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Multicandidate voting

3 or more candidates run for office
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          Candidates for president:

John McCain
Barack Obama ** “several” means  ≥ 3
Ron Paul        

              What to order for lunch: Pastrami, Qabbage, Rabbit, Salami

General Assumptions:
  Voters are treated equally

 More than 2 possible outcomes

 All possible outcomes are treated equally
    (no built-in bias favors one candidate)
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Multicandidate voting: Examples

1) Borda Count  Jean Charles de Borda (French Revolution)

          Each voter awards points to the candidates: Ahmed
             Q 3 points
             P 2 points
             S 1 point

    R 0 points

 For each alternative, sum the points awarded by all voters

 The winner is the alternative with the most points
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1) Borda Count  Jean Charles de Borda (French Revolution)

 Sample Profile: 3 1 1 2
p q r s
q s s q
r r q r
s p p p

q’s points: 1 × 3 = 3 r’s points: 1 × 3 = 3       s’s points:  2 × 3 = 6
   5 × 2 = 10   0 × 2 = 0              2 × 2 = 4
   1 × 1 = 1   6 × 1 = 6                          0 × 1 = 0
   0 × 0 = 0   0 × 0 = 0              3 × 0 = 0

SUM   =  14 SUM   =  9           SUM   =  10
(p had 9 total)        Borda winner is q
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Multicandidate voting: Examples
Sample Profile: 3 1 1 2

p q r s
q s s q
r r q r
s p p p

 Borda winner is q Hare winner is s

3) Plurality Rule  The winner is the alternative with the greatest number of 1ST

                              place votes

Plurality winner is p

Same election: 3 different voting rules ⇒ 3 different winners
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How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a
southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida’s electoral vote?
plurality . . . and Bush won, thus winning the election (according to the US
Supreme Court).  So . . . who would have won Florida, using Borda?

Almost certainly, Gore.

Using Hare? Almost certainly, Gore.
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Hex-Mean voting rule
• Three alternatives: p, q, r

• 6 possible rankings:
p > q > r
p > r > q
q > p > r
q > r > p
r > p > q
r > q > p

• Label each hex vertex with a
ranking, as in the sketch

• What is the labeling pattern?

• Adjacent rankings differ by one
pairwise reversal
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Hex-Mean voting rule
• Each voter chooses a vertex

•  = mean location of all votes

• How do we find the “mean” of
points in the plane?  We’ll
come back to that.

• Where is  ?

• The winning ranking is that of
the vertex closest to the mean:

                   r > q > p

• The Hex-Mean winner is r

• Who cares?

 



Hex-Mean voting rule
• Theorem  The Hex-Mean rule

is the same as the Borda Count
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The Mean
2 equivalent definitions

• Given three (blue) points in the plane
(or on a number line, or in space)

                1. Average Coordinate Method

• Find the average x coordinate

• Find the average y coordinate

• Use these as the coordinates of the
mean point 
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The Mean
2 equivalent definitions

• Given three (blue) points in the plane
(or on a number line, or in space)

                2. Ideal Rubber Band Method

• An i.r.b.
           will shrink to a point if you let go of

both ends
           Tension is proportional to stretch

• Loop one end of an i.r.b. around a
blue point, and the other end about a
movable point 

• Repeat with the other blue points

• Release  and let it reach equilibrium
– rubber band forces cancel out exactly

• The two methods always agree,
producing the same point 



• Theorem  The Hex-Mean rule
is the same as the Borda Count

• And the mean can be found
using rubber bands

• Putting these together we get…
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Physical model for Borda count
• Tie 3 i.r.b.s around r>p>q and a

movable point 

• Tie 5 i.r.b.s around q>r>p & 

• Release and let it reach
equilibrium – rubber band forces
cancel out exactly

• The vertex closest to  (green
line) tell us the Borda winner

• Conclusion Borda count =
voting with rubber bands on the
hexagon (3 alternatives)
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Physical model for Borda count
• How about four alternatives?

• There are 24 possible rankings of
four alternatives

• A hexagon has only 6 vertices. How
about a 2-D polygon with 24 sides?

• Nope.  It’s impossible to label the
vertices with the 24 possible rankings
in the “right way”

• We need a 3-D figure . . . A truncated
octahedron

• It is possible to label the vertices
with the 24 rankings of p, q, r, s so
that rankings on adjacent vertices
differ by only one pairwise reversal

• Then vote with i.r.b.s; choose vertex
closest to 
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Physical model for Borda count

• Conclusion Borda count =
voting with rubber bands on
the hexagon (3 alternatives)

• With rubber bands,
greater distance = harder pull

• Is there an alternative, with
greater distance = same pull ?

• Yes.  Replace rubber bands
with weights and strings
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An Alternative to the Mean
• Choose 3 points on the plane

• Drill a hole through at each
point, and pass a string
through each hole

• Attach a unit weight  ❚ to each
end below the table

• Tie all other ends to one
movable point 

• Release, allow  to reach
equilibrium

• This point is called the
mediancentre . . .

• . . . and it is different from the
mean
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A New Voting Rule

• Each voter chooses a vertex

•   = mediancentre of all votes

• The winning ranking is that of
the vertex closest to the MC

• We call this new voting rule the
MCBorda rule

• It is so new that we are still
learning about its basic
properties
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3 BIG Questions

1) How does the mediancentre* differ
from the mean?

2) How does the MCBorda voting rule
differ from the Borda count?

3) How are the answers to the previous
two questions linked?

* And how is the mediancentre
related to the median?



3 BIG Questions

1) How does the mediancentre differ
from the mean?

WE’LL EXPERIMENT . . .

. . . USING DAVIDE CERVONE’S SOFTWARE


