Outline for Exam 2

1. Surfaces:
 - parametric descriptions
 - normal vectors

2. Surface integrals of scalar fields:
 - computation method
 - applications to mass-density problems and to surface area

3. Surface integrals involving vector fields:
 - computation method
 - applications to flux computation (also Chapter 23 in your Physics text)

4. Divergence:
 - definition
 - notation
 - perspective involving expansion and contraction

5. Gauss’s Law: (refer to your Physics text on Chapter 23)
 - solving for the electric field when there is spherical, cylindrical or planar symmetry
 - be sure to know the symmetry arguments used to simplify the flux integral

6. Divergence theorem: (also refer to your Physics text on Chapter 23)
 - statement
 - idea behind why it's true involving expansion and contraction
 - using theorem to compute flux

7. Capacitors (refer to your Physics text on Chapter 25)
 - calculating capacitance for simple geometries
 - series and parallel circuits
 - energy in a capacitor
 - dielectrics

8. DC Circuits: (refer to your Physics text on Chapter 27)
 - emf and terminal voltage
 - resistors in series and parallel
 - Kirchhoff’s rules
 - RC circuits
9. Systems of linear equations:
 - solutions
 - consistent and inconsistent
 - augmented matrix
 - elementary row operations
 - reduced row echelon form
 - Gauss-Jordan elimination and interpretation
 - 0, 1, or infinitely many solutions
 - geometric perspective

10. Matrices:
 - arithmetic
 - addition
 - scalar multiplication
 - matrix multiplication
 - representation of linear systems
 - identity matrices
 - matrix inverses,
 - computation
 - application to solving linear systems
 - determinants
 - computation
 - main theorem: invertibility and application to the number of solutions to linear systems

11. Electric Potential (refer to your Physics text on Chapter 24)
 - Potential energy
 - Electric potential
 - Potential due to a point charge
 - Superposition principle
 - Discrete charges
 - Continuous charge distribution
 - Path independence
 - Conservative fields
 - Electric field from potential
 - Potential from electric field
 - Conductors