Homework: Solutions (Chapter 27)

1. (a) The energy transferred is

\[U = Pt = \frac{\varepsilon^2 t}{r + R} = \frac{(2.0 \, \text{V})^2 (2.0 \, \text{min}) (60 \, \text{s/min})}{1.0 \, \Omega + 5.0 \, \Omega} = 80 \, \text{J}. \]

(b) The amount of thermal energy generated is

\[U' = i^2 R t = \left(\frac{\varepsilon}{r + R} \right)^2 R t = \left(\frac{2.0 \, \text{V}}{1.0 \, \Omega + 5.0 \, \Omega} \right)^2 (5.0 \, \Omega) (2.0 \, \text{min}) (60 \, \text{s/min}) = 67 \, \text{J}. \]

(c) The difference between \(U \) and \(U' \), which is equal to 13 J, is the thermal energy that is generated in the battery due to its internal resistance.

7. (a) Let \(i \) be the current in the circuit and take it to be positive if it is to the left in \(R_1 \). We use Kirchhoff's loop rule: \(\varepsilon_1 - i R_2 - i R_1 - \varepsilon_2 = 0 \). We solve for \(i \):

\[i = \frac{\varepsilon_1 - \varepsilon_2}{R_1 + R_2} = \frac{12 \, \text{V} - 6.0 \, \text{V}}{4.0 \, \Omega + 8.0 \, \Omega} = 0.50 \, \text{A}. \]

A positive value is obtained, so the current is counterclockwise around the circuit.

If \(i \) is the current in a resistor \(R \), then the power dissipated by that resistor is given by \(P = i^2 R \).

(b) For \(R_1 \), \(P_1 = i^2 R_1 = (0.50 \, \text{A})^2 (4.0 \, \Omega) = 1.0 \, \text{W} \),

(c) and for \(R_2 \), \(P_2 = i^2 R_2 = (0.50 \, \text{A})^2 (8.0 \, \Omega) = 2.0 \, \text{W} \).

If \(i \) is the current in a battery with emf \(\varepsilon \), then the battery supplies energy at the rate \(P = i \varepsilon \) provided the current and emf are in the same direction. The battery absorbs energy at the rate \(P = i \varepsilon \) if the current and emf are in opposite directions.

(d) For \(\varepsilon_1 \), \(P_1 = i \varepsilon_1 = (0.50 \, \text{A})(12 \, \text{V}) = 6.0 \, \text{W} \)

(e) and for \(\varepsilon_2 \), \(P_2 = i \varepsilon_2 = (0.50 \, \text{A})(6.0 \, \text{V}) = 3.0 \, \text{W} \).

(f) In battery 1 the current is in the same direction as the emf. Therefore, this battery supplies energy to the circuit; the battery is discharging.

(g) The current in battery 2 is opposite the direction of the emf, so this battery absorbs energy from the circuit. It is charging.
26. (a) \(R_{eq} (FH) = (10.0 \ \Omega)(10.0 \ \Omega)(5.00 \ \Omega)/[(10.0 \ \Omega)(10.0 \ \Omega) + 2(10.0 \ \Omega)(5.00 \ \Omega)] = 2.50 \ \Omega \).

(b) \(R_{eq} (FG) = (5.00 \ \Omega) R/(R + 5.00 \ \Omega) \), where

\[
R = 5.00 \ \Omega + (5.00 \ \Omega)(10.0 \ \Omega)/(5.00 \ \Omega + 10.0 \ \Omega) = 8.33 \ \Omega.
\]

So \(R_{eq} (FG) = (5.00 \ \Omega)(8.33 \ \Omega)/(5.00 \ \Omega + 8.33 \ \Omega) = 3.13 \ \Omega \).

31. First, we note \(V_4 \), that the voltage across \(R_4 \) is equal to the sum of the voltages across \(R_5 \) and \(R_6 \):

\[
V_4 = i_6 (R_5 + R_6) = (1.40 \ \text{A})(8.00 \ \Omega + 4.00 \ \Omega) = 16.8 \ \text{V}.
\]

The current through \(R_4 \) is then equal to \(i_4 = V_4/R_4 = 16.8 \ \text{V}/(16.0 \ \Omega) = 1.05 \ \text{A} \).

By the junction rule, the current in \(R_2 \) is

\[
i_2 = i_4 + i_6 = 1.05 \ \text{A} + 1.40 \ \text{A} = 2.45 \ \text{A}.
\]

so its voltage is \(V_2 = (2.00 \ \Omega)(2.45 \ \text{A}) = 4.90 \ \text{V} \).

The loop rule tells us the voltage across \(R_3 \) is \(V_3 = V_2 + V_4 = 21.7 \ \text{V} \) (implying that the current through it is \(i_3 = V_3/(2.00 \ \Omega) = 10.85 \ \text{A} \)).

The junction rule now gives the current in \(R_1 \) as \(i_1 = i_2 + i_3 = 2.45 \ \text{A} + 10.85 \ \text{A} = 13.3 \ \text{A} \), implying that the voltage across it is \(V_1 = (13.3 \ \text{A})(2.00 \ \Omega) = 26.6 \ \text{V} \). Therefore, by the loop rule,

\[
\varepsilon = V_1 + V_3 = 26.6 \ \text{V} + 21.7 \ \text{V} = 48.3 \ \text{V}.
\]

34. (a) The voltage across \(R_3 = 6.0 \ \Omega \) is \(V_3 = iR_3 = (6.0 \ \text{A})(6.0 \ \Omega) = 36 \ \text{V} \). Now, the voltage across \(R_1 = 2.0 \ \Omega \) is

\[
(V_4 - V_3) - V_3 = 78 - 36 = 42 \ \text{V},
\]

which implies the current is \(i_1 = (42 \ \text{V})/(2.0 \ \Omega) = 21 \ \text{A} \). By the junction rule, then, the current in \(R_2 = 4.0 \ \Omega \) is

\[
i_2 = i_1 - i = 21 \ \text{A} - 6.0 \ \text{A} = 15 \ \text{A}.
\]

The total power dissipated by the resistors is (using Eq. 26-27)

\[
i_1^2 (2.0 \ \Omega) + i_2^2 (4.0 \ \Omega) + i_3^2 (6.0 \ \Omega) = 1998 \ \text{W} \approx 2.0 \ \text{kW}.
\]

By contrast, the power supplied (externally) to this section is \(P_4 = i_4 (V_4 - V_3) \) where \(i_4 = i_1 = 21 \ \text{A} \). Thus, \(P_4 = 1638 \ \text{W} \). Therefore, the "Box" must be providing energy.

(b) The rate of supplying energy is \((1998 - 1638) \ \text{W} = 3.6 \times 10^2 \ \text{W} \).
37. (a) We note that the \(R_1 \) resistors occur in series pairs, contributing net resistance \(2R_1 \)
in each branch where they appear. Since \(\phi_2 = \phi_3 \) and \(R_2 = 2R_1 \), from symmetry we know
that the currents through \(\phi_2 \) and \(\phi_3 \) are the same: \(i_2 = i_3 = i \). Therefore, the current through
\(\phi_1 \) is \(i_1 = 2i \). Then from \(V_b - V_d = \phi_2 - iR_2 = \phi_1 + (2R_1)(2i) \) we get

\[
 i = \frac{\phi_1 - \phi_2}{4R_1 + R_2} = \frac{4.0 \text{ V} - 2.0 \text{ V}}{4(1.0 \text{ } \Omega) + 2.0 \text{ } \Omega} = 0.33 \text{ A.}
\]

Therefore, the current through \(\phi_1 \) is \(i_1 = 2i = 0.67 \text{ A.} \)

(b) The direction of \(i_1 \) is downward.

(c) The current through \(\phi_2 \) is \(i_2 = 0.33 \text{ A.} \)

(d) The direction of \(i_2 \) is upward.

(e) From part (a), we have \(i_3 = i_2 = 0.33 \text{ A.} \)

(f) The direction of \(i_3 \) is also upward.

(g) \(V_b - V_d = -iR_2 + \phi_2 = -(0.333 \text{ A})(2.0 \text{ } \Omega) + 4.0 \text{ V} = 3.3 \text{ V.} \)

61. Here we denote the battery emf as \(V \). Then the requirement stated in the problem that
the resistor voltage be equal to the capacitor voltage becomes \(iR = V_{\text{cap.}} \) or

\[
 V e^{-t/R \text{C}} = V (1 - e^{-t/R \text{C}})
\]

where Eqs. 27-34 and 27-35 have been used. This leads to \(t = R \text{C} \ln 2 \), or \(t = 0.208 \text{ ms.} \)

94. In the steady state situation, there is no current going to the capacitors, so the resistors
all have the same current. By the loop rule,

\[
 20.0 \text{ V} = (5.00 \text{ } \Omega)i + (10.0 \text{ } \Omega)i + (15.0 \text{ } \Omega)i
\]

which yields \(i = \frac{2}{3} \text{ A.} \). Consequently, the voltage across the \(R_1 = 5.00 \text{ } \Omega \) resistor is \((5.00 \text{ } \Omega)(2/3 \text{ A}) = 10/3 \text{ V,} \) and is equal to the voltage \(V_1 \) across the \(C_1 = 5.00 \text{ } \mu \text{F} \) capacitor. Using Eq. 26-22, we find the stored energy on that capacitor:

\[
 U_1 = \frac{1}{2} C_1 V_1^2 = \frac{1}{2} (5.00 \times 10^{-6} \text{ F})(\frac{10}{3} \text{ V})^2 = 2.78 \times 10^{-5} \text{ J.}
\]

Similarly, the voltage across the \(R_2 = 10.0 \text{ } \Omega \) resistor is \((10.0 \text{ } \Omega)(2/3 \text{ A}) = 20/3 \text{ V} \) and is
equal to the voltage \(V_2 \) across the \(C_2 = 10.0 \text{ } \mu \text{F} \) capacitor. Hence,

\[
 U_2 = \frac{1}{2} C_2 V_2^2 = \frac{1}{2} (10.0 \times 10^{-6} \text{ F})(\frac{20}{3} \text{ V})^2 = 2.22 \times 10^{-5} \text{ J}
\]

Therefore, the total capacitor energy is \(U_1 + U_2 = 2.50 \times 10^{-4} \text{ J.} \)