NULLSTELLEN AND SUBDIRECT REPRESENTATION

Walter Tholen

York University, Toronto, Canada

Union College 19-20 October 2013

WALTER THOLEN (YORK UNIVERSITY)

Nullstellen & Subdirect Rep

19-20 October 2013

System of r polynomial equations in n variables with coefficients in a field k:

$$f_1(x_1,\ldots,x_n) = 0$$

$$\vdots$$

$$f_r(x_1,\ldots,x_n) = 0$$

$$(f_i \in k[x_1,\ldots,x_n]) \quad (\star)$$

EXAMPLES

$$x_1 - x_2^2 = 0$$
 $x_1^2 - 1 = 0$ $x_1^2 + 1 = 0$ $x_1^2 - 1 = 0$
 $x_1^2 + 1 = 0$

D. HILBERT (1893)

Every system (*) has a solution $a = (a_1, \ldots, a_n)$ in F^n for any

algebraically-closed extension field F of k,

<u>unless</u> there are polynomials $g_1, \ldots, g_r \in k[x]$ with

$$g_1f_1+\ldots+g_rf_r=1$$

Restriction is essential:

$$0 = g_1(a)f_1(a) + \ldots + g_r(a)f_r(a) = 1$$

Note: $P \subseteq \sqrt{P} = \{f \in k[x] \mid \exists m \ge 1 : f^m \in P\}$

$$\left.\begin{array}{l} P \leq k[x_1, \ldots, x_n] \text{ proper ideal} \\ F \text{ algebraically-closed} \end{array}\right\} \quad \Longrightarrow \quad J(S(P)) = \sqrt{P}$$

That is :

If $f \in k[x]$, then $(\forall a \in S(P) : f(a) = 0 \iff \exists m \ge 1 : f^m \in P)$

WALTER THOLEN (YORK UNIVERSITY)

VERSION 2 IMPLIES VERSION 1

$$(f_1, \dots, f_r) = P$$

$$\sqrt{P} = J(S(P)) \quad \longleftrightarrow \quad S(P)$$

$$k[x_1, \dots, x_n] \quad \longleftrightarrow \quad \emptyset$$

<u>Note</u>: Any $P \leq k[x_1, \ldots, x_n]$ is finitely generated:

k Noetherian ring $\implies k[x]$ Noetherian

TRYING TO PROVE VERSION 2

Need to show $J(S(P)) \subseteq \sqrt{P}$: If $f \notin \sqrt{P}$, must find $a \in S(P)$ with $f(a) \neq 0$.

Consider
$$A = k[x_1, ..., x_n]/\sqrt{P}$$

Wish: Find
 $k[x] \xrightarrow{\pi} A \xrightarrow{\varphi} F$
 $f \longmapsto \pi(f) = u \longmapsto \varphi(u) \neq 0$
Consider $a = (\varphi(\pi(x_1)), ..., \varphi(\pi(x_n))).$
Then $f(a) \neq 0$, but $\forall p \in P : p(a) = 0.$

HNB THEOREM — VERSION 3 AND 4

Version 3

Version 4

 $\left. \begin{array}{l} A \text{ fin. gen. comm. } k\text{-algebra} \\ u \in A \text{ non-nilpotent} \end{array} \right\} \quad \Longrightarrow \quad$

$$\exists \chi: A o K, \quad \chi(u)
eq 0, \ k \subseteq K ext{ field,} \ K ext{ fin. gen. (as unital } k ext{-algebra})$$

HNB THEOREM — VERSION 5, VERSION 5 IMPLIES VERSION 4

$$\left. \begin{array}{c} A \text{ comm. ring} \\ u \text{ non-nilpotent} \end{array} \right\} \implies \exists Q \trianglelefteq A \text{ prime}, u \notin Q$$

 $5 \Rightarrow 4$

M maximal ideal

WALTER THOLEN (YORK UNIVERSITY)

Nullstellen & Subdirect Rep

Proof of Version 5

$$S:=\{u^n\mid n\geq 1\}\not\ni 0$$

Zorn: $\exists Q \leq A$ maximal w.r.t. $Q \cap S = \emptyset$

Q is prime: $a, b \notin Q$

$$\implies (a) + Q, (b) + Q \text{ meet } S$$
$$\implies \exists I, m : u^{I} \in (a) + Q, u^{m} \in b + Q$$
$$\implies u^{I+m} \in (ab) + Q$$
$$\implies ab \notin Q \qquad \qquad QED$$

DECOMPOSITION THEOREMS

$$A \text{ comm., reduced} \implies \bigcap \{Q \leq A \mid Q \text{ prime}\} = (0)$$
$$A \longmapsto \prod_{Q} A/Q$$

LASKER (1904), NOETHER (1920)

$$\left. \begin{array}{l} R \text{ comm. Noetherian} \\ P \trianglelefteq R \text{ ideal} \end{array} \right\} \implies P = Q_1 \cap \ldots \cap Q_n \text{ with } Q_i \trianglelefteq R \text{ irreducible} \\ \end{array} \right\}$$

Alternative formulation of Version 5

 $R \text{ comm.}, P \trianglelefteq R \text{ radical} \iff P = \bigcap \{Q \trianglelefteq R \mid P \subseteq Q, Q \text{ prime}\}$

HNB THEOREM — VERSION 6

BIRKHOFF'S SUBDIRECT REPRESENTATION THEOREM (1944)

This notion is categorical!

WALTER THOLEN (YORK UNIVERSITY)

- \mathcal{A} has (strong epi, mono)-factorizations
- \mathcal{A} is weakly cowellpowered
- \mathcal{A} has generator consisting of finitary objects

(no existence requirements for limits or colimits)

EXAMPLES

- quasi-varieties of finitary algebras
- locally finitely presentable categories
- presheaf categories
- the category of topological spaces

A object of an HNB-category \implies A has subdirect representation

$$A \longrightarrow \prod_{i \in I} S_i$$

 $\begin{array}{rcl} S \mbox{ sdi } & \iff & \exists a \neq b : P \to S \\ & & \forall f : A \to B \ (fa \neq fb \Rightarrow f \ \mbox{monic}) \\ & \iff & \mbox{Con}S \setminus \{\Delta_S\} \ \mbox{has a least element} \end{array}$ $\begin{array}{rcl} \underline{Set:} & 2 & k \mbox{-Vec: } k & \mbox{CRng: } \mathbb{Z}_p, \mathbb{Z}_{p^2} \end{array}$

 $f: A \rightarrow B$ morphism of an HNB-category with finite products

$$f: A \to B$$
 $(A_b)_{b \in B}$

$$A_b = f^{-1}b$$

$$A = igcup_{b\in B} A_b$$
 , $f_{|_{A_b}} = ext{const} b$

 $f \text{ sdi } \iff \exists ! b_0 \in B : |A_{b_0}| = 2 \text{ and } |A_b| \leq 1 \ (b \neq b_0)$

WALTER THOLEN (YORK UNIVERSITY) NUL

э

CONSTRUCTIVE? FUNCTORIAL?

Generally: No! Zorn's Lemma everywhere!

Set: constructive, but not functorial:

- <u>Set</u>, <u>AbGrp</u>, <u>Mod</u>_R: yes
- Grp, CompAbGrp : no

Residually small finitary varieties: Taylor (1972)

Equivalent Completeness properties for residually small HNB-categories

- (i) \mathcal{A} totally cocomplete $(\mathcal{A} \rightarrow [\mathcal{A}^{op}, \underline{Set}]$ has left adjoint)
- (ii) \mathcal{A} hypercomplete
- (iii) \mathcal{A} small-complete with large intersections of monos
- $(i)^{op} \ \mathcal{A}$ totally complete
- (ii)^op ${\mathcal A}$ hypercocomplete

(iii)^{op} \mathcal{A} small-cocomplete with large cointersections of epis

Recent work by M. Menni: An Exercise with Sufficient Cohesion, 2011