# Voting with Pulleys and Rubber Bands 

William S Zwicker \& Davide Cervone Union College Mathematics Department

Union College Undergraduate Mathematics Seminar October 7, 2008

## Multicandidate voting

## 3 or more candidates run for office

## Multicandidate voting: Set-up

A group must select one option from among several** alternatives:

- Candidates for president:

John McCain
Barack Obama ** "several" means $\geq 3$
Ron Paul

- What to order for lunch: Pastrami, Qabbage, Rabbit, Salami


## Multicandidate voting: Set-up

A group must select one option from among several** alternatives:

- Candidates for president:

John McCain
Barack Obama ** "several" means $\geq 3$

## Ron Paul

- What to order for lunch: Pastrami, Qabbage, Rabbit, Salami

General Assumptions:

- Voters are treated equally
- More than 2 possible outcomes
- All possible outcomes are treated equally (no built-in bias favors one candidate)


## Multicandidate voting: Set-up

In the US, a ballot usually only names a voter's single most favored candidate.

## Multicandidate voting: Set-up

In the US, a ballot usually only names a voter's single most favored candidate.

We will consider ballots that reveal each voter's full preference ranking.
. . . used in some other countries.

- Candidates for president: John McCain, Barack Obama, Ron Paul


## Multicandidate voting: Set-up

In the US, a ballot usually only names a voter's single most favored candidate.

We will consider ballots that reveal each voter's full preference ranking.
. . . used in some other countries.

- Candidates for president: John McCain, Barack Obama, Ron Paul

| Mei-Ling |
| :--- |
| $\mathbf{R}$ |
| B |
| J |

## Multicandidate voting: Examples

1) Borda Count Jean Charles de Borda (French Revolution)

- Each voter awards points to the candidates: Ahmed

| $\mathbf{Q}$ | 3 points |
| :--- | :--- |
| $\mathbf{P}$ | 2 points |
| $\mathbf{S}$ | 1 point |
| $\mathbf{R}$ | 0 points |

- For each alternative, sum the points awarded by all voters
- The winner is the alternative with the most points


## Multicandidate voting: Examples

1) Borda Count Jean Charles de Borda (French Revolution)

Sample Profile:

| $\underline{3}$ | $\underline{1}$ | $\underline{1}$ | $\underline{2}$ |
| :--- | :--- | :--- | :--- |
| $p$ | $q$ | $r$ | $s$ |
| $q$ | $s$ | $s$ | $q$ |
| $r$ | $r$ | $q$ | $r$ |
| $s$ | $p$ | $p$ | $p$ |

## Multicandidate voting: Examples

1) Borda Count Jean Charles de Borda (French Revolution)

| Sample Profile: | $\underline{3}$ | $\underline{1}$ | $\underline{1}$ | $\underline{2}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\underline{p}$ | q | r | s |
|  | q | s | s | q |
|  | r | r | q | r |
|  | s | $\underline{p}$ | $\underline{p}$ | $\underline{p}$ |

p's total points:

$$
\begin{array}{r}
\times 3=- \\
-2=- \\
-1=- \\
\times 0=-
\end{array}
$$

$$
\text { SUM }=-
$$

## Multicandidate voting: Examples

1) Borda Count Jean Charles de Borda (French Revolution)

| Sample Profile: | $\underline{3}$ | $\underline{1}$ | $\underline{1}$ | $\underline{2}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\underline{p}$ | q | r | s |
|  | q | s | s | q |
|  | r | r | q | r |
|  | s | $\underline{p}$ | $\underline{p}$ | $\underline{p}$ |

$$
\begin{array}{ll}
\text { p's total points: } & \underline{3} \times 3=\underline{9} \\
& \underline{0} \times 2=\underline{0} \\
& \underline{0} \times 1=\underline{0} \\
& \underline{4} \times 0=\underline{0}
\end{array}
$$

$$
\text { SUM }=9
$$

## Multicandidate voting: Examples

1) Borda Count Jean Charles de Borda (French Revolution)

| Sample Profile: | $\underline{3}$ | $\underline{1}$ | $\underline{1}$ | $\underline{2}$ |
| :--- | :---: | :---: | :---: | :---: |
|  | $p$ | $q$ | $r$ | $s$ |
|  | $q$ | $s$ | $s$ | $q$ |
|  | $r$ | $r$ | $q$ | $r$ |
|  | $s$ | $p$ | $p$ | $p$ |

q's points: | $\underline{1} \times 3$ | $=\underline{3}$ | r's points: $1 \times 3=\underline{3}$ | s's points: $\underline{2} \times 3=\underline{6}$ |
| ---: | :--- | ---: | :--- |
| $\underline{5} \times 2$ | $=\underline{10}$ | $\underline{0} \times 2=\underline{0}$ | $\underline{2} \times 2=\underline{4}$ |
| $1 \times 1$ | $=\underline{1}$ | $\underline{6} \times 1=\underline{6}$ | $\underline{0} \times 1=\underline{0}$ |
| $\underline{0} \times 0$ | $=\underline{0}$ | $\underline{0} \times 0=\underline{0}$ | $\underline{3} \times 0=\underline{0}$ |

SUM = 14
( p had 9 total)

## Multicandidate voting: Examples

1) Borda Count Jean Charles de Borda (French Revolution)

| Sample Profile: | $\underline{3}$ | 1 | $\underline{1}$ | $\underline{2}$ |
| :--- | :---: | :---: | :---: | :---: |
|  | $p$ | $q$ | $r$ | $s$ |
|  | $q$ | $s$ | $s$ | $q$ |
|  | $r$ | $r$ | $q$ | $r$ |
|  | $s$ | $p$ | $p$ | $p$ |


| q's points: $\underline{1} \times 3=\underline{3}$ | r's points: $\underline{1} \times 3=\underline{3}$ | s's points: $\underline{2} \times 3=\underline{6}$ |
| :---: | :---: | :---: |
| $\underline{5} \times 2=\underline{10}$ | $\underline{0} \times 2=\underline{0}$ | $\underline{2} \times 2=\underline{4}$ |
| $1 \times 1=1$ | $\underline{6} \times 1=\underline{6}$ | $\underline{0} \times 1=\underline{0}$ |
| $\underline{0} \times 0=\underline{0}$ | $\underline{0} \times 0=\underline{0}$ | $\underline{3} \times 0=\underline{0}$ |
| $\text { SUM }=14$ <br> ( p had 9 total) | $\text { SUM }=9$ <br> Borda | $\text { SUM }=10$ <br> nner is $q$ |

## Multicandidate voting: Examples

2) Hare Step 1 Is some alternative the $1^{\text {sT }}$ choice of a majority of voters?

If so, they win. If not go to step 2.
Step 2Eliminate the alternative(s) having the fewest $1^{\text {ST }}$ choice votes.
Step 3"Squeeze up" to close the gaps left by the eliminations. Then, go to step 1.
Same Profile:

| $\underline{3}$ | 1 | 1 | $\underline{2}$ |
| :--- | :--- | :--- | :--- |
| $p$ | $q$ | $r$ | $s$ |
| $q$ | $s$ | $s$ | $q$ |
| $r$ | $r$ | $q$ | $r$ |
| $s$ | $p$ | $p$ | $p$ |

## Multicandidate voting: Examples

2) Hare Step 1 Is some alternative the $1^{\text {sT }}$ choice of a majority of voters?

If so, they win. If not go to step 2.
Step 2Eliminate the alternative(s) having the fewest $1^{\text {ST }}$ choice votes.
Step 3"Squeeze up" to close the gaps left by the eliminations. Then, go to step 1.
Same Profile:

| $\underline{3}$ | 1 | 1 | $\underline{2}$ |
| :--- | :--- | :--- | :--- |
| $p$ | $q$ | $r$ | $s$ |
| $q$ | $s$ | $s$ | $q$ |
| $r$ | $r$ | $q$ | $r$ |
| $s$ | $p$ | $p$ | $p$ |

p has a plurality of $1^{\text {ST }}$ choice votes: 3 of 7. But no alternative has a majority.
Proceed to step 2.

## Multicandidate voting: Examples

2) Hare Step 1 Is some alternative the $1^{\text {ST }}$ choice of a majority of voters?

If so, they win. If not go to step 2.
Step 2Eliminate the alternative(s) having the fewest $1^{\text {ST }}$ choice votes.
Step 3"Squeeze up" to close the gaps left by the eliminations. Then, go to step 1.
Same Profile:

| $\underline{3}$ | $\underline{1}$ | $\underline{1}$ | $\underline{2}$ |
| ---: | ---: | ---: | ---: |
| $p$ | $\rightarrow q$ | $\rightarrow r$ | $s$ |
| $\rightarrow q$ | $s$ | $s$ | $\rightarrow q$ |
| $\rightarrow r$ | $\rightarrow r$ | $\rightarrow q$ | $\rightarrow r$ |
| $s$ | $p$ | $p$ | $p$ |

p has a plurality of $1^{\text {ST }}$ choice votes: 3 of 7. But no alternative has a majority.
Proceed to step 2.

## Multicandidate voting: Examples

2) Hare Step 1 Is some alternative the $1^{\text {sT }}$ choice of a majority of voters? If so, they win. If not go to step 2.
Step 2Eliminate the alternative(s) having the fewest $1^{\text {ST }}$ choice votes.
Step 3"Squeeze up" to close the gaps left by the eliminations. Then, go to step 1.
Same Profile:

| $\frac{3}{p}$ | $\rightarrow q$ | $\underline{1}$ | $\underline{2}$ |
| ---: | ---: | ---: | ---: |
| $\rightarrow q$ | $s$ | $s$ | $\rightarrow q$ |
| $\rightarrow r$ | $\rightarrow r$ | $\rightarrow q$ | $\rightarrow r$ |
| $s$ | $p$ | $p$ | $p$ |

p has a plurality of $1^{\text {ST }}$ choice votes: 3 of 7 . But no alternative has a majority.
Proceed to step 2.

| $\underline{3}$ | 1 |
| :--- | :--- |
| $p$ | $s$ |
| $s$ | $p$ |

1
s
p
$\underline{2}$ s
s $\quad \mathrm{p} \quad \mathrm{p} \quad \mathrm{p} \quad$ Now, back to step 1!
Alternative s gets 4 of the $1^{\text {ST }}$ place votes - a majority of the 7 votes cast.

## Multicandidate voting: Examples

2) Hare Step 1 Is some alternative the $1^{\text {ST }}$ choice of a majority of voters? If so, they win. If not go to step 2.
Step 2Eliminate the alternative(s) having the fewest $1^{\text {ST }}$ choice votes.
Step 3"Squeeze up" to close the gaps left by the eliminations. Then, go to step 1.
Same Profile:

| $\underline{3}$ | $\underline{1}$ | $\underline{1}$ | $\underline{2}$ |
| ---: | ---: | ---: | ---: |
| $p$ | $\rightarrow q$ | $\rightarrow r$ | $s$ |
| $\rightarrow q$ | $s$ | $s$ | $\rightarrow q$ |
| $\rightarrow r$ | $\rightarrow r$ | $\rightarrow q$ | $\rightarrow r$ |
| $s$ | $p$ | $p$ | $p$ |

p has a plurality of $1^{\text {ST }}$ choice votes: 3 of 7 . But no alternative has a majority.
Proceed to step 2.

| $\underline{3}$ | 1 |
| :--- | :--- |
| $p$ | $s$ |
| $s$ | $p$ |

1
s
p$\underline{2}$s
s $\quad \mathrm{p} \quad \mathrm{p} \quad \mathrm{p} \quad$ Now, back to step 1!
Alternative s gets 4 of the $1^{\text {ST }}$ place votes - a majority of the 7 votes cast.
Hare winner is s

## Multicandidate voting: Examples

Sample Profile:

| $\underline{3}$ | $\underline{1}$ | $\underline{1}$ | $\underline{2}$ |
| :--- | :--- | :--- | :--- |
| $p$ | $q$ | $r$ | $s$ |
| $q$ | $s$ | $s$ | $q$ |
| $r$ | $r$ | $q$ | $r$ |
| $s$ | $p$ | $p$ | $p$ |

Borda winner is $q \quad$ Hare winner is $\mathbf{s}$

## Multicandidate voting: Examples

Sample Profile:

| $\underline{3}$ | $\underline{1}$ | $\underline{1}$ | $\underline{2}$ |
| :--- | :--- | :--- | :--- |
| $p$ | $q$ | $r$ | $s$ |
| $q$ | $s$ | $s$ | $q$ |
| $r$ | $r$ | $q$ | $r$ |
| $s$ | $p$ | $p$ | $p$ |

Borda winner is $q \quad$ Hare winner is $\mathbf{s}$
3) Plurality Rule The winner is the alternative with the greatest number of $1^{\text {sT }}$ place votes

## Multicandidate voting: Examples

| Sample Profile: | $\underline{3}$ | 1 | 1 | $\underline{2}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | p | q | r | s |
|  | q | s | s | q |
|  | r | r | q | r |
|  | s | p | p | p |

Borda winner is $q \quad$ Hare winner is $\mathbf{s}$
3) Plurality Rule The winner is the alternative with the greatest number of $1^{\mathrm{sT}}$ place votes

## Plurality winner is $\mathbf{p}$

Same election: $\mathbf{3}$ different voting rules $\Rightarrow \mathbf{3}$ different winners

## Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

## Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes ... especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

## Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes .. . especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

## Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida's electoral vote?

## Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida's electoral vote?
plurality . . . and Bush won, thus winning the election

## Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida's electoral vote? plurality . . . and Bush won, thus winning the election (according to the US Supreme Court). So . . . who would have won Florida, using Borda?

## Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida's electoral vote? plurality . . . and Bush won, thus winning the election (according to the US
Supreme Court). So . . . who would have won Florida, using Borda?
Almost certainly, Gore.

## Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida's electoral vote? plurality . . . and Bush won, thus winning the election (according to the US Supreme Court). So . . . who would have won Florida, using Borda? Almost certainly, Gore.
Using Hare?

## Multicandidate voting

How about real life?

Does the choice of voting rule really make a difference?

Yes . . . especially when the election is close.
Who remembers a recent presidential election in which a razor-thin margin in a southern state made a critical difference?

Florida in 2000 (Bush v Gore v Nader v Buchanan)

What voting rule was used to determine who won Florida's electoral vote? plurality . . . and Bush won, thus winning the election (according to the US
Supreme Court). So . . . who would have won Florida, using Borda?
Almost certainly, Gore.
Using Hare? Almost certainly, Gore.

## Hex-Mean voting rule

- Three alternatives: p, q, r
- 6 possible rankings:

$$
\begin{aligned}
& p>q>r \\
& p>r>q \\
& q>p>r \\
& q>r>p \\
& r>p>q \\
& r>q>p
\end{aligned}
$$

- Label each hex vertex with a ranking, as in the sketch
- What is the labeling pattern?



## Hex-Mean voting rule

- Three alternatives: p, q, r
- 6 possible rankings:

$$
\begin{aligned}
& p>q>r \\
& p>r>q \\
& q>p>r \\
& q>r>p \\
& r>p>q \\
& r>q>p
\end{aligned}
$$

- Label each hex vertex with a ranking, as in the sketch
- What is the labeling pattern?

- Adjacent rankings differ by one pairwise reversal


## Hex-Mean voting rule

- Each voter chooses a vertex



## Hex-Mean voting rule

- Each voter chooses a vertex
- $\quad \mathbf{O}=$ mean location of all votes



## Hex-Mean voting rule

- Each voter chooses a vertex
- $\quad \mathbf{O}=$ mean location of all votes
- How do we find the "mean" of points in the plane? We'll come back to that.
- Where is $\mathbf{O}$ ?



## Hex-Mean voting rule

- Each voter chooses a vertex
- $\mathbf{O}=$ mean location of all votes
- How do we find the "mean" of points in the plane? We'll come back to that.
- Where is $\mathbf{O}$ ?
- The winning ranking is that of the vertex closest to the mean



## Hex-Mean voting rule

- Each voter chooses a vertex
- $\mathbf{O}=$ mean location of all votes
- How do we find the "mean" of points in the plane? We'll come back to that.
- Where is $\mathbf{O}$ ?
- The winning ranking is that of the vertex closest to the mean:

$$
r>q>p
$$

- The Hex-Mean winner is $\mathbf{r}$

- Who cares?


## Hex-Mean voting rule

- Theorem The Hex-Mean rule is the same as the Borda Count



## The Mean

## 2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)



## The Mean

## 2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)

1. Average Coordinate Method


## The Mean

## 2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)


## 1. Average Coordinate Method

- Find the average $\times$ coordinate



## The Mean 2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)


## 1. Average Coordinate Method

- Find the average $\times$ coordinate
- Find the average y coordinate



## The Mean

## 2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)


## 1. Average Coordinate Method

- Find the average $\times$ coordinate
- Find the average y coordinate
- Use these as the coordinates of the mean point $\mathbf{O}$



## The Mean

## 2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)


## 2. Ideal Rubber Band Method



## The Mean 2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)


## 2. Ideal Rubber Band Method

- An i.r.b.
- will shrink to a point if you let go of both ends
- Tension is proportional to stretch



## The Mean

## 2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)


## 2. Ideal Rubber Band Method

- An i.r.b.
- will shrink to a point if you let go of both ends
- Tension is proportional to stretch
- Loop one end of an i.r.b. around a blue point, and the other end about a movable point 0



## The Mean

## 2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)


## 2. Ideal Rubber Band Method

- An i.r.b.
- will shrink to a point if you let go of both ends
- Tension is proportional to stretch
- Loop one end of an i.r.b. around a blue point, and the other end about a movable point $\mathbf{O}$

- Repeat with the other blue points


## The Mean

## 2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)


## 2. Ideal Rubber Band Method

- An i.r.b.
- will shrink to a point if you let go of both ends
- Tension is proportional to stretch
- Loop one end of an i.r.b. around a blue point, and the other end about a movable point $\mathbf{O}$

- Repeat with the other blue points
- Release $\mathbf{O}$ and let it reach equilibrium - rubber band forces cancel out exactly


## The Mean

## 2 equivalent definitions

- Given three (blue) points in the plane (or on a number line, or in space)


## 2. Ideal Rubber Band Method

- An i.r.b.
- will shrink to a point if you let go of both ends
- Tension is proportional to stretch
- Loop one end of an i.r.b. around a blue point, and the other end about a movable point 0
- Repeat with the other blue points


O is the same as it was with the average method!

- Release $\mathbf{O}$ and let it reach equilibrium - rubber band forces cancel out exactly
- The two methods always agree, producing the same point $\mathbf{O}$
- Theorem The Hex-Mean rule is the same as the Borda Count
- And the mean can be found using rubber bands
- Putting these together we get...


## Physical model for Borda count

- Tie 3 i.r.b.s around $r>p>q$ and $a$ movable point 0
- Tie 5 i.r.b.s around $q>r>p \& O$
- Release and let it reach equilibrium - rubber band forces cancel out exactly



## Physical model for Borda count

- Tie 3 i.r.b.s around $r>p>q$ and $a$ movable point 0
- Tie 5 i.r.b.s around $q>r>p \& 0$
- Release and let it reach equilibrium - rubber band forces cancel out exactly
- The vertex closest to $\mathbf{O}$ (green line) tell us the Borda winner
- $\quad$ Conclusion Borda count $=$ voting with rubber bands on the hexagon (3 alternatives)



## Physical model for Borda count

- How about four alternatives?
- There are $\mathbf{2 4}$ possible rankings of four alternatives


## Physical model for Borda count

- How about four alternatives?
- There are $\mathbf{2 4}$ possible rankings of four alternatives
- A hexagon has only 6 vertices.


## Physical model for Borda count

- How about four alternatives?
- There are $\mathbf{2 4}$ possible rankings of four alternatives
- A hexagon has only 6 vertices. How about a 2-D polygon with 24 sides?


## Physical model for Borda count

- How about four alternatives?
- There are $\mathbf{2 4}$ possible rankings of four alternatives
- A hexagon has only 6 vertices. How about a 2-D polygon with 24 sides?
- Nope. It's impossible to label the vertices with the 24 possible rankings in the "right way"
- We need a 3-D figure . . . A truncated octahedron.


## Physical model for Borda count

- How about four alternatives?
- There are $\mathbf{2 4}$ possible rankings of four alternatives
- A hexagon has only 6 vertices. How about a 2-D polygon with 24 sides?
- Nope. It's impossible to label the vertices with the 24 possible rankings in the "right way"
- We need a 3-D figure . . . A truncated octahedron.



## Physical model for Borda count

- How about four alternatives?
- There are $\mathbf{2 4}$ possible rankings of four alternatives
- A hexagon has only 6 vertices. How about a 2-D polygon with 24 sides?
- Nope. It's impossible to label the vertices with the 24 possible rankings in the "right way"
- We need a 3-D figure . . . A truncated octahedron.
- It is possible to label the vertices with the 24 rankings of $p, q, r$, $s$ so that rankings on adjacent vertices differ by only one pairwise reversal



## Physical model for Borda count

- How about four alternatives?
- There are $\mathbf{2 4}$ possible rankings of four alternatives
- A hexagon has only 6 vertices. How about a 2-D polygon with 24 sides?
- Nope. It's impossible to label the vertices with the 24 possible rankings in the "right way"
- We need a 3-D figure . . . A truncated octahedron
- It is possible to label the vertices with the 24 rankings of $p, q, r$, $s$ so that rankings on adjacent vertices differ by only one pairwise reversal
- Then vote with i.r.b.s; choose vertex closest to $\mathbf{O}$



## Physical model for Borda count

- Conclusion Borda count $=$ voting with rubber bands on the hexagon (3 alternatives)
- With rubber bands, greater distance $=$ harder pull
- Is there an alternative, with greater distance = same pull ?



## Physical model for Borda count

- $\quad$ Conclusion Borda count $=$ voting with rubber bands on the hexagon (3 alternatives)
- With rubber bands, greater distance $=$ harder pull
- Is there an alternative, with greater distance = same pull ?
- Yes. Replace rubber bands with weights and strings



## An Alternative to the Mean

- Choose 3 points on the plane



## An Alternative to the Mean

- Choose 3 points on the plane
- Drill a hole through at each point, and pass a string through each hole



## An Alternative to the Mean

- Choose 3 points on the plane
- Drill a hole through at each point, and pass a string through each hole
- Attach a unit weight It to each end below the table
- Tie all other ends to one movable point $\quad$ -



## An Alternative to the Mean

- Choose 3 points on the plane
- Drill a hole through at each point, and pass a string through each hole
- Attach a unit weight It to each end below the table
- Tie all other ends to one movable point $\quad$ -
- Release, allow $\boldsymbol{\square}$ to reach equilibrium



## An Alternative to the Mean

- Choose 3 points on the plane
- Drill a hole through at each point, and pass a string through each hole
- Attach a unit weight Ito each end below the table
- Tie all other ends to one movable point $\quad$ ㅁ
- Release, allow $\boldsymbol{\square}$ to reach equilibrium

- This point is called the mediancentre . . .
- . . . and it is different from the mean


## A New Voting Rule

Each voter chooses a vertex


## A New Voting Rule

- Each voter chooses a vertex
- $\boldsymbol{\square}=$ mediancentre of all votes



## A New Voting Rule

- Each voter chooses a vertex
- $\boldsymbol{\square}=$ mediancentre of all votes
- The winning ranking is that of the vertex closest to the MC



## A New Voting Rule

- Each voter chooses a vertex
- $\boldsymbol{\square}=$ mediancentre of all votes
- The winning ranking is that of the vertex closest to the MC
- We call this new voting rule the $M^{C}$ Borda rule



## A New Voting Rule

- Each voter chooses a vertex
- $\boldsymbol{\square}=$ mediancentre of all votes
- The winning ranking is that of the vertex closest to the MC
- We call this new voting rule the $\mathrm{M}^{C}$ Borda rule
- It is so new that we are still learning about its basic properties


## 3 BIG Questions



## 3 BIG Questions

1) How does the mediancentre differ from the mean?


## 3 BIG Questions

1) How does the mediancentre differ from the mean?
2) How does the $M^{C}$ Borda voting rule differ from the Borda count?


## 3 BIG Questions

1) How does the mediancentre differ from the mean?
2) How does the $M^{C}$ Borda voting rule differ from the Borda count?
3) How are the answers to the previous two questions linked?


## 3 BIG Questions

1) How does the mediancentre* differ from the mean?
2) How does the $M^{C}$ Borda voting rule differ from the Borda count?
3) How are the answers to the previous two questions linked?

* And how is the mediancentre related to the median?



## 3 BIG Questions

1) How does the mediancentre differ from the mean?

WE'LL EXPERIMENT . . .
. . . USING DAVIDE CERVONE'S SOFTWARE


