 


75K 

The initial frame of this movie shows stereographic projection of the
hypercube looking directly at one of its eight cubical faces, so we see a
cube within a cube. One is colored red and the other blue, but the two
faces are removed from each to make it easier to see the interior structure
of the projection. As the movie progresses, the distance to the light
source is increased toward infinity, and at the end, the light source is
infinitely far away, so its rays are parallel. Thus the images of both the
closest and farthest cubes are the same size. We only see one cube in the
projection as both cubes now overlap.




187K 

This movie shows our (orthographic) view of a hypercube as we move from
looking directly at a cubical face to looking directly at a square face.
At several points in the movie, we rotate the hypercubecube slightly so
that we can see its other cubical faces better. This should help you
understand the "sliding cubes" image that you are viewing. The front face
is colored red and the back face blue. In the orthographic projection,
the two cubes seem to slide past each other. Four of the other six cubes
are flattened out and form the front, back, top and bottom of the
rectangular box. These are exhibiting the "sliding square" behaviour that
we saw in the orthographic views of the 3dimensional cube; you can see
the bottom and top cubes better when we tilt the hypercube at two points
within the movie. The final two cubes form a complementary pair to the red
and blue ones, and are shown in the next movie.




198K 

This movie shows the same sequence of motions as the previous one, but
this time two of the side cubes of the hypercube cube are colored. In the
initial view, the sides are projected as squares (since they are parallel to
the light source) so we don't see them as cubes. As the movie progresses,
they open up and become more recognizable as cubes.




200K 

This movie again shows the same sequence of motions as the previous
two, but this time two different side cubes of the hypercube cube are
colored. In the initial view, the sides are projected as th etop and
bottom squares. As the movie progresses, they undergo the "sliding
squares" behaviour that we saw in the projections of the threedimensional
cube. The remaining two cubes in the hypercube also have essentially this
same set of projections (but thay would appear as the front and back faces
of the projected rectangular box).




246K 

This movie shows the hypercube rotating from a view that is directly at a
square face to a view that is directly at an edge. We begin at by tilting
the hypercube backward slightly toward one of its cubical faces (the
"sliding cubes" illusion) and then start rotating the cube toward the
edge. You should be able to see the two colored cubes easily this way.
Partway through, this initial tilting is undone, and the rest of the
rotation occurs in a more symmetric view. The final projection is a
hexagonal prism, which is rotated in threedimensions to give a better
view. Finally, the colored cubes are removed so you see the interior
structure more easily. In this view, six of the eight cubes are formed by
congruent rhomboidal prisms (like the pair of colored ones), but the
remaining two are still flattened out as the hexagons on the top and
bottom. These correspond to views of these cubes down their long
diagonals projected into a plane.




255K 

This movie shows same sequence of motions as the previous one, but with
a different set of cubes being colored. These are the two flattened out
cubes that form the top and bottom faces of the projection. They open up
into full cubes as we rotate the hypercube to a viewpoint that is directly
at an edge.




81K 

This movie shows the same basic rotation as the previous two, but from
a different viewpoint in threespace. The initial is from directly at a
square face of the hypercube, with two cubical faces of the hypercube
colored. The the hypercube is rotated so that we are looking directly at
an edge, which gives us the hexagonal prism view that we saw in the
previous movies.




148K 

This movie shows the same motions as the previous movie, but with two
different faces of the hypercube colored. This time, the two faces are the
ones that remain flat in the final view of the hypercube. They form the
hexagons at the top and bottom of the hexagonal prism that is the
projection of the hypercube. Our viewpoint in fourspace is along the long
diagonals of these two cubes. Note that these two cubes undergow the same
transformation as the projection of the threedimensional cube when we
rotated from a viewpoint along its edge to directly at its corner. The
unusual vibrating color effects are due to the fact that the cube is
flattened out, so every point is covered twice, and the computer is having
a hard time deciding which part of the cube is on top.




222K 

This movie shows the hypercube rotating from a view that is directly at an
edge to a view that is directly at a corner. Two of the eight cubical
faces are colored, so you can see the structure of the hypercube better.
The final position is looking directly down the long diagonal
of the hypercube. This is the most symmetric view of the hypercube, where
each of the eight cubical faces is projected to congruent shapes in
threespace. This shape is called the rhombic dodecahedron, which is
formed by 12 rhombic faces meeting in sets of 3 at the wider angle and 4
at the smaller one. This shape is rotated in threespace at the end of
the movie so that you can see it better.




258K 

This movie shows the same basic sequence of motions as the previous
one, but with a different pair of cubes colored. This time, the two
flattened cubes that form the hexagonal top and bottom of the projection
are shown. First, we rotate back slightly to a less symmetric view so that
these cubes look more like flattened cubes. Then we rotate in threespace
to a view that is parallel to the top and bottom hexagons, and perform the
fourdimensional rotation toward the corner of the hypercube. partway
through, we undo the initial rotation and go back to the more symmetric
view before completing the rotation. The final viewpoint is along the long
diagonal of the hypercube, as before.




104K 

This movie shows the hypercube rotating from a viewpoint were we look
directly at a cubical face to where we look direclty at a corner, down the
long diagonal of the hypercubecube. This corresponds to our earlier view
of the hypercube as two cubes moving apart. That original movie was a
correct shadow (as the light source moves from directly above to a slanted
direction), but it does not represent a view of the hypercube that
fourdimensional viewers could ever actually see, since such a view would
always be into a "plane" that is perpendicular to the direction of
sight. This movie shows a more correct view of the hypercube. In this
view, the corner of the blue cube that is at the center of the figure is
the corner we are looking directly at, and the red one that is projected to
the same position is the opposite corner of the hypercube, the point that
is farthest away from us. The long diagonal has been projected down to a
point since we are looking along it. This view corresponds to our view of
the threedimensional cube as a hexagon. Try to see how these distorted
cubes correspond to the faces of the cube that we saw in the orthogonal
views of the cube.




107K 

This movie shows the same sequence as the previous one, but with two
different cubes colored. These ones start out projected as just squares
(the cubes are completely flattened out), but open up to form distored
cubes in the final projection.




113K 

This movie show the rotation from looking directly at a cubical face,
to looking directly at a suare face, to looking direclty at an edge and
then to looking directly at a corner of the hypercube. Now
that you have seen the other ones, this one should make more sense.
