1. Fix C and θ so that $\rho_{C,\theta} \neq \text{id}$, and let m be a line.

Prove: $\sigma_m \rho_{C,\theta} \sigma_m = \rho_{C,-\theta}$ if and only if C is on m.

Proof: First, we suppose that $\sigma_m \rho_{C,\theta} \sigma_m = \rho_{C,-\theta}$ and we must show that C is on m.

Set $C' = \sigma_m(C)$. Then $C = \sigma_m(C')$ and hence $\sigma_m \rho_{C,\theta} \sigma_m (C') = \sigma_m \rho_{C,\theta} (C) = \sigma_m (C) = C'$. Since $\sigma_m \rho_{C,\theta} \sigma_m = \rho_{C,-\theta}$, we know that $\sigma_m \rho_{C,\theta} \sigma_m$ is a rotation with fixed point C. But we have just shown that C' is fixed by $\sigma_m \rho_{C,\theta} \sigma_m$. This implies that $C = C'$. Then, since $C' = \sigma_m(C)$, we know that C is on m.

Next, we suppose that C is on m and we must show that $\sigma_m \rho_{C,\theta} \sigma_m = \rho_{C,-\theta}$. Since C is on m, we can find a line n containing C so that $\rho_{C,\theta} = \sigma_m \sigma_n$. This implies that $\rho_{C,-\theta} = \sigma_n \sigma_m$. Then, $\sigma_m \rho_{C,\theta} \sigma_m = \sigma_m \sigma_n \sigma_m \sigma_n = \sigma_n \sigma_m = \rho_{C,-\theta}$, as desired. \(\square\)

2. Suppose γ_1 and γ_2 are glide reflections with axes m_1 and m_2 respectively.

Prove:

a. If m_1 and m_2 are parallel, then $\gamma_1 \gamma_2$ is a translation.

b. If m_1 and m_2 are not parallel, then $\gamma_1 \gamma_2$ is a rotation.

Proof: Assume that γ_1 and γ_2 are glide reflections with axes m_1 and m_2 respectively.

a. Assume that m_1 and m_2 are parallel. We must show that $\gamma_1 \gamma_2$ is a translation. Suppose that $\gamma_1 = \sigma_{m_1} \sigma_b \sigma_a$ and $\gamma_2 = \sigma_{m_2} \sigma_q \sigma_p$, where lines a and b are perpendicular to m_1 and p and q are perpendicular to m_2. Then, $\gamma_1 \gamma_2 = \sigma_{m_1} \sigma_b \sigma_a \sigma_{m_2} \sigma_q \sigma_p$. Since a and b are both perpendicular to m_1, we know that σ_{m_1} commutes with both σ_a and σ_b. Hence, $\gamma_1 \gamma_2 = \sigma_{m_1} \sigma_b \sigma_a \sigma_{m_2} \sigma_q \sigma_p = \sigma_b \sigma_a \sigma_{m_1} \sigma_{m_2} \sigma_q \sigma_p$.

Next, we note that since p and q are parallel, $\sigma_q \sigma_p$ is a translation. Similarly, since m_1 and m_2 are parallel, $\sigma_{m_1} \sigma_{m_2}$ is a translation and, since a and b are parallel, $\sigma_a \sigma_b$ is a translation. Then, $\gamma_1 \gamma_2 = (\sigma_b \sigma_a)(\sigma_{m_1} \sigma_{m_2})(\sigma_q \sigma_p)$ is a product of three translations. We know that the product of translations is a translation. Hence, $\gamma_1 \gamma_2$ is a translation.

b. Assume that m_1 and m_2 are not parallel and let C be their point of intersection. We must show that $\gamma_1 \gamma_2$ is a rotation. Suppose that $\gamma_1 = \sigma_{m_1} \sigma_b \sigma_a$ and $\gamma_2 = \sigma_{m_2} \sigma_q \sigma_p$, where lines a and b are perpendicular to m_1, and p and q are perpendicular to m_2.

We can choose lines a' and b' that are perpendicular to m_1 so that $\sigma_{b'}\sigma_a = \sigma_{b}\sigma_{a'}$, and a' contains C. Then, $\gamma_1 = \sigma_{m_1}\sigma_{b'}\sigma_a = \sigma_{m_1}\sigma_{b}\sigma_{a'}$. Since m_1 and b' are perpendicular, $\sigma_{m_1}\sigma_{b'} = \sigma_{b}\sigma_{m_1}$, and hence $\gamma_1 = \sigma_{b}\sigma_{m_1}\sigma_{a'}$. And, since m_1 and a' are perpendicular and intersect at C, $\sigma_{m_1}\sigma_{a'} = \sigma_{C}$. Hence, $\gamma_1 = \sigma_{b}\sigma_{C}$.

Next, we choose lines p' and q' which are perpendicular to m_2 so that $\sigma_{q}\sigma_{p} = \sigma_{q}\sigma_{p'}$ and q' contains C. Then, $\gamma_2 = \sigma_{m_2}\sigma_{q}\sigma_{p} = \sigma_{m_2}\sigma_{q}\sigma_{p'}$ and, since m_2 and q' are perpendicular and intersect at C, $\sigma_{m_2}\sigma_{q'} = \sigma_{C}$. Hence, $\gamma_2 = \sigma_{C}\sigma_{p'}$.

Then, $\gamma_1\gamma_2 = \sigma_{b}\sigma_{C}\sigma_{C}\sigma_{p'} = \sigma_{b}\sigma_{p'}$. Recall now that b' and p' are perpendicular to m_1 and m_2 respectively, and m_1 and m_2 are not parallel. Hence, b' and p' are not parallel. It follows that $\gamma_1\gamma_2 = \sigma_{b}\sigma_{p}$ is a rotation. \hfill \Box

3. **Prove:** If γ is a glide reflection, then $\gamma = \sigma_{p}\sigma_{n}\sigma_{m}$, where any one of lines m, n, and p can be any arbitrarily chosen line not parallel to the axis of γ.

Suppose γ is a glide reflection. Then, for some lines a, b, and c, where a and b are both perpendicular to c, $\gamma = \sigma_{c}\sigma_{b}\sigma_{a}$. Also, c is the axis of γ. We must show that $\gamma = \sigma_{p}\sigma_{n}\sigma_{m}$ where any one of m, n, p can be any arbitrarily chosen line not parallel to c.

First, let m be any line not parallel to c. We must find n and p such that $\gamma = \sigma_{p}\sigma_{n}\sigma_{m}$. Let P be the point of intersection of m and c. Let a' be the line perpendicular to c that contains P, and let b' be such that $\sigma_{b'}\sigma_{a} = \sigma_{b}\sigma_{a'}$. Then we have $\gamma = \sigma_{c}\sigma_{b}\sigma_{a'}$. Since m, c, and a' are concurrent at P, we can find a line n containing P such that $\sigma_{n}\sigma_{m} = \sigma_{c}\sigma_{a'}$. We next note that since b' and c are perpendicular, $\sigma_{c}\sigma_{b'} = \sigma_{b'}\sigma_{c}$. Then, setting $p=b'$ we have $\gamma = \sigma_{c}\sigma_{b}\sigma_{a} = \sigma_{c}\sigma_{b}\sigma_{a'} = \sigma_{b'}\sigma_{c}\sigma_{a'} = \sigma_{p}\sigma_{n}\sigma_{m}$, as desired.

Next, let n be any line not parallel to c. We must find m and p such that $\gamma = \sigma_{p}\sigma_{n}\sigma_{m}$. Let P be the point of intersection of n and c. Let b' be the line perpendicular to c containing P, and let a' be such that $\sigma_{b'}\sigma_{a} = \sigma_{b}\sigma_{a'}$. Then we have $\gamma = \sigma_{c}\sigma_{b}\sigma_{a'}$. Since n, c, and b' are concurrent at P, we can find a line p containing P such that $\sigma_{p}\sigma_{n} = \sigma_{c}\sigma_{b'}$. Then, setting $m=a'$, we have $\gamma = \sigma_{c}\sigma_{b}\sigma_{a} = \sigma_{c}\sigma_{b}\sigma_{a'} = \sigma_{p}\sigma_{n}\sigma_{m}$, as desired.

Finally, let p be any line not parallel to c. We must find m and n such that $\gamma = \sigma_{p}\sigma_{n}\sigma_{m}$. Let P be the point of intersection of p and c and, as above, let b' be the line perpendicular to c containing P. We can find a line a' such that $\sigma_{b'}\sigma_{a} = \sigma_{b}\sigma_{a'}$. Then we have $\gamma = \sigma_{c}\sigma_{b}\sigma_{a'}$. Next, since p, c, and b' are concurrent at P, we can find a line n containing P such that $\sigma_{n}\sigma_{p} = \sigma_{c}\sigma_{b'}$. Then, setting $m=a'$, we have $\gamma = \sigma_{c}\sigma_{b}\sigma_{a} = \sigma_{c}\sigma_{b}\sigma_{a'} = \sigma_{p}\sigma_{n}\sigma_{m}$, as desired. \hfill \Box
Extra Credit: **Prove:** The above statement also holds if the chosen line is parallel to the axis of γ.

As in problem 3, we suppose that γ is a glide reflection and $\gamma = \sigma_c \sigma_b \sigma_a$, where a and b are both perpendicular to c. Then c is the axis of γ. We must show that $\gamma = \sigma_p \sigma_n \sigma_m$ where any one of m, n, p can be any arbitrarily chosen line parallel to c.

Let p be any line parallel to c. We must find m and n such that $\gamma = \sigma_p \sigma_n \sigma_m$. We note that a and b are perpendicular to p. Let P be the point of intersection of a and c, and let Q be the point of intersection of b and p. Next, let a' be the line containing P and Q. Then, since a, c, and a' are concurrent at P, there is a line m such that $\sigma_a \sigma_c = \sigma_a \sigma_m$. Also, since a and b are each perpendicular to c, it follows that $\sigma_b \sigma_c = \sigma_c \sigma_b$ and $\sigma_a \sigma_c = \sigma_c \sigma_a$. Hence, we have $\gamma = \sigma_c \sigma_b \sigma_a = \sigma_b \sigma_c \sigma_a = \sigma_b \sigma_a \sigma_c = \sigma_b \sigma_a \sigma_m$. Next, since b, a', and p are concurrent at Q, there is a line n such that $\sigma_b \sigma_a' = \sigma_p \sigma_n$. Hence, we have $\gamma = \sigma_b \sigma_a' \sigma_m = \sigma_p \sigma_n \sigma_m$, as desired.

The proof for m and n is similar. \qed