 Section(s) 
1.  Introduction 
 a. 
Review of some calculus techniques 


 b. 
Ideas of Error Analysis  
0.5, 0.6 

2.  Solving Nonlinear Equations 
 a. 
Bisection, RegulaFalsi, secant method  
1.2, 1.3 
 b. 
Newton's method  
1.4, 1.7, 1.10, 1.11 
 c. 
Muller's method  
1.5 
 d. 
Fixedpoint iteration  
1.6, 1.11 
 e. 
Convergence analysis  
1.11 

3.  Curve Fitting, Interpolation and Approximation 
 a. 
Lagrangian Polynomials  
3.1 
 b. 
Divided Difference  
6.1, 6.2 
 c. 
Cubic Splines  
3.4, 3.8 
 d. 
Least Squares  
3.7 
 e. 
Chebyshev Polynomials  
4.1, 4.5 
 f. 
Economized Power Series  
4.2 

4.  Numerical Calculus 
 a. 
Derivatives from Difference Tables  
5.1, 5.2, 5.15 
 b. 
HigherOrder Derivatives  
5.3 
 c. 
Richardson Extrapolation  
5.4, 5.15 
 d. 
NewtonCotes Integration  
5.5, 5.15 
 e. 
The Trapezoid Rule  
5.6 
 f. 
Simpson's Rule  
5.7 

5.  Solving Systems of Equations 
 a. 
Matrix Issues  
2.1, 2.6, 2.7, 2.8, 2.9 
 b. 
Gaussian Elimination  
2.3, 2.4 
 c. 
LU Decomposition  
2.5 

6.  Differential Equations 
 a. 
Taylor Series  
6.2 
 b. 
Euler Methods  
6.3 
 c. 
RungeKutta Methods  
6.4 
 d. 
As much of the rest of Chapter 6 as we can cover  
6.56.11 