For the exam on Monday, it would help you to do the following things:

- 1. Learn the definitions you needed to know for the quiz. Know the definitions precisely. You should know the statements in formal language, as well as interpretations in words. E.g., $A \subseteq B$ means $(\forall x)(x \in A \Rightarrow x \in B)$ and this can be read as "every element in A is also in B".
- 2. Do "blank-paper practice" for the problems on the problem sets that have been handed back, and for the homework problems. Note: You should be able to do *all* the problems, including the hard ones. Avoid repeating a mistake you made before.
- **3.** Understand these challenging concepts:

```
a. \subseteq vs. \in vs. =
```

- b. $A \subseteq B$ vs. $A \cap B$
- c. $\mathcal{P}(A)$, the power set of A
- d. $(\forall x)(P(x))$ vs. $\{x \mid P(x)\}$
- e. "For all x, \dots " vs. "There exists an x where \dots "
- f. $(\forall x)(\exists y)(P(x,y))$ vs. $(\exists y)(\forall x)(P(x,y))$
- g. $P \wedge Q$ vs. $A \cap B$
- h. $P(x) \Rightarrow Q(x)$ vs. $\{x \mid P(x) \text{ and } Q(x)\}$
- 4. Know the negations of the various types of propositions we've studied.
- **5.** Know the contrapositive, converse, and inverse, and which ones are equivalent.
- **6.** Know how to translate English into formal logic and *vice versa*.
- 7. Know how to do mathematical induction.
- 8. Know the proofs of these key examples. You should not memorize them, but should remember the central idea(s) and reconstruct the proof from that memorized core.
 - a. $\emptyset \subseteq A$ for all A
 - b. $A \subseteq B$ iff $\mathcal{P}(A) \subseteq \mathcal{P}(B)$
 - c. $A \times B = \emptyset$ if, and only if, $A = \emptyset$ or $B = \emptyset$
 - d. For $B \neq \emptyset$, if $A \times B \subseteq C \times B$ then $A \subseteq C$
 - e. $\sqrt{2}$ is irrational