lemma together with the observation that Es(Q)[2] is non-trivial and so Es[2] ⊆ Es(Q(A∞
4 )).

Searching GL2(Z/4Z) in Magma, we see that the only way that this is possible would be for the
point of order 4, call it P , to be in the kernel of a 4-isogeny, with 2P ∈ Es(Q) and x(P ) ∈ Q.
Since we are assuming ±s is not a square, we know that the only point of order 2 on E defined
over Q is the point (0,0). Letting P = (α, β) and using the duplication formula for Es we have
that

x(2P ) =
α4 − 2sα2 + s2

2β2
= 0 ⇐⇒ 0 = α4 − 2sα2 + s2 = (α2 − s)2.

Clearly the only way that α can be in Q is if s is a square, contradicting our assumption.
Therefore, Es cannot have a point of order 4 defined over Q(A∞

4 ) in this case. This gives the
following lemma.

Lemma 5.3. If ±s is not a square in Q, then Es(Q(A∞
4 ))(2) � Z/2Z ⊕ Z/2Z.

The last thing that we have to show is that if ±s is a rational square, then E(Q(A∞
4 )) does

not contain a point of order 8. Using Magma to analyze the subgroups of GL2(Z/8Z), we
see that in order for Es(Q(A∞

4 )) to have a subgroup isomorphic to Z/4Z × Z/8Z, Es would
either have to possess an 8-isogeny or independent 2- and 4-isogenies. A quick check shows
that j(Es) = 1728 is not in the image of the map j : X0(8)(Q) → Q, and thus Es cannot have
an 8-isogeny. Further, in order for Es to have independent 2- and 4-isogenies it must be that

http://www.lmfdb.org/EllipticCurve/Q/27a1
http://www.lmfdb.org/EllipticCurve/Q/36a1
http://www.lmfdb.org/EllipticCurve/Q/108a1
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E[2] ⊆ E(Q), which implies that s = −t2 for some t ∈ Z. In this case we get that the 4-division
polynomial is exactly

2(x2 + t2)(x2 − 2tx− t2)(x2 + 2tx− t2).

In order for Es to have a 4-isogeny, this polynomial would need to have a root in Q. Simple
inspection shows that this could only happen if t = 0 or if 2 were a square in Q, neither of
which is the case. Thus, we have shown the following proposition.

Proposition 5.4. Let Es : y2 = x3 + sx. Then

Es(Q(A∞
4 ))(2) �

{
Z/4Z ⊕ Z/4Z if ± s is a rational square,

Z/2Z ⊕ Z/2Z otherwise.

Now, the fact that E necessarily admits a rational 2-isogeny allows us to rule out many
other p-torsion possibilities. For instance, if 13 | #E(Q(A∞

4 ))tors, then E must admit a rational
13-isogeny, and so E must admit a rational 26-isogeny, but this is impossible by Theorem 3.2.
Since E[13] cannot be contained in E(Q(A∞

4 )), we see that 13 � #E(Q(A∞
4 ))tors.

Similarly, if E were to admit a rational 7-isogeny (respectively, 5-isogeny), then E would
have to admit a rational 14-isogeny (respectively, 10-isogeny). By investigating [23, Tables 3
and 4], we see that this cannot occur for a curve with j(E) = 1728. Since E[5] � E(Q(A∞

4 ))
by Lemma 2.24 and E[7] � E(Q(A∞

4 )) by Proposition 4.4, we conclude that E does not have
any 5- or 7-torsion defined over Q(A∞

4 ).
It remains to consider p = 3. By [23, Table 3], a curve with j(E) = 1728 cannot have

a 6-isogeny, so if 3 | #E(Q(A∞
4 ))tors then by Lemma 3.3 we must have E[3] ⊆ E(Q(A∞

4 )).
On the other hand, the 3-division polynomial of Es is 3x4 + 6sx2 − s2. This polynomial has
discriminant −212 · 33 · s6, and it is irreducible. To see that it is irreducible one can argue as
follows. First of all it has no roots since Es has no 3-isogenies, so the only possibility is that
it factors as a product of two quadratic terms. Write s = 3s′ with s′ ∈ Q so that it suffices to
prove the irreducibility of the monic polynomial x4 + 6s′x2 − 3s′2 instead. We want to show
that

x4 + 6s′x2 − 3s′2 = (x2 + a1x + a2)(x2 + b1x + b2) = · · ·

= x4 + (a1 + b1)x3 + (a1b1 + a2 + b2)x2 + (a2b1 + a1b2)x + a2b2

has no solutions with a1, a2, b1, b2 ∈ Q. This is indeed the case since the cubic term implies
a1 = −b1, after which the linear term implies either a1 = 0 or a2 = b2.

(1) If a1 = 0, then x4 + 6s′x2 − 3s′2 = (x2 + a2)(x2 + b2), in particular, this means that −a2

is a root of y2 + 6s′y − 3s′2 which is irreducible as soon as s′ �= 0 so this cannot happen.
(2) If a2 = b2, then looking at the constant term gives a2

2 = −3s′2 which has no solutions as
soon as s′ �= 0.

So the polynomial is indeed irreducible. By a standard result in Galois theory (cf. [4]), the
Galois group of this polynomial has exponent dividing 6 if and only if its discriminant is a square
in Q, hence we may conclude by Corollary 2.20 that E(Q(A∞

4 )) does not have any 3-torsion.
Our discussion in this section has proved the following results.

Proposition 5.5. There are only two possible torsion structures over Q(A∞
4 ) for an elliptic

curve E/Q with j(E) = 1728. These structures are

Z/2Z ⊕ Z/2Z and Z/4Z ⊕ Z/4Z,

and they are realized by the curves 64a4 and 256c1, respectively.

http://www.lmfdb.org/EllipticCurve/Q/64a4
http://www.lmfdb.org/EllipticCurve/Q/256c1
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X235 X92 X193 X58

X36 X27 X25

X13

X6 X2

Figure 1. Covering relationships between the curves in Corollary 4.11.

We collect the results of Sections 5.1.1 and 5.1.2 in Table 4.

5.2. The case when E does not have complex multiplication

Having classified torsion for CM curves in Section 5.1, it remains to consider curves without
complex multiplication; in particular, the isomorphism type of E(Q(A∞

4 ))tors depends only on
j. Before continuing, let us observe that the results of Sections 4 and 5.1 combine to give us
the following useful corollaries.

Corollary 5.6. If E/Q is an elliptic curve and p is an odd prime such that E(Q(A∞
4 ))(p)

is non-trivial, then p ∈ {3, 5, 7, 13} and E has a rational p-isogeny.

Corollary 5.7. Let E/Q be an elliptic curve, let Δ(E) denote its discriminant, and
suppose that E(Q(A∞

4 ))(2) is non-trivial. If E does not admit a rational 2-isogeny, then Δ(E)
is a non-zero rational square, and in this case E(Q(A∞

4 ))tors contains a subgroup isomorphic
to Z/4Z ⊕ Z/4Z.

The proof of Corollary 5.7 breaks down into two pieces depending on if the elliptic curve
has CM or not. For non-CM elliptic curves Corollary 5.7 follows immediately from the
modular interpretation of the modular curves in Table 2 (available in the Rouse–Zeurick-Brown
database) as well as the relationships between these modular curves illustrated in Figure 1.
For CM elliptic curves, Corollary 5.7 follows immediately from the work done in Section 5.1.

5.2.1. The case when 13 divides #E(Q(A∞
4 ))tors. This case is extremely easy to handle

using the previous corollaries.

Proposition 5.8. Let E/Q be an elliptic curve such that 13 divides #E(Q(A∞
4 ))tors. Then

E(Q(A∞
4 ))tors � Z/13Z.

Proof. By Corollary 5.6, if 13 divides #E(Q(A∞
4 ))tors then E must admit a 13-isogeny. The

same corollary implies that if any other p-primary component is non-trivial for p an odd prime,
then E must admit a rational 13p-isogeny. Now Theorem 3.2 implies that this is impossible.

Table 4. Torsion structures of CM curves j = 0 or 1728.

E/Q E(Q(A∞
4 ))tors E/Q E(Q(A∞

4 ))tors

27a1 Z/3Z ⊕ Z/9Z 36a1 Z/2Z ⊕ Z/6Z
64a4 Z/4Z ⊕ Z/4Z 108a1 Z/3Z
256c1 Z/2Z ⊕ Z/2Z

http://www.lmfdb.org/EllipticCurve/Q/54b3
http://www.lmfdb.org/EllipticCurve/Q/36a1
http://www.lmfdb.org/EllipticCurve/Q/64a4
http://www.lmfdb.org/EllipticCurve/Q/108a1
http://www.lmfdb.org/EllipticCurve/Q/256c1
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The same argument shows that E cannot admit a rational 2-isogeny, so if E(Q(A∞
4 ))(2) is

non-trivial, then by Corollary 5.7, E(Q(A∞
4 ))tors contains a subgroup isomorphic to Z/4Z ⊕

Z/4Z and Δ(E) is a non-zero rational square. From [23, Table 3] we see that, since E has a
13-isogeny, it must be isomorphic to

Et : y2 + xy = x3 − 36t
(t2 + 6t + 13)(t6 + 10t5 + 46t4 + 108t3 + 122t2 + 38t− 1)2

x

− t

(t2 + 6t + 13)(t6 + 10t5 + 46t4 + 108t3 + 122t2 + 38t− 1)2

over Q(A∞
4 ) for some t ∈ Q. This curve has discriminant

Δ(Et) =
t(t2 + 5t + 13)2(t4 + 7t3 + 20t2 + 19t + 1)6

(t2 + 6t + 13)3(t6 + 10t5 + 46t4 + 108t3 + 122t2 + 38t− 1)6

which is a non-zero rational square precisely when

t(t2 + 6t + 13)

is a non-zero rational square. Thus, we seek non-singular, non-cuspidal rational points on the
elliptic curve

C : s2 = t(t2 + 6t + 13),

which is the curve with Cremona label 52a1. The only rational points on this curve are the
point at infinity and the cusp (0,0). Hence there are no elliptic curves with a 13-isogeny and
square discriminant, and so there are no elliptic curves with a 13-isogeny and a non-trivial
2-primary component.

The result now follows from Proposition 4.2. �

5.2.2. The case when 7 divides #E(Q(A∞
4 ))tors. Let us immediately observe that if

E(Q(A∞
4 )) is non-trivial, then by the same argument as in Proposition 5.8, the 13- and

5-primary components of E(Q(A∞
4 )) must both be trivial, but there do exist elliptic curves

E/Q with 14- and 21-isogenies, so we must consider the possibility that E has a point of
order 14 or 21 defined over Q(A∞

4 ); note that by Theorem 3.2, it cannot possess both. As in
Section 5.2.1, we must also consider the possibility that it has square discriminant. Let us first
consider the possibility of E possessing a 21-isogeny.

Lemma 5.9. If E/Q is an elliptic curve such that both E(Q(A∞
4 ))(7) and E(Q(A∞

4 ))(3) are
non-trivial, then E(Q(A∞

4 ))tors � Z/21Z.

Proof. From [23, Table 3] we see that, up to Q̄-isomorphism, there are only four curves
which possess a 21-isogeny, and they are represented by the curves with Cremona labels 162b1,
162c1, 162b3 and 162c3. Checking each of these with Magma, we obtain the claimed result. �

It remains to consider the possibility that E(Q(A∞
4 ))(2) is non-trivial. We have two cases

depending on whether E possesses a rational 2-isogeny. Let us first assume that this is not the
case so by Corollary 5.7, if E(Q(A∞

4 ))(2) is non-trivial then it must in fact be isomorphic to
Z/4Z ⊕ Z/4Z.

Lemma 5.10. There are infinitely many elliptic curves E/Q such that

E(Q(A∞
4 ))tors � Z/4Z ⊕ Z/28Z.

http://www.lmfdb.org/EllipticCurve/Q/52a1
http://www.lmfdb.org/EllipticCurve/Q/54b3
http://www.lmfdb.org/EllipticCurve/Q/162c1
http://www.lmfdb.org/EllipticCurve/Q/162b3
http://www.lmfdb.org/EllipticCurve/Q/162c3
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Proof. Recall from Proposition 4.4 that if 7 divides #E(Q(A∞
4 ))tors, then E has

j(E) =
(t2 + 13t + 49)(t2 + 5t + 1)3

t

for some t ∈ Q. In this case E is isomorphic over Q(A∞
4 ) to

Et : y2 + xy = x3 − 36t
(t4 + 14t3 + 63t2 + 70t− 7)2

x− t

(t4 + 14t3 + 63t2 + 70t− 7)2

and this curve has discriminant

Δ(Et) =
(t4 + 14t3 + 63t2 + 70t− 7)6

t(t2 + 5t + 1)6(t2 + 13t + 49)2
.

Thus Δ(E) is a non-zero rational square if and only if t is a non-zero rational square, and the
result now follows from Corollary 5.7. �

Remark 5.11. Using the LMFDB database [21], we find that among the curves guaranteed
to exist by Lemma 5.10, the curve with smallest conductor is the one with Cremona label
1922e2.

Finally, we must consider the case that E possesses a 14-isogeny.

Lemma 5.12. If E/Q is an elliptic curve which possesses a 14-isogeny, then E(Q(A∞
4 ))tors �

Z/2Z ⊕ Z/14Z.

Proof. From [23, Table 3] we see that, up to Q̄-isomorphism, there are only two curves
which possess a 14-isogeny, and they are represented by the curves with Cremona labels 49a1
and 49a2. Checking each of these with Magma, we obtain the claimed result. �

We collect the results of this section in a single proposition.

Proposition 5.13. Let E/Q be an elliptic curve such that E(Q(A∞
4 ))(7) is non-trivial.

Then E(Q(A∞
4 ))tors is isomorphic to one of the following groups:

Z/7Z, Z/21Z, Z/2Z ⊕ Z/14Z, or Z/4Z ⊕ Z/28Z.

5.2.3. The case when 5 divides #E(Q(A∞
4 ))tors. Let us now suppose that 5 divides

#E(Q(A∞
4 ))tors, so by Proposition 4.3 we know E(Q(A∞

4 ))(5) � Z/5Z. From the preceding
sections, we see that the only other primes p for which E(Q(A∞

4 ))(p) may be non-trivial are
p = 2 and p = 3.

If E(Q(A∞
4 ))(3) is non-trivial, then by Corollary 5.6 we see that E must possess a rational

15-isogeny. The following argument will by now be familiar to the reader.

Lemma 5.14. If E/Q is an elliptic curve which possesses a 15-isogeny, then E(Q(A∞
4 ))tors

is isomorphic to either Z/3Z or Z/15Z.

Proof. From [23, Table 3] we see that, up to Q̄-isomorphism, there are only four curves
which possess a 15-isogeny, and they are represented by the curves with Cremona labels 50a1,
50a2, 50a3 and 50a4. A computation in Magma confirms that over Q(A∞

4 ), the curves 50a1
and 50a2 have torsion subgroup Z/3Z, while 50a3 and 50a4 have torsion subgroup Z/15Z. �

http://www.lmfdb.org/EllipticCurve/Q/1922e2
http://www.lmfdb.org/EllipticCurve/Q/49a1
http://www.lmfdb.org/EllipticCurve/Q/49a2
http://www.lmfdb.org/EllipticCurve/Q/50a1
http://www.lmfdb.org/EllipticCurve/Q/50a2
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/50a4
http://www.lmfdb.org/EllipticCurve/Q/50a1
http://www.lmfdb.org/EllipticCurve/Q/50a2
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/50a4
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Now we consider the possible 2-torsion. By Corollary 5.7, if E(Q(A∞
4 ))(2) is non-trivial,

then either E admits a rational 2-isogeny or E(Q(A∞
4 )) contains a subgroup isomorphic to

Z/4Z ⊕ Z/4Z. We begin by ruling out this second possibility.

Lemma 5.15. Suppose E/Q is an elliptic curve such that E(Q(A∞
4 ))(5) � Z/5Z. Then

E[4] � E(Q(A∞
4 )).

Proof. Let E/Q be an elliptic curve such that 5 | #E(Q(A∞
4 ))tors, so that by

[22, Appendix E] (see also Table 6) E is isomorphic over Q to a quadratic twist of

Et : y2 + (1 − t)xy − ty = x3 − tx2,

which has discriminant

Δ(Et) = t5(t2 − 11t− 1).

By Corollary 5.7, if E[4] ⊆ E(Q(A∞
4 )), then Δ(E) must be a square. Up to squares Δ(E),

Δ(Et) and t(t2 − 11t− 1) are the same, and hence the latter must be a square as well. As in
the proof of Proposition 5.8, we find that the curve defined by s2 = t(t2 − 11t− 1) is 20a4,
which has only the point at infinity and (0,0), and the result follows. �

Lemma 5.16. Suppose E/Q is an elliptic curve such that E(Q(A∞
4 ))(5) � Z/5Z. Then

E(Q(A∞
4 ))(2) is either trivial or isomorphic to Z/2Z ⊕ Z/2Z.

Proof. In light of Lemma 5.15 and Proposition 4.10, it suffices to show that E(Q(A∞
4 ))(2)

cannot contain a subgroup isomorphic to Z/2Z ⊕ Z/4Z. By Corollary 4.11, if E(Q(A∞
4 ))(2)

contains a subgroup isomorphic to Z/2Z ⊕ Z/4Z, then E corresponds to a rational point on the
modular curve labeled X13 in the notation of [27], which is more familiarly known as X0(4),
so E admits a rational 4-isogeny. Then by Corollary 5.6, E also admits a rational 5-isogeny,
hence it must be isogenous to a curve which admits a 20-isogeny, but this is impossible by
Theorem 3.2. �

Remark 5.17. The elliptic curve with Cremona label 66c1 satisfies E(Q(A∞
4 ))tors � Z/2Z ⊕

Z/10Z and is the curve of smallest conductor with this property.

5.3. The case when 3 divides #E(Q(A∞
4 ))tors

Let us now suppose that 3 divides #E(Q(A∞
4 ))tors, so by Lemma 4.7 we know that

E(Q(A∞
4 ))(3) is isomorphic to a subgroup of Z/3Z ⊕ Z/9Z. From the preceding sections, we

see that the only other prime p for which E(Q(A∞
4 ))(p) may be non-trivial is p = 2.

Let us first clear the playing field a bit with the following lemmas.

Lemma 5.18. If E/Q is an elliptic curve such that E(Q(A∞
4 ))(3) is non-trivial, then

E(Q(A∞
4 ))(2) cannot contain a subgroup isomorphic to Z/2Z ⊕ Z/8Z.

Proof. By Corollary 4.11, if E(Q(A∞
4 ))(2) contains a subgroup isomorphic to Z/2Z ⊕ Z/8Z,

then E corresponds to a rational point on the modular curve labeled X36 in the notation of
[27], which is more familiarly known as X0(8), so E admits a rational 8-isogeny. Then by
Corollary 5.6 E also admits a rational 3-isogeny, hence it would be isogenous to a curve which
admits a 24-isogeny, but this is impossible by Theorem 3.2. �

Thus, from Corollary 4.11, the only possible non-trivial 2-torsion structures in this case are

Z/2Z ⊕ Z/2Z, Z/2Z ⊕ Z/4Z, and Z/4Z ⊕ Z/4Z.

In fact, we have the following refinement.

http://www.lmfdb.org/EllipticCurve/Q/50a1
http://users.wfu.edu//rouseja/2adic/X13.html
http://www.lmfdb.org/EllipticCurve/Q/66c1
http://users.wfu.edu//rouseja/2adic/X36.html
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Lemma 5.19. If E/Q is an elliptic curve such that E[3] ⊆ E(Q(A∞
4 )), then E(Q(A∞

4 ))(2)
cannot contain a subgroup isomorphic to Z/2Z ⊕ Z/4Z.

Proof. As in the proof of Lemma 5.16, if E(Q(A∞
4 ))(2) were to contain a subgroup

isomorphic to Z/2Z ⊕ Z/4Z, then E would admit a rational 4-isogeny. But if E[3] ⊆ E(Q(A∞
4 )),

then Lemma 4.5 implies that E must also admit two independent 3-isogenies, hence E is
isogenous to a curve which admits a 9-isogeny, and so E would in fact be isogenous to a curve
which admits a 36-isogeny, which is impossible by Theorem 3.2. �

Remark 5.20. We still need to consider the cases where E(Q(A∞
4 ))(3) � Z/3Z. For

instance, the curve with Cremona label 30a2 has E(Q(A∞
4 )) � Z/4Z ⊕ Z/12Z.

Lemma 5.21. If E/Q is an elliptic curve such that E(Q(A∞
4 ))(2) is non-trivial, then

E(Q(A∞
4 ))(3) cannot be isomorphic to Z/3Z ⊕ Z/9Z.

Proof. As in the proof of Lemma 4.8, if E(Q(A∞
4 ))(3) � Z/3Z ⊕ Z/9Z then E is isogenous

to a curve which admits a rational 27-isogeny, and if E(Q(A∞
4 ))(2) is -trivial then E also

admits a rational 2-isogeny, hence it must be isogenous to a curve which admits at rational
54-isogeny, which is impossible by Theorem 3.2. �

Lemma 5.22. If E(Q(A∞
4 ))(3) � Z/3Z, then E is isogenous to an elliptic curve Et with

j-invariant

j(Et) =
(t + 27)(t + 3)3

t

for some t ∈ Q. Furthermore, if E(Q(A∞
4 ))(2) is non-trivial, then we have

E(Q(A∞
4 ))tors �

{
Z/2Z ⊕ Z/6Z or Z/2Z ⊕ Z/12Z if t is not a square

Z/4Z ⊕ Z/12Z if t is a non-zero rational square.

Proof. The j-invariant is that of X0(3) from [23, Table 2], since E(Q(A∞
4 ))(3) � Z/3Z

implies E admits a rational 3-isogeny. The discriminant of Et is given by

Δ(Et) =
t(t + 3)6(t + 27)2

(t2 + 18t− 27)6
,

hence Δ(E) is a non-zero rational square if and only if t is a non-zero rational square. The
second statement now follows from Corollary 5.7. �

Remark 5.23. Indeed, the minimal twists of the curves E1 and E2 have Cremona labels
196a1 and 1682f1, respectively, and Magma confirms that

E1(Q(A∞
4 ))tors � Z/4Z ⊕ Z/12Z and E2(Q(A∞

4 ))tors � Z/2Z ⊕ Z/6Z.

Remark 5.24. We point out that the above argument assumes E(Q(A∞
4 ))(3) is precisely

Z/3Z. Since all it uses is the existence of a 3-isogeny, it is unable to distinguish such a curve
from one with a larger 3-primary component.

Lemma 5.25. Suppose E/Q is an elliptic curve, then E(Q(A∞
4 ))tors � Z/2Z ⊕ Z/18Z if and

only if its j-invariant is of the form

j(Et) =
(t3 − 2)3(t9 − 6t6 − 12t3 − 8)3

t9(t3 − 8)(t3 + 1)2
∈ Q×.

http://www.lmfdb.org/EllipticCurve/Q/30a2
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Proof. Our curve E/Q has the desired Q(A∞
4 )-torsion structure if and only if E admits

a rational 18-isogeny. We note that when E(Q(A∞
4 ))(3) � Z/9Z, Figure 1 demonstrates that

E(Q(A∞
4 ))(2) cannot be any larger than Z/2Z ⊕ Z/2Z, since then (via the modular curve X13)

it would possess a rational 4-isogeny, but no elliptic curve over Q admits a rational 36-isogeny.
The j-invariant in the statement is that of X0(18) from [23, Table 2]. �

6. Parameterizations for each possible torsion structure

We conclude the study of torsion of generalized A4 extensions by parameterizing each of the
possible torsion structures that occur for an elliptic curve E/Q base-extended to Q(A∞

4 ). Since
the torsion subgroup of E(Q(A∞

4 )) depends only on the j-invariant of E (unless j(E) = 0 or
1728, and these two cases have been dealt with in Section 5.1) it is enough to give a complete
description of the sets

ST = {j(E) : E(Q(A∞
4 ))tors � T}

for each of the 26 possible torsion structure given in Theorem 1.7.
To describe each set ST we give sets FT of rational functions j(t) such that E(Q(A∞

4 ))
contains a subgroup isomorphic to T if and only if there is a function j(t) ∈ FT and a rational
number r ∈ Q such that j(E) = j(r). Following the notation laid out in [7], we will let T be
the set of all the possible 26 torsion structures up to isomorphism for E(Q(A∞

4 )), and we put
a partial order on T given by T1 � T2 if T2 has a subgroup isomorphic to T1. Next, for any
elliptic curve E/Q with j �= 0 or 1728 we define T (E) to be the set of T ∈ T such that j(E) is
in the image of one of the rational functions in FT .

Theorem 6.1. Let E/Q be an elliptic curve with j(E) �= 0 or 1728. Then the set T (E) has
a unique maximal element T (E) with respect to the partial order on T and E(Q(A∞

4 ))tors �
T (E).

Remark 6.2. The set T (E) need not contain every T ∈ T such that T � T (E). There are
infinitely many examples of this since there are only finitely many elliptic curves E/Q such
that T (E) � Z/2Z ⊕ Z/14Z, while there are infinitely many elliptic curves E′/Q such that
T (E′) � Z/4Z ⊕ Z/28Z. This occurs because in order for E(Q(A∞

4 ))(2) � Z/2Z ⊕ Z/2Z, E
must have a 2-isogeny, while it is possible for E′(Q(A∞

4 ))(2) � Z/4Z ⊕ Z/4Z without having
any isogenies. For more details about this situation see Corollary 4.11 and [27].

The proof of Theorem 6.1 follows by the exact same argument (mutatis mutandis) as in
[7, Theorem 7.1] and so we omit it here for the sake of brevity. Instead we give a table of all
of the sets FT .

Justification for the maps in Table 5 are either given in Sections 4 and 5 or they are
constructed as the fiber product of the relevant j-maps. The construction of these curves
can be found in [6].

7. Torsion over the compositum of all A4-extensions of Q

The last task is to determine what subgroups (up to isomorphism) occur as the torsion subgroup
of an elliptic curve over Q base-extended to the compositum of all A4 extensions of Q. For the
rest of this section we will let QA4 be the compositum of all A4 extensions of Q.

Before attempting this classification we recall from the proof of Proposition 2.22 that QA4

does not contain any quadratic extensions of Q, and because of this it is possible to have
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Table 5. Parameterizations j(t) of the Q̄-isomorphism classes of elliptic curves E/Q corresponding
to the isomorphism type of E(Q(A∞

4 )).

T j(t)

{O} t

Z/3Z
(t + 27)(t + 3)3

t

Z/5Z
(t4 − 12t3 + 14t2 + 12t + 1)3

t5(t2 − 11t− 1)

Z/7Z
(t2 + 13t + 49)(t2 + 5t + 1)3

t

Z/9Z
t3(t3 − 24)3

t3 − 27

Z/13Z
(t4 − t3 + 5t2 + t + 1)(t8 − 5t7 + 7t6 − 5t5 + 5t3 + 7t2 + 5t + 1)3

t13(t2 − 3t− 1)

Z/15Z
{
−121945

32
,
46969655

32768

}

Z/21Z
{
−140625

8
,
3375

2
,−1159088625

2097152
,−189613868625

128

}

Z/2Z ⊕ Z/2Z
t3

t + 16

Z/2Z ⊕ Z/4Z
(t2 − 48)3

(t− 8)(t + 8)

Z/2Z ⊕ Z/6Z
(t + 6)3(t3 + 18t2 + 84t + 24)3

t(t + 8)3(t + 9)2

Z/2Z ⊕ Z/8Z
(t4 − 16t2 + 16)3

t2(t− 4)(t + 4)

Z/2Z ⊕ Z/10Z
(u6 + 4u5 − 16u + 16)3

u5(u− 1)2(u + 4)
, where u = t− 1

t

Z/2Z ⊕ Z/12Z
(t2 − 3)3(t6 − 9t4 + 3t2 − 3)3

(t− 3)(t− 1)3t4(t + 1)3(t + 3)

Z/2Z ⊕ Z/14Z {−3375, 16581375}

Z/2Z ⊕ Z/16Z
(t16 − 8t14 + 12t12 + 8t10 − 10t8 + 8t6 + 12t4 − 8t2 + 1)3

t16(t− 1)4(t + 1)4(t2 + 1)2(t2 − 2t− 1)(t2 + 2t− 1)

Z/2Z ⊕ Z/18Z
(t3 − 2)3(t9 − 6t6 − 12t3 − 8)3

t9(t3 − 8)(t3 + 1)2

Z/3Z ⊕ Z/3Z
27(t + 1)3(t + 3)3(t2 + 3)3

t3(t2 + 3t + 3)3

Z/3Z ⊕ Z/9Z {0}

Z/4Z ⊕ Z/4Z t2 + 1728,−4(4t2 − 8t + 1)3(4t2 + 8t + 1)3

t2(4t2 + 1)4

Z/4Z ⊕ Z/8Z
256(t4 − t2 + 1)3

(t− 1)2t4(t + 1)2
,
−4(t4 − 8t3 + 2t2 + 8t + 1)3(t4 + 8t3 + 2t2 − 8t + 1)3

t2(t− 1)2(t + 1)2(t2 + 1)8

Z/4Z ⊕ Z/12Z
729t8 + 756t6 + 270t4 + 36t2 + 1

t6

Z/4Z ⊕ Z/16Z
28(u2 − u + 1)3

u2(u− 1)2
, where u =

(
t− 1

t

2

)4

Z/4Z ⊕ Z/28Z
(t4 + 13t2 + 49)(t4 + 5t2 + 1)3

t2

Z/6Z ⊕ Z/6Z
(t3 − 57t2 +3t− 1)3(53t3 +3t2 − 3t+1)3(8587t6 − 8214t5 +2283t4 +304t3 − 39t2 − 6t+1)3

729(t− 1)3(4t− 1)6t6(5t + 1)3(43t2 − 8t + 1)3(7t2 + t + 1)6

Z/8Z ⊕ Z/8Z
16(t4 − 2t3 + 2t2 + 2t + 1)3(t4 + 2t3 + 2t2 − 2t + 1)3

(t− 1)4t4(t + 1)4(t2 + 1)4



GROUPS OF GENERALIZED G-TYPE 47

two elliptic curves E and E′ with the same j-invariant but different torsion subgroups when
base-extended to QA4 .

Example 7.1. Let E be the elliptic curve with Cremona reference 44a1 and let E′ be the
elliptic curve with Cremona reference 176c1. In this case j(E) = j(E′) and

E(Q(A∞
4 ))tors � E′(Q(A∞

4 ))tors � Z/3Z.

Using [21], we see that E(Q)[3] � Z/3Z while E′(Q)[3] is trivial. The curves E and E′ are
quadratic twists of each other and both have a 3-isogeny. In the case of E, the kernel of its
3-isogeny is defined over Q while in the case of E′ the kernel of its 3-isogeny is defined over
Q(i). Therefore, E and E′ are Q-isomorphic, but E(QA4)tors �� E′(QA4)tors.

While this also happens when considering base-extension to Q(A∞
4 ) when j(E) = 0 or 1728,

it can happen in many more instances when considering base extension to QA4 , and because
of this, replicating Table 5 in this context is not possible.

We also note that, while it is true that E(QA4)tors ⊆ E(Q(A∞
4 ))tors for every elliptic curve

E/Q (since QA4 ⊆ Q(A∞
4 )), it is not the case that every group which arises as the torsion

subgroup of an elliptic curve base-extended to QA4 also arises as the torsion subgroup of an
elliptic curve base-extended to Q(A∞

4 ), as shown in the following example.

Example 7.2. Let E be the elliptic curve with Cremona reference 46a1. From Table 1, we
know that E(Q(A∞

4 ))tors � Z/2Z ⊕ Z/2Z and from [21] we know that Q(E[2]) = Q(
√
−23).

Since Q(E[2]) ∩ QA4 = Q we know that E(QA4)tors = E(Q)tors � Z/2Z, but according to
Theorem 1.7 this group does not occur over Q(A∞

4 ).

Lemma 7.3. Let F/Q be a number field and F̃ the Galois closure of F . Then F ⊆ QA4 if

and only if Gal(F̃ /Q) is of strong A4-type.

Proof. By the Galois correspondence this just follows from its group theoretic counterpart
Corollary 2.17. �

Corollary 7.4. If F/Q is an abelian extension of Q such that F ⊆ QA4 , then Gal(F/Q) �
(Z/3Z)k for some k.

Proof. This is an immediate consequence of Lemmas 2.16 and 7.3. �

Corollary 7.5. The only roots of unity in QA4 are ±1.

7.1. Possible 2-power torsion growth when base-extended to QA4

Let E/Q be an elliptic curve. Then Gal(Q(E[2])/Q) � S3,Z/3Z,Z/2Z or it is trivial. Using
Corollary 2.18, we can see that the only way that Q(E[2]) ⊆ QA4 is if Gal(Q(E[2])/Q) � Z/3Z,
or it is trivial. Thus the only way that the 2-torsion can grow when base-extended to QA4 is
to have E(Q)[2] trivial and Gal(Q(E[2])/Q) � Z/3Z. We note here that the second condition
corresponds to E having square discriminant. Since Q(i) � QA4 , we know that Q(E[4]) � QA4

and we cannot gain full 4-torsion when base-extended to QA4 .
Next, we note that we in fact cannot gain a point of order 4 when base-extending to QA4 .

To see this, suppose that E does gain a point of order 4 over QA4 . If E(Q)[2] were not trivial,
then this would have to happen over a quadratic extension of Q since E would have to have a
4-isogeny, and QA4 contains no such subextensions. On the other hand, if E(Q)[2] were trivial,

http://www.lmfdb.org/EllipticCurve/Q/44a1
http://www.lmfdb.org/EllipticCurve/Q/176c1
http://www.lmfdb.org/EllipticCurve/Q/46a1
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then E(QA4)(2) � Z/2Z ⊕ Z/4Z and so E would possess a 2-isogeny, but this would imply that
E(Q)[2] was non-trivial, giving a contradiction.

Before continuing we state proposition that will prove to be useful.

Proposition 7.6 [12, Proposition 4.8]. Let E/F be an elliptic curve defined over a number
field F with fixed algebraic closure F , n a positive integer, P ∈ E(F ) be a point of order 2n+1

and let F̂ (P ) be the Galois closure of F (P ) over F (2P ). Then [F (P ) : F (2P )] divides 4 and

Gal(F̂ (P )/F (2P )) is either isomorphic to Z/2Z, Z/2Z × Z/2Z, D4, or it is trivial.

Proposition 7.6 combined with Corollary 2.18 and the previous discussion immediately yields
to the following two lemmas.

Lemma 7.7. Let E/Q be an elliptic curve. Then either E(QA4)(2) = E(Q)(2) or E(Q)[2] is
trivial and E(QA4)(2) = E[2]. The 2-torsion grows exactly when E(Q)[2] is trivial and E has
square discriminant.

Lemma 7.8. If E/Q is an elliptic curve, then Q(E[2]) ⊆ QA4 if and only if Δ(E) is a
rational square.

7.2. The possible prime-to-2 torsion

From Corollary 7.5 and the Weil pairing, if we let E/Q be an elliptic curve and G be the
maximal subgroup of E(QA4) of odd order, we get that G must be cyclic and isomorphic to
Z/NZ for some odd N . By Theorem 1.7, the only possibilities are N = 1, 3, 5, 7, 9, 13, 15 or 21.

We start by noting that the only way E can have a point of order 3 or 5 defined over QA4

is if it already had a point of order 3 or 5 defined over Q. Therefore, since there are no elliptic
curves E/Q with a point of order 15 defined over Q, N cannot be 15. Further, if N = 21 then E
must have a rational point of order 3 and a 7-isogeny whose kernel has a generator defined over
a cubic extension of Q. From [26, Theorem 1], we know that there is exactly one such elliptic
curve up to Q-isomorphism and that is the curve with Cremona reference 162b1. Therefore, all
that is left to do is classify when the other possible N > 1 occur, and the results are summarized
in Table 6. The models in this table for N = 3, 5 can be found in [22, Appendix E], while the
models for N = 7, 13 can be obtained from [32], and the model for N = 9 is the model for a
curve with a 9-isogeny twisted so that the associated 3-isogeny has a Q-rational kernel.

7.3. Torsion subgroups that occur over QA4

All that is left now is to determine what combinations of 2-powered torsion can occur with the
prime-to-2 options. Before doing this we give the following example.

Table 6. Generic models for QA4 .

N Model for the generic curve with a cyclic group of order N in E(QA4)tors

3 y2 + axy + by = x3 (can take a = 1 if j(E) �= 0)
5 y2 + (1 − t)xy − ty = x3 − tx2

7 y2 = x3 − 27(t2 + 5t + 1)(t2 + 13t + 49)3x
+54(t2 + 13t + 49)4(t4 + 14t3 + 63t2 + 70t− 7)

9 y2 + txy + y = x3

13 y2 = x3 − 27(t4 − t3 + 5t2 + t + 1)3(t8 − 5t7 + 7t6 − 5t5 + 5t3 + 7t2 + 5t + 1)x
+54(t2 + 1)(t4 − t3 + 5t2 + t + 1)4(t12 − 8t11 + 25t10 − 44t9 + 40t8 + 18t7

−40t6 − 18t5 + 40t4 + 44t3 + 25t2 + 8t + 1)

http://www.lmfdb.org/EllipticCurve/Q/162b1
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Example 7.9. Let E be the elliptic curve with Cremona reference 49a4 and let F be
the splitting field of f(x) = x3 − x2 − 2x + 1. Then F ⊆ QA4 since Gal(F/Q) � Z/3Z and
E(F )tors � Z/14Z, and therefore E(QA4)tors � Z/14Z as well. Similarly if E′ is the elliptic
curve with Cremona reference 49a3, then E(QA4)tors � Z/14Z as well. These are the only
elliptic curves with a point of order 14 over QA4 without full 2-torsion defined over QA4 .

Theorem 7.10. Let E/Q be an elliptic curve. The torsion subgroup E(QA4)tors is finite
and

E(QA4)tors �
{

Z/MZ with 1 � M � 10 or M = 12, 13, 14, 18, 21 or

Z/2Z ⊕ Z/2MZ with 1 � M � 4 or M = 7.

Proof. Note that the above list is the same as the list of torsion structures that occur
already over Q (cf. Theorem 1.1) with the exception of Z/MZ for M = 13, 14, 18 and 21 and
Z/2Z ⊕ Z/14Z. The fact that 7- and 13-torsion occurs follows immediately from Table 6 where
we give formulas for the generic elliptic curves with a 7- or 13-isogeny whose kernel is defined
over a degree 3 extension of Q. These formulas are taken from [32]. Next, the fact that 18
occurs follows from the same table with the additional observation that the curve y2 = f(x, t)
has rational 2-torsion if and only if f(x, t) has a zero, and the curve f(x, t) = 0 in this case is
birational to P1 (See Example 7.13). The case when T = Z/14Z follows from Example 7.9, while
the case when T = Z/2Z ⊕ Z/14Z follows from observing that the fiber product of the modular
curves whose rational points parameterize elliptic curves with square discriminant (X2 in the
notation of [27]) and the modular curve whose rational points correspond to parameterizing
elliptic curves with a point of order 7 defined over a cubic field is isomorphic to P1. The
Q-points on this curve correspond to the elliptic curves over Q whose torsion subgroup contains
a subgroup isomorphic to Z/2Z ⊕ Z/14Z when base-extended to QA4 .

So what remains to show is that, except for M = 7, 13, 14 and 18 as explained above, the
combinations of full 2-torsion and odd torsion that do not occur over Q also do not occur over
QA4 . We start by ruling out the case where E has full 2-torsion over QA4 and a point of order
5, 9, 13 or 21. In the first four cases, using the information in Table 6 we can compute the
discriminant of the generic curve with a point of this order and see that there are no rational
numbers that make it a square. If E has a point of order 21 over QA4 , then by [26, Theorem 1],
E is isomorphic to the curve with Cremona reference 162b1. The curve 162b1 has discriminant
−2334, and since the discriminant is invariant modulo squares under Q-isomorphism, this case
is excluded by Lemma 7.8.

It only remains to show that there are no curves E/Q with E(QA4)tors � Z/MZ for M = 26
or 42, but this follows from the fact that there are no elliptic curves with 26- or 42-isogenies. �

Example 7.11. An elliptic curve E/Q has E(QA4)tors � Z/2Z ⊕ Z/14Z if and only if it is
Q-isomorphic to

y2 = x3 − 27(t2 − t + 7)3(t2 + t + 7)3(t4 + 5t2 + 1)x

+ 54(t2 − t + 7)4(t2 + t + 7)4(t8 + 14t6 + 63t4 + 70t2 − 7)

for some t ∈ Q.

Example 7.12. An elliptic curve E/Q has E(QA4)tors � Z/2Z ⊕ Z/6Z if and only if it is
Q-isomorphic to

y2 = x3 − 27(t2 + 3)(t2 + 27)3x + 54(t2 + 27)4(t4 + 18t2 − 27)

for some t ∈ Q.

http://www.lmfdb.org/EllipticCurve/Q/49a4
http://www.lmfdb.org/EllipticCurve/Q/49a3
http://www.lmfdb.org/EllipticCurve/Q/162b1
http://www.lmfdb.org/EllipticCurve/Q/162b1
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Example 7.13. The generic elliptic curve with a point of order 18 over QA4 is given by

y2 + (t3 − 2)xy + t3y = x3.

For a particular value of t, the point of order 18 is defined over the splitting field of the
polynomial f(x) = x3 − t(t3 + 3t− 2)x2 + t3(t3 − 2)x + t6 which outside of a thin set defines
a degree 3 cyclic extension of Q.

7.4. Torsion over Q(C∞
3 )

Comparing Theorem 7.10 with [26, Theorem 1], we see that all of the groups that occur when
base extending an elliptic curve to QA4 also occur when base extending elliptic curves to a
single cubic extension.

Inspecting the proof of Theorem 7.10 we see that whenever we have growth in the torsion
subgroup when extending to QA4 it occurs when extending to at most 2 cyclic cubic extensions
of Q. That is to say, for any elliptic curve E/Q, we have E(QA4)tors = E(Q(C∞

3 ))tors. With
this observation we get the following corollary.

Corollary 7.14. Let E/Q be an elliptic curve. The torsion subgroup E(Q(C∞
3 ))tors is

finite and

E(Q(C∞
3 ))tors �

{
Z/MZ with 1 � M � 10 or M = 12, 13, 14, 18, 21 or

Z/2Z ⊕ Z/2MZ with 1 � M � 4 or M = 7.

Remark 7.15. It is also interesting to compare this to [8, Theorem 4.1], which classifies
K-rational torsion structures of elliptic curves E/K for K a cyclic cubic field. The present
question is similar to but essentially different from the one studied in [26]. The main difference
is that the condition that E has to be defined over Q is dropped in [8]. Indeed, if E is allowed
to be defined over a cyclic cubic field K instead of over Q then there are the extra possibilities
of Z/16Z, Z/2Z ⊕ Z/10Z and Z/2Z ⊕ Z/12Z for E(K)tors. The analogous question for K =
Q(C∞

3 ) is one we do not know how to solve using our techniques, since this question cannot
be solved solely by studying the action of Gal(Q/Q) on E(Q)tors. Indeed, when E is defined
over Q(C∞

3 ) then there is only an action of Gal(Q/Q(C∞
3 )).

Acknowledgements. The authors would like to thank Álvaro Lozano-Robledo, Keith Conrad
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