1. **Prove**: For any two distinct lines \(m \) and \(n \) and any point \(P \), \(\sigma_m \sigma_n \) fixes \(P \) if and only if \(P \) is on both \(m \) and \(n \).

Proof: Fix distinct lines \(m \) and \(n \) and point \(P \). We assume first that \(\sigma_m \sigma_n \) fixes \(P \). In other words, \(\sigma_m \sigma_n (P) = P \). We must show that \(P \) is on both \(m \) and \(n \).

Suppose, by way of contradiction, that \(P \) is not on \(n \). Then, \(P \neq \sigma_n(P) \) and \(n \) is the perpendicular bisector of \(P\sigma_n(P) \). By assumption, \(\sigma_m \sigma_n(P) = P \). This implies that \(m \) is the perpendicular bisector of \(P\sigma_n(P) \). But since \(n \) and \(m \) are both perpendicular bisectors of \(P\sigma_n(P) \), it follows that \(m = n \). This contradicts our assumption that \(m \) and \(n \) are distinct. Hence, \(P \) is on \(n \).

Then, we know that \(\sigma_n(P) = P \) and hence, since \(\sigma_m \sigma_n(P) = P \), we know that \(\sigma_m(P) = P \). This implies that \(P \) is on \(m \). Thus, we have established that \(P \) is on both \(m \) and \(n \).

Next, we assume that \(P \) is on both \(m \) and \(n \). We must show that \(\sigma_m \sigma_n \) fixes \(P \). Since \(P \) is on \(n \), it follows that \(\sigma_n(P) = P \). Since \(P \) is on \(m \), it follows that \(\sigma_m(P) = P \). Hence, we have shown that \(\sigma_m \sigma_n(P) = \sigma_m(P) = P \), as desired.

A slightly different proof of the left-to-right direction:

We assume that \(\sigma_m \sigma_n(P) = P \). This implies that \(\sigma_n(P) = \sigma_m(P) \). Call this point \(P' \). We wish to show that \(P \) is on both \(m \) and \(n \). Clearly, this is equivalent to showing that \(P \) is fixed by both \(\sigma_m \) and \(\sigma_n \). Thus, we must show that \(P = P' \). Suppose, by way of contradiction that \(P \neq P' \). Then, since \(\sigma_n(P) = P' \) and \(\sigma_m(P) = P' \), we know that \(m \) and \(n \) are each perpendicular bisectors of the segment \(PP' \). This implies that \(m = n \) and contradicts our assumption that \(m \) and \(n \) are distinct. We conclude that \(P \) is on both \(m \) and \(n \).

\(\square \)
2. Suppose that \(A = (-1,0), \ B = (-4,3), \ C = (3,-2), \) and \(D = (5,12). \) Find equations of lines such that the product of reflections in these lines sends ray \(\overrightarrow{CD} \) to ray \(\overrightarrow{AB}. \) Clearly explain your work.

First, we look for a line \(n \) so that \(\sigma_n(C) = A. \) Line \(n \) is the perpendicular bisector of segment \(\overline{AC}. \) The midpoint of this segment is \(\left(\frac{-1+3}{2}, \frac{0-2}{2} \right) = (1,-1). \) The slope of segment \(\overline{AC} \) is \(\frac{-2-0}{3+1} = -\frac{1}{2}. \) Hence, the slope of the perpendicular bisector is 2. Then, we can find an equation for the perpendicular bisector \(n \) as follows:

\[
\begin{align*}
y + 1 &= 2(x - 1) \\
y + 1 &= 2x - 2 \\
2x - y - 3 &= 0
\end{align*}
\]

Then, the equations for \(\sigma_n \) are as follows:

\[
\begin{align*}
x' &= x - \frac{4(2x - y - 3)}{5} \\
y' &= y + \frac{2(2x - y - 3)}{5}
\end{align*}
\]

We wish to determine \(\sigma_n(D). \)

\[
\sigma_n(D) = \\
\sigma_n(5,12) = \\
\left(5 - \frac{4(10 - 12 - 3)}{5}, 12 + \frac{2(10 - 12 - 3)}{5} \right) = (9,10)
\]

We need to determine a line \(m \) so that \(\sigma_m \sigma_n(\overrightarrow{CD}) = \overrightarrow{AB}. \) We know that \(\sigma_n(C) = A. \) We need only find \(m \) so that \(m \) is the angle bisector of the angle between \(\overrightarrow{AB} \) and \(\sigma_n(\overrightarrow{CD}). \)

Note that

\[
\text{slope of } \overrightarrow{AB} = \frac{3-0}{-4+1} = -1 \text{ and } \\
\text{slope of } \sigma_n(\overrightarrow{CD}) = \\
\text{slope between } \sigma_n(\overrightarrow{C}) \text{ and } \sigma_n(\overrightarrow{D}) = \\
\text{slope between } (-1,0) \text{ and } (9,10) = 1
\]
Then, since \overrightarrow{AB} has slope -1 and $\sigma_n(\overrightarrow{CD})$ has slope 1, it is not hard to see that the angle bisector of the angle between \overrightarrow{AB} and $\sigma_n(\overrightarrow{CD})$ is the vertical line $x=-1$.

Thus, we have shown that if n is the line $2x-y-3=0$ and m is the line $x=-1$, then $\sigma_m\sigma_n(\overrightarrow{CD}) = \overrightarrow{AB}$.

3. **Prove:** If $\sigma_n\sigma_m\sigma_l$ is a reflection, then lines l, m, and n are concurrent or parallel.

Proof: Suppose $\sigma_n\sigma_m\sigma_l = \sigma_p$, for some line p. Then, $\sigma_n\sigma_m = \sigma_p\sigma_l$. We consider the following two cases:

Case I: m and n are parallel. Then $\sigma_n\sigma_m$ is a translation. It follows that $\sigma_p\sigma_l$ is the same translation. Then m, n, l, and p are all perpendicular to the direction of this translation. Hence l, m, n, and p are parallel.

Case II: m and n are not parallel. Suppose C is the point of intersection of m and n. Then $\sigma_n\sigma_m$ is a rotation with center C, and therefore $\sigma_p\sigma_l$ is a rotation with center C. Hence, l, m, n, and p all contain the point C.

We have established that l, m, and n are concurrent or parallel, as desired. \Box