E for continuous charge distributions: To generalize our discussion of the electric field from a set of point charges to a continuous distribution of charge, we use ideas from calculus:

$$\vec{E} = \lim_{N \to \infty} \sum_{i=1}^{N} \frac{\Delta Q_i}{r_i^2} \hat{r}_i = \frac{1}{4\pi\varepsilon_0} \int \frac{dQ}{r^2} \hat{r}$$

Note that $r (=|\vec{r}|)$ and \hat{r} vary with dq – they are not constants.

It is useful to express the rather abstract integration over the charges dq in terms of integration over spatial variables. We can do this by introducing the notion of charge density:

$$dq = \lambda dx = \sigma dA = \rho dV,$$

which defines the linear, surface and volume charge densities. Then, depending on whether the charge is along a line, a surface, or in a volume, we can write, substituting for dq, that

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}) dV}{r^2} \hat{r} \text{ or } \frac{1}{4\pi\varepsilon_0} \int \frac{\sigma(\vec{r}) dA}{r^2} \hat{r} \text{ or } \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda(\vec{r}) d\ell}{r^2} \hat{r}$$

g. Example calculation for straight finite line charge (and infinite limit)

h. Second example for ring of charge

i. Example of disk of charge

j. Motion of charged particles in a uniform E field: A charge q in a uniform electric field E will experience a constant force F given by $F = qE$ and will thus accelerate according to $qE = ma$. If the field is non-uniform, then the acceleration will vary with position (in general in both magnitude and direction) although the same equation will hold, if written as a vector equation. As an example of motion in a uniform E field suppose that a charge q is released from rest at the origin and experiences this constant force. What can we say about its subsequent motion?

We know that $a = qE/m$ and using the equations of kinematics, valid for constant acceleration, then we have that:

$$x = \frac{1}{2}at^2 ; v = at ; \text{ and } v^2 = 2ax, \text{ all with } a = qE/m.$$ Further, the kinetic energy as a function of distance is given by $K = \frac{1}{2}mv^2 = max = qEx – an$
expression which can also be obtained using \(W = K = Fx = qEx \).

k. Oscilloscope/Cathode Ray Tube: Demo Let’s examine what happens if an electron enters a region between two oppositely charged parallel plates (we will see that this situation results in an approximately uniform electric field between the plates directed from + to – plate).

\[
\begin{align*}
\text{vi} & \quad \text{L} & +\
-e & \quad \phantom{\text{L}} & -
\end{align*}
\]

The acceleration of the electron is given by \(\ddot{a} = (-eE/m)\hat{j} \) (note that we ignore gravity here) and, remember, that since the only acceleration is along the –y direction, that the x-component of velocity remains unchanged. The vertical velocity is given by \(v_y = (-eE/m)t \). We can then also write the trajectory of the electron:

\[
\begin{align*}
x = vi & \quad \text{and} \quad y = \frac{1}{2}ayt^2 = -\frac{1}{2}(eE/m)t^2. \\
\text{Combining these two equations by eliminating } t, \text{ we can write that } t = x/v_i \text{ so that } y = -\frac{1}{2} (eE/m)(x/v_i)^2, \text{ representing the equation of a parabola.}
\end{align*}
\]

When the electron emerges after passing through the plates it has been steered, or deflected, to emerge traveling at a downward angle \(\theta \), given by \(\tan \theta = v_y/v_x \), where \(v_y \) is taken at the time \(t = L/v_i \) corresponding to the time the electron leaves the plates.

\[
\begin{align*}
v_x & \quad \theta \\
v & \quad v_y
\end{align*}
\]

We find that \(\theta = \tan^{-1}(eEL/mv_i^2) \).

In a cathode ray tube (in TVs, computer monitors – not flat screen ones – and oscilloscopes) two pairs of such plates are used to steer the electron beam both horizontally and vertically.
1. **Dipole in an Electric Field** - A dipole in a uniform electric field will not feel a net force, but will experience a torque tending to align the dipole with the electric field. The torque can be written as \(\vec{\tau} = \vec{p} \times \vec{E} \). Because of this torque, a dipole in a uniform electric field will also have a potential energy of interaction. We can calculate this (relative to zero when the dipole and field are perpendicular to each other) to be given by \(U = -\vec{p} \cdot \vec{E} \), so that this energy is a minimum when the dipole is oriented along the electric field and a maximum when it is anti-parallel to the field.