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A result of Dieulefait–Wiese proves the existence of modular 
eigenforms of weight 2 for which the image of every associated 
residual Galois representation is as large as possible. We gen-
eralize this result to eigenforms of general even weight k ≥ 2.
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1. Introduction

The purpose of this note is to provide a modest generalization of a theorem of 
Dieulefait–Wiese. Before stating the result, we briefly recall some terminology and no-
tation.

Let f =
∑

anq
n ∈ Sk(Γ0(N)) be a normalized cuspidal modular eigenform (hence-

forth simply called an “eigenform”) of weight k ≥ 2 and level Γ0(N) for some integer 
N ≥ 1. Let GQ denote the absolute Galois group Gal(Q̄/Q). The Fourier coefficients 
{ai} generate a number field Kf . Let Of be the ring of integers of Kf , let λ be a maximal 
ideal in Of with residue characteristic �, and write Fλ for the extension of F� generated 
by {ai mod λ}, the residues of the Hecke eigenvalues. By work of Deligne, there is a 
Galois representation
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ρf,λ : GQ → GL2(Of,λ)

as well as an associated semisimple residual representation

ρ̄f,λ : GQ → GL2(Fλ).

These representations are unramified outside the primes dividing N�∞, and ρ̄f,λ is 
absolutely irreducible for almost all primes λ. Upon composing ρ̄f,λ with the natural 
projection GL2(Fλ) → PGL2(Fλ), we obtain the projective representation

ρ̄proj
f,λ : GQ → PGL2(Fλ).

By a result of Ribet [11, Theorem 3.1], if f does not have complex multiplication 
(CM), then the image of ρ̄proj

f,λ is “as large as possible” for all but finitely many primes λ. 
More precisely, for almost all λ, the image of ρ̄proj

f,λ is either PGL2(Fλ) or PSL2(Fλ) (see 
also [4, Corollary 3.2]). In Section 1.1 we briefly discuss the history of such results.

Definition 1. A maximal ideal λ of Of is called exceptional if the image of ρ̄proj
f,λ is not 

PGL2(Fλ) or PSL2(Fλ). We may also say that ρ̄proj
f,λ is exceptional.

Remark 1. Recall that by Dickson’s classification, if ρ̄f,λ is both irreducible and excep-
tional, then the image must be either dihedral or isomorphic to A4, S4, or A5.

Thus Ribet’s theorem states that if f does not have CM, then it has only finitely 
many exceptional primes. The following theorem was proved by Dieulefait–Wiese.

Theorem 1. (See [4, Theorem 6.2].) There exist eigenforms (fn)n∈N of weight 2 such 
that

(1) for all n the eigenform fn has no exceptional primes, and
(2) for a fixed prime �, the size of the image of ρ̄fn,λn

for λn � Ofn is unbounded for 
running n.

Remark 2. The eigenforms fn in Theorem 1 have some additional technical properties. 
First, they do not have CM, which is a necessary condition. Second, they have no nontriv-
ial inner twists; this is important for their application to the inverse Galois problem in [4]. 
While the modular forms which we construct in Theorem 2 also enjoy these properties, 
we will not mention them for the sake of brevity and ease of exposition.

In this paper, we modify the arguments of [4] to obtain a version of Theorem 1 for 
eigenforms of general even weight k ≥ 2. The main result of this paper is the following.

Theorem 2. Let k ≥ 2 be an even integer. There exist eigenforms (fn)n∈N of weight k
such that
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(1) for all n the eigenform fn has no exceptional primes, and
(2) for a fixed prime �, the size of the image of ρ̄fn,λn

for λn � Ofn is unbounded for 
running n.

Remark 3. If f is a weight 2 eigenform with trivial nebentype whose coefficients are 
all rational, then by the Eichler–Shimura construction, there is an elliptic curve E/Q
associated to f . In [3], Daniels constructed an explicit infinite family of elliptic curves 
over Q whose adelic Galois representations have maximal image; in particular, they have 
no exceptional primes. In fact, Duke and Jones showed that, in an appropriate sense, 
almost all elliptic curves have no exceptional primes [5,7].

Thus, the value of Theorem 2 is in providing modular forms which are guaranteed not 
to correspond to elliptic curves but which nevertheless have no exceptional primes.

1.1. Historical context

Given a modular form f , one can form an adelic Galois representation

ρf : GQ →
∏
λ

GL2(Of,λ)

where λ ranges over all maximal ideals of Of . In the special case where f corresponds 
to an elliptic curve E/Q, this is equivalent to the “full-torsion” representation

ρE : GQ → lim←−−
n

GL2(Z/nZ) � GL2(Ẑ).

Serre showed that, assuming E does not have CM, the image of ρE is open in a subgroup 
of index 2 inside GL2(Ẑ) [13, Proposition 22]; this implies that E has finitely many 
exceptional primes. As mentioned in Remark 3, more recent results have shown that, 
generically, an elliptic curve has no exceptional primes [5,7].

An analogue of Serre’s theorem has recently been proven for modular forms. Loeffler 
showed that the adelic Galois representation attached to an arbitrary non-CM modular 
form of weight k ≥ 2 has open image [10, Theorem 2.3.1]. This relies on older results 
of Ribet and Momose which proved that modular forms have finitely many exceptional 
primes; see for instance [11, Theorem 3.1].

Nevertheless, it can be very hard to explicitly identify the exceptional primes for 
any given modular form. Recent work of Billerey–Dieulefait gives explicit but compli-
cated bounds on the exceptional primes for a modular form of weight k ≥ 2 and trivial 
nebentype [1].

2. Preliminaries

In this section we collect some definitions and basic results which will be needed in 
Section 3 to prove our main result.
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2.1. Tamely dihedral representations

The notion of tamely dihedral representations was first defined by Dieulefait–Wiese in 
[4, Section 4]; their definition was inspired by the notion of good-dihedral primes from [8]. 
We first recall some facts regarding Galois representations arising from modular forms.

Let f be an eigenform, let Kf be its coefficient field and Of its ring of integers, and let 
λ | � be a prime of Of dividing a rational prime �. For any rational prime p, let Gp denote 
a decomposition group corresponding to p. For the rest of this section, let p denote a 
prime different from �. By Grothendieck’s monodromy theorem we may associate to the 
characteristic zero local representation

ρf,λ|Gp
: Gp → GL2(Of,λ)

a 2-dimensional Weil–Deligne representation τp = (ρ̃, Ñ). Here

ρ̃ : WQp
→ GL2(Kf,λ)

is a continuous representation of the Weil group of Qp for the discrete topology on 
GL2(Kf,λ), Ñ is a nilpotent matrix in M2(Kf,λ), and we have the relation

ρ̃Ñ ρ̃−1 = | · |−1Ñ

where | · | is a particular norm map. The standard reference for these things is [15], but 
another very readable reference is [6].

Definition 2. (See [4, Definition 4.1].) Let Qp2 be the unique unramified degree 2 extension 
of Qp. Denote by Wp and Wp2 the Weil groups of Qp and Qp2 , respectively.

A 2-dimensional Weil–Deligne representation τp = (ρ̃, Ñ) of Qp with values in Kf is 
called tamely dihedral of order n if Ñ = 0 and there is a tame character ψ : Wp2 → K×

f,λ

whose restriction to the inertia group Ip (which is naturally a subgroup of Wp2) is of 
niveau 2 (i.e. it factors over F×

p2 and not over F×
p ) and of order n > 2, such that 

ρ̃ � IndWp

Wp2
ψ.

We say that an eigenform f is tamely dihedral of order n at the prime p if the Weil–
Deligne representation τp at p associated to f is tamely dihedral of order n.

Remark 4. In terms of the local Langlands correspondence, f can only be tamely di-
hedral at p if it is supercuspidal at p. Recent work of Loeffler–Weinstein [9] has made 
it possible to test modular forms for the property of being tamely dihedral using the 
LocalComponent package of [14]. Thus, in theory one can find explicit examples of the 
modular forms whose existence is guaranteed by Theorem 2; however, as the proof of the 
theorem will indicate, these modular forms are expected to have very large level, and 
their construction seems beyond the scope of current computing capabilities.
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Proposition 1. Let f ∈ Sk(N, χtriv) be a newform of odd level N and trivial nebentype 
such that for all � | N

(1) � ‖ N or
(2) �2 ‖ N and f is tamely dihedral at � of order n� > 2 or
(3) �2 | N and ρf,t(G�) can be conjugated to lie in the upper triangular matrices such 

that the elements on the diagonal all have odd order for some prime t � �.

Let {p1, . . . , pr} be any finite set of primes.
Then for almost all primes p ≡ 1 mod 4 there is a set S of primes of positive den-

sity which are completely split in Q(i, √p1, . . . , 
√
pr ) such that for all q ∈ S there is a 

newform g ∈ Sk(Nq2, χtriv) which is tamely dihedral at q of order p and for all � | N we 
have

(1) �2 ‖ N and g is tamely dihedral at � of order n� > 2 or
(2) ρg,t(G�) can be conjugated to lie in the upper triangular matrices such that the ele-

ments on the diagonal all have odd order for some prime t � �.

Proof. This is [4, Proposition 5.4]. �
2.2. Local �-adic representations

Let f =
∑

anq
n be an eigenform, and let λ be a prime of Of lying above the rational 

prime �. Recall that f is said to be ordinary at λ if a� 
≡ 0 (mod λ); otherwise f is said 
to be nonordinary at λ. Let G� be a decomposition group at � and I� its inertia group.

The following theorem is due to Deligne, Fontaine, and Edixhoven.

Theorem 3. Assume f is weight k and ρ̄f,λ is irreducible.

(1) If k ≥ 2 and f is ordinary at λ then

ρ̄f,λ|I� �
(
χk−1
� ∗
0 1

)

where χ� is the (reduction of the) �-adic cyclotomic character.
(2) If 2 ≤ k ≤ � + 1 and f is nonordinary at λ then

ρ̄f,λ|I� �
(
φk−1 0

0 φ�(k−1)

)

where φ is a fundamental character of niveau 2.

Proof. We refer to reader to [2, Theorem 1.2] and the remark which follows it. �
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Thus, the image of inertia under ρ̄f,λ can be identified with the image of χk−1
� or 

φ(l−1)(k−1) depending on whether f is ordinary or nonordinary at λ. In particular, we 
have the following corollary.

Corollary 1. Assume � > k. Let I = ρ̄proj
f,λ (I�).

(1) If f is ordinary at λ, then I is cyclic of order n = (� − 1)/gcd(� − 1, k − 1) ≥ 2. If 
� > 5k − 4, then n > 5.

(2) If f is nonordinary at λ, then I is cyclic of order n = (� + 1)/gcd(� + 1, k− 1) ≥ 2. 
If � > 5k − 4, then n > 5.

Proof. This follows immediately from Theorem 3; see also [1, Lemma 1.2]. �
We conclude this section with a lemma which is the crucial ingredient for generalizing 

from weight 2 forms to weight k forms. The first argument of this sort, for the k = 2
case, goes back to Ribet (see the proof of [12, Proposition 2.2]). For higher weights, see 
[1, Section 3.3], which we follow closely.

Let G = ρ̄proj
f,λ (GQ) be the projective image of ρ̄f,λ, and suppose G is dihedral. Then 

G fits into an exact sequence of the form

0 → Z → G → {±1} → 0

where Z is cyclic. This corresponds to a tower of fields

Q ⊂ E ⊂ L

with Galois groups

Gal(L/Q) � G, Gal(E/Q) � {±1}, Gal(L/E) � Z.

We thus obtain a quadratic character ε : GQ → {±1} whose kernel cuts out E.

Lemma 1. If � > 5k − 4, then ε is unramified at �.

Proof. By Corollary 1, I is cyclic of order >5. Since I ⊂ G, we must have I ⊂ Z. Thus 
I� is contained in the kernel of ε. �
3. Main result

In order to prove our main theorem, we must first prove a version of [4, Proposition 6.1]
for eigenforms of general weight k ≥ 2, after which the proof of our theorem will follow 
easily.
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Proposition 2. Let p, q, t, u be distinct odd primes and let N be an integer which is divisible 
by every odd prime p ≤ 5k − 4. Let p1, . . . , pm be the prime divisors of 2N . Let f ∈
Sk(Nq2u2, χ) be an eigenform without CM which is tamely dihedral of order pr > 5 at q
and tamely dihedral of order ts > 5 at u. Assume that q and u are completely split in 
Q(i, √p1, . . . , 

√
pm ) and that ( q

u ) = (uq ) = 1.
Then f does not have any exceptional primes, i.e. for all maximal ideals λ of Of , the 

image of ρ̄proj
f,λ is PSL2(Fλ) or PGL2(Fλ).

Proof. The proof is similar to the proof of [4, Proposition 6.1], which we follow closely. 
Let λ be any maximal ideal of Of and suppose it lies over the rational prime �. By our 
“tamely dihedral” hypotheses, ρ̄f,λ is irreducible, since if � /∈ {p, q}, then already ρ̄f,λ|Gq

is irreducible, and if � ∈ {p, q}, then � /∈ {t, u}, hence ρ̄f,λ|Gu
is irreducible.

Now suppose the image of ρ̄proj
f,λ is a dihedral group. This means that ρ̄proj

f,λ is the 
induction of a character of a quadratic extension E/Q, i.e.

ρ̄proj
f,λ � IndQ

E (α)

for some character α of Gal(Q̄/E). By the ramification properties of ρ̄proj
f,λ , we know

E ⊂ Q(i,
√
�,
√
q,
√
u,

√
p1, . . . ,

√
pm ). (1)

First assume that � /∈ {p, q}. In this case, we have

ρ̄proj
f,λ |Dq

� IndQq

Qq2
(ψ) � IndQq

Eq
(α)

where q is a prime in OE lying over q and where ψ is a niveau 2 character of or-
der pr. This implies that q is inert in E, but by assumption q is totally split in 
Q(i, 

√
u, 

√
p1, . . . , 

√
pm ), so from (1) we deduce that

� /∈ {u, p1, . . . , pm} .

In particular, we see that � � 2Nu, so by our choice of N , we conclude that � > 5k − 4. 
Thus by Lemma 1 our quadratic field E cannot ramify at �, so we can refine (1) to

E ⊂ Q(i,√q,
√
u,

√
p1, . . . ,

√
pm ),

with E totally split in the latter. But now the fact that q is inert in E implies that 
E = Q rather than a quadratic extension, and this contradiction implies that � ∈ {p, q}
and in particular � /∈ {t, u}. Upon exchanging the roles q ↔ u, p ↔ t, and r ↔ s, running 
this argument again leads to a contradiction, hence the image of ρ̄proj

f,λ is not dihedral.
If λ is exceptional and the image of ρ̄proj

f,λ is not dihedral, then by Dickson’s classifi-
cation, the only other possibilities for the image are A4, S4, and A5. But the image of 
ρ̄proj
f,λ contains an element of order >5 by Corollary 1, so none of these are possible. �
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We may now prove our main theorem. The proof is essentially the same as the proof 
of [4, Theorem 6.2].

Proof of Theorem 2. Start with some newform f1 ∈ Sk(Γ0(N)) for N of squarefree 
level. Note that modular forms of level Γ0(N) never have CM when N is squarefree. Let 
p1, . . . , pm be the prime divisors of 6N .

Let B1 > 0 be any bound. Take p to be any prime bigger than B provided by 
Proposition 1 applied to f and the set {p1, . . . , pm}. We thus obtain an eigenform 
g ∈ Sk(Γ0(Nq2)) which is tamely dihedral at q of order p for some prime q. Now apply 
Proposition 1 to the form g and the set {q, p1, . . . , pm} to obtain a prime t > B different 
from p and an eigenform h ∈ Sk(Γ0(Nq2u2)) which is tamely dihedral at u of order t for 
some prime u. By Proposition 2, h does not have any exceptional primes.

Thus we take f2 = h and take a new bound B2 > B1. Inductively we obtain a family 
(fn)n∈N and the image of inertia grows without bound in this family. �
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