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Abstract

Early studies of tight surfaces showed that almost every surface can
be immersed tightly in three-space. For these surfaces we can ask:
How many significantly different tight immersions are there? If we
consider two such immersions to be the same when they are image ho-
motopic, then we can answer the question by determining the number
of homotopy classes where tight immersions are possible. A complete
description of all classes of immersions under image homotopy already
exists, and tight examples are known in all but three of the classes
where tight immersions are possible. In this paper we produce exam-
ples in two of those three missing classes, and conjecture that no tight
immersion exists in the third.

1 Introduction

A surface in three-space is tight provided that any plane cuts it into at most
two pieces (a more formal definition is given in section 2 below). Surfaces
such as a round sphere and a torus of revolution are tight, but a banana is
not since a single plane can cut off both ends at once, leaving the banana
in three pieces. In his initial study of tight surfaces, Kuiper showed that
the Klein bottle and the real projective plane can not be tightly immersed
in three-space, while all other surfaces except the projective plane with one
handle can be [15], [16], [17]. The fate of the latter surface has been resolved
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only recently: there is no smooth tight immersion of this surface [11] but,
surprisingly, there is a polyhedral one [10].

Having determined which surfaces can be tightly immersed, it is natural to
ask: How many different tight immersions are there for each surface? To
answer this question, we need some notion of when two immersions are con-
sidered to be the same. A reasonable criterion is that two are the same if one
can be smoothly deformed to the other by a series of intermediate immer-
sions. This is the idea underlying image homotopy described in more detail
below. Image homotopy is an equivalence relation on the set of immersions
of surfaces, and so the equivalence classes under this relation represent the
different possible types of immersions. For example, there is only one type
of sphere, since a theorem of Smale [19] indicates that any immersed sphere
can be deformed into the standard round sphere, which leads to the famous
result that a sphere can be turned inside out via a smooth homotopy il-
lustrated recently in [18]. On the other hand, there are two distinct types
of tori: one the standard torus of revolution; the other a “twisted” torus
with self-intersection that can not be eliminated by a deformation that is an
immersion at each step. Every immersed torus is image homotopic to one
of these two.

In [20], Pinkall describes all the classes of immersions under image homotopy.
Indeed, he shows that these classes form a semi-group under the operation of
connected sum. His key ingredient is a relationship between image homotopy
and the idea of cobordism, namely, two immersions of a given surface are
image homotopic if, and only if, they are cobordant. Wells [22] showed that
the cobordism group for surfaces in three-space is isomorphic to Z8, the
cyclic group of order 8, and Pinkall uses this to analyze the structure of the
semi-group formed by the image homotopy classes.

Pinkall called the two classes of tori S and T (for “standard” and “twisted”).
He found that there are two classes of immersed projective planes: right-
and left-handed versions of the Boy surface, denoted B and B. For the
Klein bottle, there are three classes: the standard immersion with reflective
symmetry, K0, together with right- and left-handed “twisted” versions, K+

and K− (these are formed by moving a figure-8 around a circle so that it
rotates 180 degrees by the time it comes back to its starting point, with the
direction of rotation determining the handedness). Note that the twisted
torus is formed similarly by moving a figure-8 around a circle but this time
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rotating a full 360 degrees before it comes back to its starting position.
These surfaces are shown in figure 1.

Figure 1: The standard Klein bottle, K0 (left), the twisted Klein bottle, K+

(middle), and the twisted torus, T (right).

We can interpret Pinkall’s classification in terms of the cobordism group by
breaking each element of Z8 into its different topological types. Each class
in Z8 becomes a family of related classes under image homotopy, all formed
from a basic surface by adding handles (i.e., by connected sum with some
number of copies of S). Figure 2 shows this breakdown. Moving down a
column corresponds to adding a handle. Two of the eight columns contain
both orientable and non-orientable members; these form distinct families
under image homotopy. This gives a total of ten families of surfaces formed
by adding handles to one of the ten basic surfaces in the first row of the
table. Every immersion is in one of these image homotopy classes.

−3 −2 −1 0 1 2 3 4

K− #B K− B S or K0 B K+ K+ #B T or K0 # T

#S #S #S #S #S #S #S #S

#2S #2S #2S #2S #2S #2S #2S #2S

#3S #3S #3S #3S #3S #3S #3S #3S
...

...
...

...
...

...
...

...

Figure 2: The cobordism group for immersed surfaces, Z8, is broken down
by image homotopy into classes according to topological type. Two cobor-
dism classes (0 and 4) include both orientable and non-orientable members,
which form distinct columns under image homotopy. Moving down a column
corresponds to adding a handle, while moving left or right corresponds to
connected sum with B or B.
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Pinkall gives generating relations for the semi-group of image homotopy
classes, e.g., T # B = B # B # B. In general, moving right or left in the
table corresponds to connected sum with a right- or left-handed projective
plane. For example, K+ = B # B, and so T # B = K+ # B (using the
relation above), which corresponds to moving from column 4 to column 3
by adding a left-handed Möbius band. Similarly, T #B = K− #B.

In [8], the author provides tight polyhedral examples in all the image ho-
motopy classes for which tight immersions are possible except for three,
K−#B# S, K+ #B# S and T # S, and conjectures that examples of the
first two exist, while the third does not. Notice that the first two are mirror
images of each other, so an example of one immediately yields an example
of the other. In this paper, we provide such an example, leaving T # S as
the only remaining missing case. Haab [12] recently proved that no smooth
tight immersion of this surface exists. We continue to conjecture that no
such immersion is possible in the polyhedral case as well.

To find the example we are looking for, we will use the relationship T #B =
K+ #B from above. First we will produce a polyhedral version of T having
certain geometric properties; in particular, it will have an attachment site
where the connected sum with B can be performed without interfering with
potential tightness. The result will not yet be tight, but can be made tight
by cutting off two disks and adding a tube between these two disks. This
will produce a tight polyhedral immersion of T # B # S, which is equal to
K+ # B # S, one of the previously missing examples. A mirror version of
this surface then provides the other example.

2 Definitions and Basic Results

Given a triangulated surface M , a simplexwise-linear map is a function
f :M → R

3 that maps faces and edges as the convex linear combinations of
their vertices (i.e., as planar triangles with straight edges). We assume that
f is non-degenerate, meaning that it does not reduce the dimension of any
simplex of M . The star of a vertex, v, is the union of the simplices that
contain v, and the valence of v is the number of edges containing v.

A simplexwise-linear mapping f :M → R
3 is an embedding if it is a one-to-

one map. It is an immersion if it is locally one-to-one; that is, for every
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point p of M , there is a neighborhood Up of p where the restriction of f to
Up is one-to-one. (For smooth surfaces, there are additional requirements
that guarantee the existence of a tangent plane at every point, but these
are not necessary in the polyhedral case.) The interiors of faces are always
immersed, and the interiors of edges are immersed provided the adjacent
faces don’t coincide, so f is an immersion provided the vertices are immersed.
In a simplexwise-linear map, a small neighborhood of a vertex is effectively
the same as the star of the vertex, so we have the following lemma:

Lemma 2.1 A simplexwise-linear map f :M → R
3 is an immersion if, and

only if, the star of every vertex of M is embedded by f .

To relate one immersion to another, we could use the concept of regular ho-
motopy, but this produces too fine a classification, since, for example, two
smooth immersions f and g may not be regularly homotopic even though
their images are identical as subsets of R

3 (one immersion may be a repa-
rameterization of the other, see [8]). The idea of image homotopy allows
for these reparameterizations: f and g are image homotopic if there is a
diffeomorphism φ:M → M where f and g ◦ φ are regularly homotopic.

For simplicial surfaces, the notion of diffeomorphism is replaced by that of a
symmetry of M . A mapping φ:M → M of a triangulated surface to itself is
a symmetry ofM if it is a bijection that preserves the dimension of simplices
(i.e., it maps vertices to vertices, edges to edges, and faces to faces). Then
two immersions f, g:M → R

3 of a triangulated surface are image homotopic
if there is a symmetry φ and a homotopy H:M × [0, 1] → R

3 such that
Ht(p) = h(p, t) is an immersion for each t in [0, 1] and such that H0 = f
and H1 = g ◦φ. (If f and g are immersions of different triangulations of M ,
then one must first pass to a common refinement of these triangulations.)

A mapping f :M → R
3 is said to be tight provided that the preimage of

every half-space of R3 is connected inM ; that is, every plane cuts the image
of M into at most two pieces. This is also called the two-piece property and
was developed independently of tightness, but was found to be equivalent to
it. Several other interpretations of tightness can be found in the literature,
e.g. [4]. Tightness is a property of the mapping f , not the surface itself,
but it is common to speak of M in place of f(M) and let the mapping be
implied. In practice, this ambiguity is resolved naturally by the context.
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A tight surface has the property that, for almost every direction, the height
function in that direction induced on f(M) has exactly one maximum and
one minimum; that is, local extrema are also global extrema, for if there were
two local maxima for a particular direction, then a plane slightly below the
lower of the two would cut off both maxima, separating the surface into at
least three parts. For smooth tight surfaces, this means that all the positive
curvature must be on the convex envelope (the surface of the convex hull),
while all the points inside the convex hull have negative (or zero) curvature.

An analogous idea for polyhedral surfaces uses the position of a vertex rel-
ative to its neighbors. A vertex v of M is a local extreme vertex if f(v) is a
vertex of the convex hull of the image of the star of v (i.e., it is an isolated
local maximum for the height function on f(M) in some direction). A ver-
tex is a (global) extreme vertex if its image is a vertex of the convex hull of
f(M). A local extreme vertex corresponds to a point of positive curvature
in a smooth surface, while a vertex that lies in the interior of the convex
hull of its neighbors corresponds to a point of negative curvature. Note that
v will not be an extreme vertex (local or global) if it lies in the interior of
the convex hull of some subset of its adjacent vertices; for example, if v lies
on the line segment between two of its neighbors, then v can not be locally
or globally extreme.

With these definitions, we can characterize tight immersions for polyhedral
surfaces as follows:

Lemma 2.2 A simplexwise-linear map f :M → R
3 of a closed, compact,

connected surface M is tight if, and only if,

i) every local extreme vertex is a global extreme vertex,

ii) every edge of the convex hull of f(M) is contained in f(M), and

iii) every vertex of the convex hull of f(M) is the image of a single vertex
of M .

This lemma can be found in the literature ([4] or [13], for example) as a
result for embedded surfaces, without the third condition. See [8] for an
example of why this condition is needed for immersions.

Given a surface, M , one way to generate a tight polyhedral immersion of
M # S is the following. Suppose we have a polyhedral decomposition of M
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with the following properties: it contains a large, convex, planar polygon
at the top and another one parallel to it at the bottom; the rest of the
surface lies in between and has no interior vertices that are local extrema;
the double curve does not contain any vertices; and the convex envelope of
M intersects M only in the two planar polygons. Then if we remove these
two polygons from both M and its convex envelope and glue the remainders
along their common boundaries (this is called the mod-2 sum of M and its
convex envelope), the resulting surface will be a tight immersion of M # S.

To see that this surface isM#S, note that the convex envelope is a topolog-
ical sphere, and so when we remove two polygons the remainder is a tube.
Attaching this to M adds a handle to it, so the result should be M # S.
(The two disks are each of Euler characteristic 1, so their removal lowers the
Euler characteristic of M by 2. The tube is of Euler characteristic 0, so the
resulting surface has Euler characteristic 2 less than the Euler characteristic
of M , hence the surface is M plus a handle. The handle is untwisted, so it is
M#S rather than M#T .) If M is orientable, however, we need to be a bit
more careful about this claim. It is possible that adding the tube attaches
the inside to the outside of the surface, making it the non-orientable surface
with the same Euler characteristic as M # S. To prevent this, we need to
be sure that the orientation of the two planar polygons are such that their
normals point in opposite directions. This guarantees that the orientability
is preserved during the mod-2 sum.

To see that the resulting surface is an immersion, first note that we have
added no new vertices during this construction, and since the double curve
of M did not include any vertices this means that the star of each vertex is
embedded in M . Since the convex envelope did not intersect any faces of
M other than the two removed polygons, adding this does not change the
self-intersection of the surface, so the stars are embedded in M # S as well.
Hence the surface is immersed.

To see that it is tight we need to verify the conditions of lemma 2.2. The
interior vertices of M # S are all interior vertices of M , and since these are
not locally extreme by hypothesis, condition i is satisfied. Since all of the
edges of the convex envelope are part of the tube added to M in forming
M # S, condition ii is satisfied as well. Finally, since the self-intersection is
unaltered and no vertex of M is on the double curve of M by assumption,
condition iii is satisfied. Thus the resulting surface is tight, as claimed. This
proves the following:
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Lemma 2.3 Suppose M is a polyhedral surface in three-space such that

i) M contains two convex polygons, P1 and P2, in parallel planes such
that the remainder of M lies between these two planes;

ii) there are no locally extreme vertices of M between P1 and P2;

iii) no vertex of M lies in the double set of M ;

iv) the intersection of M and its convex envelope is exactly the polygons
P1 and P2; and

v) for orientable M , the orientation induces normals to P1 and P2 that
point in opposite directions.

Then the mod-2 sum of M and its convex envelope is a tight polyhedral
immersion of M # S.

Given a surface M , the conditions of this lemma can be checked either
by computer or by hand, thus it provides a method of constructing tight
surfaces from simpler surfaces whose requisite properties are easily verified.
We will use this process below on the surface M = T #B to obtain a tight
immersion of T # B # S. Our first goal, then is to produce an appropriate
immersion of T #B. We begin by searching for a suitable version of T .

3 The Twisted Torus

The key to our new example is the twisted torus, T . We need to find a
surface that: is a torus; is in the “twisted” image homotopy class; is an
immersion; has a planar polygon on top and another on bottom with no
locally extreme vertices in between; and has a site where a projective plane
can be attached without introducing local extreme vertices in the interior.
The last condition requires particular care, so we will begin with it.

Brehm describes several nine-vertex immersions of the projective plane, all
having three-fold rotational symmetry [6]. Removing a topological disk (a
face and its three neighbors; see figure 3), the remainder is an immersed
Möbius band. Note that the three interior vertices are not locally extreme
since each lies in the interior of a triangle formed by three of its neighbors.
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Figure 3: A polyhedral immersion of the real projective plane with nine
vertices (left) has its base triangle and three neighboring triangles removed
(middle left). The remainder is an immersed Möbius band (middle right)
with its boundary formed by six edges (right).

The boundary of this band has edges that follow an “up-down-up-down-
up-down” pattern, which is the same pattern found in the boundary of a
neighborhood of a monkey saddle. This suggests that if we have a surface
containing a monkey saddle, a small neighborhood of the saddle point can
be removed and replaced by a suitably scaled copy of this Möbius band.
If done carefully, the six boundary vertices of the band will not be locally
extreme (figure 4). One way to do this is to place the three interior vertices
of the Möbius band near the central vertex being removed from the monkey
saddle, then place the other six vertices on the straight line segments from
the boundary of the monkey saddle to the three interior vertices. This
guarantees that the new vertices are not locally extreme.

Figure 4: A neighborhood of a monkey saddle (left) can be replaced by a
copy of the Möbius band from Brehm’s model of the projective plane (right).
If done carefully, none of the vertices will be locally extreme.

To use this idea, we need to find an immersion of T containing a monkey
saddle. Since we want to have a model with no locally extreme interior
vertices, the monkey saddle must be the only interior critical point; that is,
we need a surface with exactly three critical points.
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We begin the search for this surface by describing the levels sets for it.
Since we know there must be a monkey saddle, we can start with the level
containing it; the level set will have three curves crossing at one point. This
gives us six segments emanating from a central point. Figure 5 shows these
segments, together with a portion of a level just below the critical level and
one just above it.

a

b

c

d

e

f

Figure 5: The level set in a neighborhood of a monkey saddle consists of six
curves emanating from a point (center). This configuration breaks up into
three curves in levels just below the critical level (left) or above it (right).

To complete the critical level we need to attach these segments in pairs by
curves. In doing so, however, we need to be sure that the surface we create is
a torus. When we connect the segments in the critical level, we also connect
them in the nearby levels, and since we are allowing no other saddles, the
number of components present in the nearby levels can not change as we
move to higher and lower levels, except by passing through a maximum or a
minimum. Since we are allowed only one of each, we must have exactly one
component in the level above (for the maximum) and one in the level below
(for the minimum). Thus we can not attach segment a to segments b or f
as this would produce at least two components in one of the nearby levels.

a

b

c

d

e

f

Figure 6: The level set can not contain a curve from a to c since the levels
just above the critical level would attach the outside to the inside of the
surface, making it non-orientable.

Since the torus is orientable, we can’t attach segment a to segments c or e.
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The orientation of the torus induces an orientation on the level curves in
the non-critical levels; but attaching a to c or e would attach the outside of
the surface to the inside (figure 6), violating orientability.

Figure 7: The two forms for the critical level of a torus containing a monkey
saddle and no other saddles.

Thus, the only possible connection is a to d. Similarly, b must connect to
e and c to f . Up to symmetry, this yields only two possible configurations,
as shown in figure 7. Both represent critical levels of tori with exactly three
critical points. In order for these tori to be immersed, however, we need to
be able to transform the immersed circles in the level sets on either side of
the critical level into embedded circles (and then down to a point to form
the maximum and minimum points). Such a transformation is possible only
if the circles have turning number equal to 1 or −1. This is not the case
for any of the circles produced in either configuration; however, by adding
small loops to the curves at suitable locations, it is possible to modify the
curves so that they have appropriate turning numbers.

In doing so, the first configuration in figure 7 only produces immersions that
are image homotopic to the standard torus. Luckily, however, the second
one generates immersions homotopic to the twisted torus, as we will see
below. Also, the three-fold symmetry it exhibits will make producing the
polyhedral version easier, especially in light of the fact that the Möbius band
from Brehm’s model exhibits this symmetry already.

Figure 8: The level curves just below and above the critical level containing
the monkey saddle have turning numbers 4 and 2.

After the connections are made, the level below the critical one has turn-
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Figure 9: The complete sequence of level sets for an immersed torus in the
non-standard image homotopy class. The critical points are shown as solid
dots. The four triple points are shown as hollow dots.
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ing number 4, while the one above has turning number 2 (figure 8). By
adding three loops, we can reduce the turning numbers by 3 each, giving
turning numbers of 1 and −1 respectively. Since three loops are added, we
can maintain the three-fold symmetry as well. Figure 9 shows a complete
sequence of level sets for the immersed torus so formed, and the small loops
can be seen in the 4th, 5th and 6th levels. (This sequence is similar to one
described in [5].)

To verify that this is a torus in the twisted class, T , we need one more result
of Pinkall’s, namely that a torus is image homotopic to T if, and only if, it
has two cycles whose neighborhoods form twisted bands and that are not
in the same homology class (in Z2 homology) [21]. A band is twisted if
its boundary curves are linked, so, for example, a figure-8 strip is twisted
(figure 10).

Figure 10: A strip in the form of a figure-8 is twisted, since its boundary
curves are linked.

A cycle with trivial homology can’t form such a band, and two distinct,
non-trivial cycles on a torus must intersect, so a small neighborhood of two
such cycles looks like that shown at the left of figure 11. These bands are
untwisted, but they can be made twisted by putting a small loop in each
(since a figure-8 is twisted), as shown at the right.

Figure 11: The neighborhoods of two intersecting cycles form two joined
bands (left). Adding small loops makes the bands twisted (right) as required
by a torus in the twisted image-homotopy class.

This figure can be deformed to have three-fold rotational symmetry, as
shown in figure 12. Notice that the first six level sets from the sequence
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shown in figure 9, taken together, form exactly this same shape. Thus the
torus whose level sets are shown in figure 9 is in the twisted class.

Figure 12: Two cycles whose neighborhoods form twisted bands can be
deformed into a figure having three-fold rotational symmetry. The first six
level sets from figure 9 form the shape at the right.

4 A Polyhedral Realization

At this point, we have a series of level sets for an immersion of the twisted
torus that has a monkey saddle and no other interior critical points. Now
we need to find a polyhedral realization of these level sets that has large,
planar convex polygons at the top and bottom, with no locally extreme
interior vertices. Ideally, we would like to have as few interior vertices as
possible, as this will mean fewer vertices to check.

Using the three-fold rotational symmetry of the level sets, we can describe a
polyhedral immersion with these properties by giving only one third of the
vertices and faces, then making a copy of these rotated by 2π/3 around the
z-axis and another copy at 4π/3. The result will be the complete surface.
For example, in the list below, the vertex a1 produces vertices a2 and a3

under these rotations, while the face b1 a2 e2 generates faces b2 a3 e3 and
b3 a1 e1. Vertex O and faces a1 a2 a3 and e1 e2 e3 are invariant under these
rotations, so are not duplicated.

A view of the surface is shown in figure 13. The monkey saddle is at the
center at vertex O, but it is hidden from view by other faces. Calculation of
the level sets of this surface shows that they match the ones listed in figure 9
above, so it is a twisted torus. Note that the surface has a large triangular
polygon at the top and a large hexagonal one at the bottom, and that
the convex envelope is these two polygons together with the tube between
them. A more schematic “fold-out” view of the surface is given in figure 14,
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O → (0, 0, 0)

a1 → (10, 0,−6) d1 → b1 + (0, 0, 14)

b1 → R(a1) e1 → (4d1 + d2)/5

c1 → (a1 + b1)/2 f1 → (6, 3,−3)

b1 a2 e2 c1 e2 d3 a1 c1 e1 c1 b1 e2

c1 e3 d3 c1 f1 e3 f1 c1 e1 f1O e3

f1 e1 O a1 c1 a2 c1 b1 a2 d1 e1 e3

a1 a2 a3 e1 e2 e3

Figure 13: The polyhedral model of the twisted torus. Here R(p) represents
the rotation of point p about the z-axis by π/3. Since the surface has three-
fold rotational symmetry, only one third of the vertices and faces are given;
the others are obtained by rotating these through angles of 2π/3 and 4π/3
around the z-axis.

where the self-intersection is shown as a dotted line. The self-intersection
does not contain any vertex of M , so the surface is immersed. Thus this
surface satisfies almost all the properties that we required at the beginning
of section 3; the only one remaining to be checked is that it contains no
interior vertices that are locally extreme.

Note that the lower hexagon is formed by the vertices ak and bk and the
upper triangle by the vertices dk, so these are not interior vertices. Vertex O
is a monkey saddle and clearly not locally extreme (it lies inside the convex
hull of its neighbors). By definition, vertex ck lies on the line segment half-
way between its neighbors ak and bk, so it is not locally extreme. Similarly,
ek lies on the line between its neighbors dk and dk+1, so is not an extreme
vertex. This leaves only fk to check; but it lies within the tetrahedron
formed by its four neighbors, so it is not extreme either. Thus this model
satisfies all the required properties.

5 Putting it All Together

Given the polyhedral model developed in the previous section, we obtain the
surface M = K+ #B = T #B by replacing a neighborhood of the vertex O
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e3

e2

e1

d3

o

a3

a2

a1
b3

b2

b1

c3

c2 c1

d2

d1

f3

f2

f1

o

e3

e2

e1

e2

Figure 14: A schematic version of the twisted torus that exhibits its three-
fold symmetry (but the subdivision of the base hexagon is not shown). Mov-
ing the triangles containing vertex O from the two locations at the left to the
copy of O at the right would form a more traditional rectangular decompo-
sition of the torus, with vertices e2, e1, f2 and e2 along the top and bottom,
and e2, e3, f3 and e2 along the left and right. The dotted line represents
the self-intersection that occurs in the model.

by a copy of the Möbius band central to one of Brehm’s projective planes,
as shown in figure 4. That is, in the list of vertices and faces from figure 13,
we replace O and the two faces containing O by

g1 → (2, 2, 0)

h1 → (g1 + f1)/2

i1 → (g1 + e1)/2

f1 h1 e3 h1 i3 e3 f1 e1 h1

e1 i1 h1 h1 i1 g1 i1 g3 g1

g1 g3 h3 h1 g2 i3

This does not change properties i or iv from lemma 2.3, and one can check
that iii still holds as well. Since M is non-orientable, condition v does not
apply. For ii, we have already checked ak, bk, ck, dk, and ek. By definition,
hk lies on the line segment between its neighbors gk and fk, and ik lies
between gk and ek. Again, fk lies within the tetrahedron formed by its four
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neighbors (though O has been replaced by gk). Finally, gk lies within the
tetrahedron formed by four of its neighbors (h1, i1, g2 and g3) as well. Thus
no interior vertex of M is locally extreme.

We have checked all the properties required by lemma 2.3, so we can conclude
that the mod-2 sum of M and its convex envelope is a tight immersion of
K+ #B # S. For completeness, the generating vertices and faces are given
below, including the ones that form the outer handle. Again, due to the
symmetry, only one third of the vertices and faces are given, the others
being rotations by 2π/3 and 4π/3 of the ones shown.

O → (0, 0, 0)

a1 → (10, 0,−6)

b1 → R(a1)

c1 → (a1 + b1)/2

d1 → b1 + (0, 0, 14)

e1 → (4d1 + d2)/5

f1 → (6, 3,−3)

g1 → (2, 2, 0)

h1 → (g1 + f1)/2

i1 → (g1 + e1)/2

b1 a2 e2 c1 e2 d3 a1 c1 e1

c1 b1 e2 c1 e3 d3 c1 f1 e3

f1 c1 e1 f1 h1 e3 h1 i3 e3

f1 e1 h1 e1 i1 h1 h1 i1 g1

i1 g3 g1 g1 g3 h3 h1 g2 i3

a1 c1 d1 b1 d1 c1 b1 a2 d1

a1 d1 e3 a1 e3 d3

Note that we don’t really need to check the handedness of the projective
plane that we used in our sum with T , since T # B = K+ # B while
T #B = K−#B and these two are mirror images of each other. Thus if we
had chosen the wrong handedness, we could simply take a mirror image of
the resulting surface to obtain the desired tight immersion of K+ #B # S.

6 Conclusion

The process of building up a tight example in stages may seem a complicated
approach at first, and one might ask whether it wouldn’t be easier simply
to start with level sets of the surface T # B and produce a corresponding
polyhedral immersion directly. The answer is that while technically it is

17



possible to do so, the hardest part of the process is to go from the level sets
to a polyhedral realization that can be made tight. There is no procedure to
follow to accomplish this (note that we didn’t discuss how this was done, but
simply verified the result), however, the fewer vertices involved, the easier
it is to do, in general. In our model, almost all the vertices are on the large
planar polygons (where condition ii of lemma 2.3 does not apply), with
only the central vertex, O, and the vertices fk in the interior. Replacing
O by the nine vertices of the Brehm projective plane would have seriously
complicated the interior of the polyhedral surface if we hadn’t had a previous
plan for how to handle these vertices. Localizing the Möbius band in the
neighborhood of O made it possible to reduce the surface to something that
could be developed by hand.

As with the results listed in [8], the model described here does not provide a
smooth example in these homotopy classes, since the smoothing algorithm
of [14] does not apply to this surface (due to the high valence of some of
its vertices). In light of the difference between the smooth and polyhedral
results for the projective plane with one handle ([11] and [10]), there is no
guarantee that this model has a tight smoothing. It would be interesting to
find such a smoothing, or to show that none exists.

The only remaining surface for which a polyhedral tight immersion is possi-
ble, but for which no example is known, is T #S. One may ask why we can
not apply the process of lemma 2.3 to the polyhedral model of T generated
in section 3, since we could apply it to T # B. The reason is that the two
convex polygons do not satisfy condition v of that lemma; any orientation
of the surface induces normals that both point in the same direction; adding
the handle formed by the convex envelope would attach the inside to the
outside of the surface making it non-orientable, resulting in K0 # S not
T # S. This is not a problem for T # B, since it is non-orientable already.
Haab has shown that no smooth tight immersion of T # S exists [12], and
we conjecture that no polyhedral one does either, though a proof seems dif-
ficult to obtain. Haab’s results rely fundamentally on the smoothness of the
immersion, so they are unlikely to be useful in the polyhedral situation.
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