Math 124
Problem Set IV
Due: Friday, February 25, 2005

1. Fix C and θ so that $\rho_{C,\theta} \neq i$, and let m be a line.
Prove: $\sigma_m \rho_{C,\theta} \sigma_m = \rho_{C,-\theta}$ if and only if C is on m.

2. Suppose γ_1 and γ_2 are glide reflections with axes m_1 and m_2 respectively.
Prove:
 a. If m_1 and m_2 are parallel, then $\gamma_1 \gamma_2$ is a translation.
 b. If m_1 and m_2 are not parallel, then $\gamma_1 \gamma_2$ is a rotation.

3. Prove: If γ is a glide reflection, then $\gamma = \sigma_p \sigma_n \sigma_m$, where any one of lines m, n, and p can be any arbitrarily chosen line not parallel to the axis of γ.

Extra Credit: Prove: The above statement also holds if the chosen line is parallel to the axis of γ. (The proofs for m, n, and p are similar. Just do one.)