
 

 

Conductors in Electrostatic Equilibrium 
 
 Electrostatic equilibrium means that there is no net flow of electric charge or no electric 
current.  Here we will study the properties of conductors in electrostatic equilibrium. 

1. The electric field inside a conductor is zero in electrostatic equilibrium. 
Why is this so?  We’ll prove this by contradiction.  Suppose there was an E field 

inside the conductor.  This would cause free charges inside the conductor to move and 
hence contradict the fact that they are in electrostatic equilibrium. 
 What happens when an isolated conductor is placed in an electric field?  How 
does the internal field come to be zero?  Well, at the instant the external field is applied to 
the conductor, the free electrons, initially uniformly distributed, migrate under the 
influence of the external field and produce their own electric field that cancels the 
external electric field.  This cancellation occurs extremely quickly – within about 10-16 s 
– essentially instantaneously.   
 If the conductor is not isolated, but is connected to a power supply/battery, then 
there will be an electric field inside the wire – and it is this field that produces the 
sustained electric current.  We will return to this in a bit. 

2. Any net charge on an isolated conductor resides on its surface. 
We can prove this using Gauss’s law.  Choose a gaussian surface that everywhere 

lies just inside the conductor surface.  We just learned that the electric field must be zero 
everywhere on this gaussian surface so that the flux of E over this surface is zero; so by 
Gauss’s law, there can be no internal net charge.  All the net charge must therefore lie on 
the surface of the conductor.  This statement does not tell us how the charge is distributed 
on the surface, but if the surface is symmetric, such as a sphere, then the net charge will 
distribute itself uniformly. 

3. The electric field just outside the surface of an isolated conductor is perpendicular 
to the surface and has a magnitude equal to σ/εσ/εσ/εσ/εo, where σσσσ is the local surface charge 
density. 

To prove this we first argue about the direction of the electric field.  If it had any 
component parallel to the surface of the conductor, then this would cause surface charges 
to move, in contradiction with the assumption of electrostatic equilibrium.  Therefore the 
electric field must lie perpendicular to the surface everywhere.  Now, to get the 
magnitude let’s use Gauss’s law and choose a Gaussian surface just like that used in the 
planar example – a small cylinder with walls perpendicular to the surface and end caps an 
equal very small distance +/- ∆L from the surface.  Since the electric field is zero inside 
and perpendicular to the conductor surface, the only contribution to the flux comes from 
the outer end cap of area A, so the net flux is simply EA, where E is the electric field just 
outside the surface, an arbitrary distance ∆L away.  According to Gauss’s law, this is 
proportional to the net charge inside the Gaussian surface, which is equal to σA, since the 
Gaussian cylinder intercepts the same area A on the conductor surface.  Therefore, we 
have that EA = σA/εo, or E = σ/εo. 

This electric field is only constant in magnitude if σ is uniform over the conductor 
surface, and this only happens with sufficient symmetry.   

4. On an irregularly shaped conductor, σσσσ, and hence E just outside, is greatest where 
the radius of curvature is smallest. 



 

 

We will not prove this but note that this is why the electric field is largest near 
sharp point of a conductor (recall the field mapping lab).   

5. Every point on the surface of a conductor in electrostatic equilibrium is at the same 
potential – the surface is an equipotential. 

This is easy to prove, since we now know that the E field is everywhere 
perpendicular to the conductor surface and so in the definition of  

V E ds∆ = −∫
G Gi  , is the line integral is confined to the surface, then the two vectors 

are always perpendicular to each other and ∆V = 0 for any points on the surface. 
 
Example:  A solid conducting sphere with a charge 2Q and radius a is surrounded by a 
concentric conducting spherical shell of inner radius b and outer radius c carrying a charge –Q.  
Find the E field everywhere and the charge distributions everywhere when in electrostatic 
equilibrium. 
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