To Prove

$$
\begin{aligned}
& P \Rightarrow Q \quad \text { "Assume } P \text { is true," prove } Q \text { is true, or } \\
& \text { "Assume } Q \text { is false," prove } P \text { is false, or } \\
& \text { "Assume } P \text { is true and } Q \text { is false", produce a contradiction. } \\
& P \Longleftrightarrow Q \quad \text { Prove }(P \Rightarrow Q) \wedge(Q \Rightarrow P) \text {, or } \\
& \text { prove }(P \Rightarrow Q) \wedge(\sim P \Rightarrow \sim Q) \text {, or } \\
& \text { prove }(\sim Q \Rightarrow \sim P) \wedge(Q \Rightarrow P) \text {, or } \\
& \text { prove }(\sim Q \Rightarrow \sim P) \wedge(\sim P \Rightarrow \sim Q) \\
& (\forall x)(P(x)) \quad \text { "Let } x \text { be an arbitrary } \ldots \text {. } \\
& \text { Prove } P(x) \text {. } \\
& (\exists x)(P(x)) \quad \text { "Take } x=\ldots \text {. } \\
& \text { Prove } P(x) \text { for this } x \text {. } \\
& A \subseteq B \quad \text { Prove }(\forall x \in A)(x \in B) \\
& \text { i.e., if } x \in A \text { then } x \in B \text {. } \\
& A=B \quad \text { Prove }(A \subseteq B) \wedge(B \subseteq A) . \\
& A=\emptyset \quad \text { Prove }(\forall x)(x \notin A) \\
& \text { (frequently best to use proof by contradiction). } \\
& x \in A \cup B \quad \text { Prove }(x \in A) \vee(x \in B) . \\
& x \in A \cap B \quad \text { Prove }(x \in A) \wedge(x \in B) . \\
& x \in A-B \quad \text { Prove }(x \in A) \wedge(x \notin B) .
\end{aligned}
$$

To Prove

Do

$\sim(P(x) \Rightarrow Q(x))$	Prove $(\exists x)(P(x) \wedge \sim Q(x))$.
$\sim(P(x) \Longleftrightarrow Q(x))$	Prove $(\exists x)(P(x) \wedge \sim Q(x)) \vee(\exists x)(Q(x) \wedge \sim P(x))$.
$\sim(\forall x)(P(x))$	Prove $(\forall x)(\sim P(x))$.
$A \nsubseteq B$	Prove $(\exists x)(\sim P(x))$.
$A \neq B$	Prove $(\exists x)(x \in A \wedge x \notin B)$.
$A \neq \emptyset$	Prove $(A \nsubseteq B) \vee(B \nsubseteq A)$.
ie, there is an $x \in A$ where $x \notin B$ or	
$x \notin A \cup B$	there is an $x \in B$ where $x \notin A$.
$x \notin A \cap B$	Prove $(\exists x)(x \in A)$.
	Prove $(x \notin A) \wedge(x \notin B)$.
$x \notin A-B$	Prove $(x \notin A) \vee(x \notin B)$.
	Prove $(x \notin A) \vee(x \in B)$.

To prove P by contradiction:
"Assume P is false" then show that you arrive at a contradition.

To prove $(\forall n \in \mathbf{N})(P(n))$ by Mathematical Induction, show the following:

1) $P(1)$ is true
2) For all $k \in \mathbf{N}$, if $P(k)$ is true then $P(k+1)$ is true.
