Voting with Pulleys and Rubber Bands

William S Zwicker & Davide Cervone
Union College Mathematics Department

Union College Undergraduate Mathematics Seminar
October 7, 2008
Multicandidate voting

3 or more candidates run for office
Multicandidate voting: Set-up

A group must select one option from among several* alternatives:

- Candidates for president:
 - John McCain
 - Barack Obama
 - Ron Paul

- What to order for lunch: Pastrami, Cabbage, Rabbit, Salami

“several” means ≥ 3
Multicandidate voting: Set-up

A group must select one option from among several** alternatives:

- Candidates for president:
 - John McCain
 - Barack Obama
 - Ron Paul

- What to order for lunch: Pastrami, Cabbage, Rabbit, Salami

General Assumptions:

- Voters are treated equally
- More than 2 possible outcomes
- All possible outcomes are treated equally (no built-in bias favors one candidate)
Multicandidate voting: Set-up

In the US, a ballot usually only names a voter’s single most favored candidate.
Multicandidate voting: Set-up

In the US, a ballot usually only names a voter’s single most favored candidate.

We will consider ballots that reveal each voter’s full *preference ranking*. . . . used in some other countries.

♦ Candidates for president: John McCain, Barack Obama, Ron Paul
Multicandidate voting: Set-up

In the US, a ballot usually only names a voter’s single most favored candidate.

We will consider ballots that reveal each voter’s full preference ranking.
. . . used in some other countries.

♦ Candidates for president: John McCain, Barack Obama, Ron Paul

Mei-Ling
 R
 B
 J
Multicandidate voting: Examples

1) **Borda Count** Jean Charles de Borda (French Revolution)

- Each voter awards points to the candidates:

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed</td>
<td>3</td>
</tr>
<tr>
<td>Q</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
</tr>
</tbody>
</table>

- For each alternative, sum the points awarded by all voters

- The winner is the alternative with the most points
Multicandidate voting: Examples

1) **Borda Count** Jean Charles de Borda (French Revolution)

Sample Profile:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>s</td>
<td>s</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>q</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>
Multicandidate voting: Examples

1) **Borda Count** Jean Charles de Borda (French Revolution)

Sample Profile:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>s</td>
<td>s</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>q</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

p's total points:

\[_ \times 3 = _ \]
\[_ \times 2 = _ \]
\[_ \times 1 = _ \]
\[_ \times 0 = _ \]

SUM = _
Multicandidate voting: Examples

1) **Borda Count** Jean Charles de Borda (French Revolution)

Sample Profile:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>s</td>
<td>s</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>q</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

p’s total points:

\[
\begin{align*}
3 \times 3 &= 9 \\
0 \times 2 &= 0 \\
0 \times 1 &= 0 \\
4 \times 0 &= 0 \\
\text{SUM} &= 9
\end{align*}
\]
Multicandidate voting: Examples

1) **Borda Count** Jean Charles de Borda (French Revolution)

Sample Profile:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>s</td>
<td>s</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>q</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

q's points: \(1 \times 3 = 3\)

r's points: \(1 \times 3 = 3\)

s's points: \(2 \times 3 = 6\)

5 × 2 = 10
1 × 1 = 1
0 × 0 = 0

0 × 2 = 0
6 × 1 = 6
0 × 0 = 0

2 × 2 = 4
0 × 1 = 0
3 × 0 = 0

SUM = 14
SUM = 9
SUM = 10

(p had 9 total)
Multicandidate Voting: Examples

1) **Borda Count** Jean Charles de Borda (French Revolution)

Sample Profile:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>q</td>
<td>s</td>
<td>s</td>
<td>q</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>q</td>
<td>r</td>
</tr>
<tr>
<td>s</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

- q’s points: \(1 \times 3 = 3\)
- r’s points: \(1 \times 3 = 3\)
- s’s points: \(2 \times 3 = 6\)
- p’s points: \(5 \times 2 = 10\)
- \(0 \times 2 = 0\)
- \(2 \times 2 = 4\)
- \(1 \times 1 = 1\)
- \(6 \times 1 = 6\)
- \(0 \times 1 = 0\)
- \(0 \times 0 = 0\)
- \(0 \times 0 = 0\)
- \(3 \times 0 = 0\)

SUM = 14

(p had 9 total)

Borda winner is q
Multicandidate voting: Examples

2) **Hare**

Step 1
Is some alternative the 1ST choice of a majority of voters?
If so, they win. If not go to step 2.

Step 2 Eliminate the alternative(s) having the fewest 1ST choice votes.

Step 3 “Squeeze up” to close the gaps left by the eliminations. Then, go to step 1.

Same Profile:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>s</td>
<td>s</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>q</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>
Multicandidate voting: Examples

2) Hare

Step 1 Is some alternative the 1\(^{\text{st}}\) choice of a majority of voters? If so, they win. If not go to step 2.

Step 2 Eliminate the alternative(s) having the fewest 1\(^{\text{st}}\) choice votes.

Step 3 “Squeeze up” to close the gaps left by the eliminations. Then, go to step 1.

Same Profile:

\[
\begin{array}{cccc}
3 & 1 & 1 & 2 \\
p & q & r & s \\
q & s & s & q \\
r & r & q & r \\
s & p & p & p \\
\end{array}
\]

p has a plurality of 1\(^{\text{st}}\) choice votes: 3 of 7. But no alternative has a majority. Proceed to step 2.
Multicandidate voting: Examples

2) **Hare**

Step 1

Is some alternative the 1ST choice of a majority of voters?

If so, they win. If not go to step 2.

Step 2

Eliminate the alternative(s) having the fewest 1ST choice votes.

Step 3

“Squeeze up” to close the gaps left by the eliminations. Then, go to step 1.

Same Profile:

\[
\begin{array}{cccc}
3 & 1 & 1 & 2 \\
\rightarrow q & \rightarrow r & s \\
\rightarrow q & s & s & \rightarrow q \\
\rightarrow r & \rightarrow r & \rightarrow q & \rightarrow r \\
s & p & p & p \\
\end{array}
\]

p has a **plurality** of 1ST choice votes: 3 of 7. But no alternative has a **majority**.

Proceed to step 2.
Multicandidate voting: Examples

2) **Hare**
Step 1
Is some alternative the 1ST choice of a majority of voters?
If so, they win. If not go to step 2.

Step 2 Eliminate the alternative(s) having the fewest 1ST choice votes.

Step 3 “Squeeze up” to close the gaps left by the eliminations. Then, go to step 1.

Same Profile:
\[
\begin{array}{cccc}
3 & 1 & 1 & 2 \\
p & \rightarrow q & \rightarrow r & s \\
\rightarrow q & s & s & \rightarrow q \\
\rightarrow r & \rightarrow r & \rightarrow q & \rightarrow r \\
s & p & p & p \\
\end{array}
\]

p has a **plurality** of 1ST choice votes: 3 of 7. But no alternative has a **majority**.

Proceed to step 2.
\[
\begin{array}{cccc}
3 & 1 & 1 & 2 \\
p & s & s & s \\
s & p & p & p \\
\end{array}
\]

Now, back to step 1!

Alternative *s* gets 4 of the 1ST place votes – a majority of the 7 votes cast.
Multicandidate voting: Examples

2) **Hare**

Step 1
Is some alternative the 1ST choice of a majority of voters?
 If so, they win. If not go to step 2.

Step 2
Eliminate the alternative(s) having the fewest 1ST choice votes.

Step 3
“Squeeze up” to close the gaps left by the eliminations. Then, go to step 1.

Same Profile:

\[
\begin{array}{ccccc}
3 & 1 & 1 & 2 \\
p & \rightarrow q & \rightarrow r & s \\
\rightarrow q & s & s & \rightarrow q \\
\rightarrow r & \rightarrow r & \rightarrow q & \rightarrow r \\
s & p & p & p
\end{array}
\]

p has a *plurality* of 1ST choice votes: 3 of 7. But no alternative has a *majority*.

Proceed to step 2.

\[
\begin{array}{cccccc}
3 & 1 & 1 & 2 \\
p & s & s & s \\
s & p & p & p
\end{array}
\]

Now, back to step 1!

Alternative s gets 4 of the 1ST place votes – a majority of the 7 votes cast.

Hare winner is s
Multicandidate voting: Examples

Sample Profile:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>s</td>
<td>s</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>q</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

Borda winner is q **Hare winner is s**
Multicandidate voting: Examples

Sample Profile:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>s</td>
<td>s</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>q</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

Borda winner is q **Hare winner is s**

3) **Plurality Rule** The winner is the alternative with the greatest number of 1st place votes
Multicandidate voting: Examples

Sample Profile:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>s</td>
<td>s</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>q</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

Borda winner is q **Hare winner is s**

3) **Plurality Rule** The winner is the alternative with the greatest number of 1ST place votes

Plurality winner is p

Same election: 3 different voting rules ⇒ 3 different winners
Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?
Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes... especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?
Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close. Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)
Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close. Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida’s electoral vote?
Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close. Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida’s electoral vote? plurality . . . and Bush won, thus winning the election
How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close. Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida’s electoral vote? plurality . . . and Bush won, thus winning the election (according to the US Supreme Court). So . . . who would have won Florida, using Borda?
Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida’s electoral vote?
plurality . . . and Bush won, thus winning the election (according to the US Supreme Court). So . . . who would have won Florida, using Borda?
Almost certainly, Gore.
Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida’s electoral vote? plurality . . . and Bush won, thus winning the election (according to the US Supreme Court). So . . . who would have won Florida, using Borda? Almost certainly, Gore.

Using Hare?
How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida’s electoral vote?
plurality . . . and Bush won, thus winning the election (according to the US Supreme Court). So . . . who would have won Florida, using Borda?

Almost certainly, Gore.

Using Hare?

Almost certainly, Gore.
Hex-Mean voting rule

- Three alternatives: p, q, r

- 6 possible rankings:
 - p > q > r
 - p > r > q
 - q > p > r
 - q > r > p
 - r > p > q
 - r > q > p

- Label each hex vertex with a ranking, as in the sketch

- What is the labeling pattern?
Hex-Mean voting rule

- Three alternatives: p, q, r
- 6 possible rankings:
 - p > q > r
 - p > r > q
 - q > p > r
 - q > r > p
 - r > p > q
 - r > q > p
- Label each hex vertex with a ranking, as in the sketch
- What is the labeling pattern?
- Adjacent rankings differ by one pairwise reversal
Hex-Mean voting rule

- Each voter chooses a vertex
Hex-Mean voting rule

- Each voter chooses a vertex
- O = mean location of all votes
Hex-Mean voting rule

- Each voter chooses a vertex
- \(\mathcal{O} \) = mean location of all votes
- How do we find the “mean” of points in the plane? We’ll come back to that.
- Where is \(\mathcal{O} \)?
Hex-Mean voting rule

- Each voter chooses a vertex
- \mathbf{O} = mean location of all votes
- How do we find the “mean” of points in the plane? We’ll come back to that.
- Where is \mathbf{O}?
- The winning ranking is that of the vertex **closest** to the mean
Hex-Mean voting rule

- Each voter chooses a vertex
- $\bigcirc = \text{mean location of all votes}$
- How do we find the “mean” of points in the plane? We’ll come back to that.
- Where is \bigcirc?
- The winning ranking is that of the vertex closest to the mean:
 $r > q > p$
- The Hex-Mean winner is r
- Who cares?
Hex-Mean voting rule

- **Theorem** The Hex-Mean rule is the same as the Borda Count.
The Mean

2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)
The Mean
2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)

 1. **Average Coordinate Method**

![Diagram showing points on a coordinate plane]
The Mean

2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)

 1. **Average Coordinate Method**

- Find the average x coordinate
The Mean
2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)

 1. **Average Coordinate Method**

- Find the average x coordinate
- Find the average y coordinate
The Mean

2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)

 1. **Average Coordinate Method**

- Find the average x coordinate

- Find the average y coordinate

- Use these as the coordinates of the mean point O
The Mean

2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)

 2. Ideal Rubber Band Method
The Mean

2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)

 2. Ideal Rubber Band Method

- An i.r.b.:
 - will shrink to a point if you let go of both ends
 - Tension is proportional to stretch
The Mean

2 equivalent definitions

• Given three (blue) points in the plane (or on a number line, or in space)

 2. Ideal Rubber Band Method

• An i.r.b.
 ♦ will shrink to a point if you let go of both ends
 ♦ Tension is proportional to stretch

• Loop one end of an i.r.b. around a blue point, and the other end about a movable point ☝
The Mean

2 equivalent definitions

• Given three (blue) points in the plane (or on a number line, or in space)

2. Ideal Rubber Band Method

• An i.r.b.
 ♦ will shrink to a point if you let go of both ends
 ♦ Tension is proportional to stretch

• Loop one end of an i.r.b. around a blue point, and the other end about a movable point ○

• Repeat with the other blue points
The Mean
2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)

 2. Ideal Rubber Band Method

- An i.r.b.
 - will shrink to a point if you let go of both ends
 - Tension is proportional to stretch

- Loop one end of an i.r.b. around a blue point, and the other end about a movable point ○

- Repeat with the other blue points

- Release ○ and let it reach equilibrium
 - rubber band forces cancel out exactly
The Mean

2 equivalent definitions

• Given three (blue) points in the plane (or on a number line, or in space)

 2. Ideal Rubber Band Method

• An i.r.b.
 ♦ will shrink to a point if you let go of both ends
 ♦ Tension is proportional to stretch

• Loop one end of an i.r.b. around a blue point, and the other end about a movable point ○

• Repeat with the other blue points

• Release ○ and let it reach equilibrium – rubber band forces cancel out exactly

• The two methods always agree, producing the same point ○
• **Theorem** The Hex-Mean rule is the same as the Borda Count

• And the mean can be found using rubber bands

• Putting these together we get...
Physical model for Borda count

- Tie 3 i.r.b.s around r>p>q and a movable point O
- Tie 5 i.r.b.s around q>r>p & O
- Release and let it reach equilibrium – rubber band forces cancel out exactly
Physical model for Borda count

- Tie 3 i.r.b.s around \(r>p>q \) and a movable point \(\mathcal{O} \)
- Tie 5 i.r.b.s around \(q>r>p \) & \(\mathcal{O} \)
- Release and let it reach equilibrium – *rubber band forces cancel out exactly*
- The vertex closest to \(\mathcal{O} \) (green line) tell us the Borda winner

Conclusion Borda count = voting with rubber bands on the hexagon (3 alternatives)
Physical model for Borda count

- How about **four** alternatives?

- There are **24** possible rankings of four alternatives
Physical model for Borda count

• How about **four** alternatives?

• There are **24** possible rankings of four alternatives

• A hexagon has only **6** vertices.
Physical model for Borda count

- How about four alternatives?
- There are 24 possible rankings of four alternatives
- A hexagon has only 6 vertices. How about a 2-D polygon with 24 sides?
Physical model for Borda count

• How about four alternatives?

• There are 24 possible rankings of four alternatives

• A hexagon has only 6 vertices. How about a 2-D polygon with 24 sides?

• Nope. It’s impossible to label the vertices with the 24 possible rankings in the “right way”

• We need a 3-D figure . . . A truncated octahedron.
Physical model for Borda count

- How about **four** alternatives?

- There are **24** possible rankings of four alternatives.

- A hexagon has only **6** vertices. How about a 2-D polygon with 24 sides?

- Nope. It’s impossible to label the vertices with the 24 possible rankings in the “right way”.

- We need a 3-D figure . . . A truncated octahedron.
Physical model for Borda count

- How about four alternatives?

- There are 24 possible rankings of four alternatives

- A hexagon has only 6 vertices. How about a 2-D polygon with 24 sides?

- Nope. It’s impossible to label the vertices with the 24 possible rankings in the “right way”

- We need a 3-D figure . . . A truncated octahedron.

- It is possible to label the vertices with the 24 rankings of p, q, r, s so that rankings on adjacent vertices differ by only one pairwise reversal
Physical model for Borda count

• How about four alternatives?

• There are 24 possible rankings of four alternatives

• A hexagon has only 6 vertices. How about a 2-D polygon with 24 sides?

• Nope. It’s impossible to label the vertices with the 24 possible rankings in the “right way”

• We need a 3-D figure . . . A truncated octahedron

• It is possible to label the vertices with the 24 rankings of p, q, r, s so that rankings on adjacent vertices differ by only one pairwise reversal

• Then vote with i.r.b.s; choose vertex closest to O
Physical model for Borda count

• **Conclusion** Borda count = voting with rubber bands on the hexagon (3 alternatives)

• With rubber bands, greater distance = harder pull

• Is there an alternative, with greater distance = same pull?
Physical model for Borda count

- **Conclusion** Borda count = voting with rubber bands on the hexagon (3 alternatives)

- With rubber bands, greater distance = harder pull

- Is there an alternative, with greater distance = same pull?

- **Yes.** Replace rubber bands with weights and strings
An Alternative to the Mean

- Choose 3 points on the plane
An Alternative to the Mean

- Choose 3 points on the plane
- Drill a hole through at each point, and pass a string through each hole
An Alternative to the Mean

- Choose 3 points on the plane

- Drill a hole through at each point, and pass a string through each hole

- Attach a unit weight to each end below the table

- Tie all other ends to one movable point
An Alternative to the Mean

- Choose 3 points on the plane
- Drill a hole through at each point, and pass a string through each hole
- Attach a unit weight to each end below the table
- Tie all other ends to one movable point
- Release, allow to reach equilibrium
An Alternative to the Mean

• Choose 3 points on the plane

• Drill a hole through at each point, and pass a string through each hole

• Attach a unit weight \(\square \) to each end below the table

• Tie all other ends to one movable point \(\square \)

• Release, allow \(\square \) to reach equilibrium

• This point is called the median centre . . .

• . . . and it is different from the mean
A New Voting Rule

- Each voter chooses a vertex
A New Voting Rule

- Each voter chooses a vertex
- □ = mediancentre of all votes
A New Voting Rule

- Each voter chooses a vertex
- $\Box = \text{mediancentre of all votes}$
- The winning ranking is that of the vertex closest to the MC
Each voter chooses a vertex

\[\square = \text{median centre of all votes} \]

The winning ranking is that of the vertex closest to the MC

We call this new voting rule the MCBorda rule
A New Voting Rule

- Each voter chooses a vertex
- $\square = \text{median centre of all votes}$
- The winning ranking is that of the vertex closest to the MC
- We call this new voting rule the MCcBorda rule
- It is so new that we are still learning about its basic properties
3 BIG Questions
1) How does the median centre differ from the mean?
3 BIG Questions

1) How does the median centre differ from the mean?

2) How does the MCBorda voting rule differ from the Borda count?
3 **BIG** Questions

1) How does the median centre differ from the mean?

2) How does the M^C^Borda voting rule differ from the Borda count?

3) How are the answers to the previous two questions linked?
3 BIG Questions

1) How does the mediancentre* differ from the mean?

2) How does the M^cBorda voting rule differ from the Borda count?

3) How are the answers to the previous two questions linked?

* And how is the mediancentre related to the median?
3 BIG Questions

1) How does the median centre differ from the mean?

WE’LL EXPERIMENT . . .

. . . USING DAVIDE CERVONE’S SOFTWARE