# Nullstellen and Subdirect Representation 

Walter Tholen<br>York University, Toronto, Canada<br>Union College<br>19-20 October 2013

## HNB Theorem - Version 1

System of $r$ polynomial equations in $n$ variables with coefficients in a field $k$ :

$$
\begin{gather*}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{r}\left(x_{1}, \ldots, x_{n}\right)=0
\end{gather*} \quad\left(f_{i} \in k\left[x_{1}, \ldots, x_{n}\right]\right)
$$

## ExAMPLES

$$
\begin{array}{lll}
x_{1}-x_{2}^{2}=0 & x_{1}^{2}-1=0 & x_{1}^{2}+1=0
\end{array} \begin{aligned}
& x_{1}^{2}-1=0 \\
& x_{1}^{2}+1=0
\end{aligned}
$$

## HNB Theorem - Version 1

## D. Hilbert (1893)

Every system ( $\star$ ) has a solution $a=\left(a_{1}, \ldots, a_{n}\right)$ in $F^{n}$ for any algebraically-closed extension field $F$ of $k$, unless there are polynomials $g_{1}, \ldots, g_{r} \in k[x]$ with

$$
g_{1} f_{1}+\ldots+g_{r} f_{r}=1
$$

Restriction is essential:

$$
0=g_{1}(a) f_{1}(a)+\ldots+g_{r}(a) f_{r}(a)=1
$$

## A Galois Correspondence

Systems of equations
Solution sets

$$
P \subseteq k\left[x_{1}, \ldots, x_{n}\right] \quad \longmapsto S(P)=\left\{a \in k^{n} \mid \forall f \in P: f(a)=0\right\}
$$

$$
J(X)=\{f \in k[x] \mid \forall a \in X: f(a)=0\} \quad \longleftrightarrow X \subseteq F^{n}
$$

$$
\begin{array}{lll}
P \subseteq J(X) & \Longleftrightarrow & X \subseteq S(P) \\
P=J(S(P)) & \longleftrightarrow & X=S(J(X))
\end{array}
$$

Note: $P \subseteq \sqrt{P}=\left\{f \in k[x] \mid \exists m \geq 1: f^{m} \in P\right\}$

## HNB Theorem - Version 2

$\left.\begin{array}{l}P \unlhd k\left[x_{1}, \ldots, x_{n}\right] \text { proper ideal } \\ F \text { algebraically-closed }\end{array}\right\} \quad \Longrightarrow \quad J(S(P))=\sqrt{P}$

That is:
If $f \in k[x]$, then $\left(\forall a \in S(P): f(a)=0 \Longleftrightarrow \exists m \geq 1: f^{m} \in P\right)$

## Version 2 implies Version 1

$$
\begin{aligned}
& \left(f_{1}, \ldots, f_{r}\right)=P \\
& \sqrt{P}=J(S(P)) \longleftrightarrow S(P) \\
& k\left[x_{1}, \ldots, x_{n}\right] \longleftrightarrow
\end{aligned}
$$

Note: Any $P \unlhd k\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated:
$k$ Noetherian ring $\Longrightarrow k[x]$ Noetherian

## Trying to prove Version 2

Need to show $J(S(P)) \subseteq \sqrt{P}$ :
If $f \notin \sqrt{P}$, must find $a \in S(P)$ with $f(a) \neq 0$.

Consider $A=k\left[x_{1}, \ldots, x_{n}\right] / \sqrt{P}$
Wish: Find

$f \longmapsto \mu(f)=u \longmapsto \varphi(u) \neq 0$

Consider $a=\left(\varphi\left(\pi\left(x_{1}\right)\right), \ldots, \varphi\left(\pi\left(x_{n}\right)\right)\right)$.
Then $f(a) \neq 0$, but $\forall p \in P: p(a)=0$.

## HNB Theorem - Version 3 and 4

## Version 3

$$
\begin{aligned}
& A \text { fin. gen. comm. } k \text {-algebra } \\
& k \subseteq F \text { alg. closed } \\
& u \in A \text { non-nilpotent } \\
& \exists \varphi: A \rightarrow F \\
& u \mapsto \varphi(u) \neq 0
\end{aligned}
$$

## Version 4

$A$ fin. gen. comm. $k$-algebra $u \in A$ non-nilpotent
$\exists \chi: A \rightarrow K, \quad \chi(u) \neq 0$,
$k \subseteq K$ field,
$K$ fin. gen. (as unital $k$-algebra)

## Version 4 implies Version 3


algebraically closed
algebraic

## HNB Theorem - Version 5, <br> Version 5 implies Version 4

$\left.\begin{array}{c}A \text { comm. ring } \\ u \text { non-nilpotent }\end{array}\right\} \quad \Longrightarrow \quad \exists Q \unlhd A$ prime, $u \notin Q$

```
5 > 4
```


$M$ maximal ideal

## Proof of Version 5

$S:=\left\{u^{n} \mid n \geq 1\right\} \not \supset 0$

Zorn: $\exists Q \unlhd A$ maximal w.r.t. $Q \cap S=\emptyset$
$Q$ is prime: $a, b \notin Q$

$$
\begin{aligned}
& \Longrightarrow(a)+Q,(b)+Q \text { meet } S \\
& \Longrightarrow \exists I, m: u^{\prime} \in(a)+Q, u^{m} \in b+Q \\
& \Longrightarrow u^{I+m} \in(a b)+Q \\
& \Longrightarrow a b \notin Q
\end{aligned}
$$

## Decomposition Theorems

$A$ comm., reduced $\quad \Longrightarrow \quad \bigcap\{Q \unlhd A \mid Q$ prime $\}=(0)$

$$
A \longmapsto \prod_{Q} A / Q
$$

## LASKER (1904), NOETHER (1920)



Alternative formulation of Version 5
$R$ comm., $P \unlhd R$ radical $\Longleftrightarrow P=\bigcap\{Q \unlhd R \mid P \subseteq Q, Q$ prime $\}$

## HNB Theorem - Version 6

## Birkhoff's Subdirect Representation Theorem (1944)

$A$ general finitary algebra $\Longrightarrow$

$A$ subdirectly irreducible (sdi) $: \Longleftrightarrow$ If


This notion is categorical!

## HNB-CATEGORIES

- $\mathcal{A}$ has (strong epi, mono)-factorizations
- $\mathcal{A}$ is weakly cowellpowered
- $\mathcal{A}$ has generator consisting of finitary objects
(no existence requirements for limits or colimits)


## EXAMPLES

- quasi-varieties of finitary algebras
- locally finitely presentable categories
- presheaf categories
- the category of topological spaces


## HNB Theorem - Version 7

$A$ object of an HNB-category $\Longrightarrow A$ has subdirect representation

$$
A \longmapsto \prod_{i \in I} S_{i}
$$

$S$ sdi $\Longleftrightarrow \exists a \neq b: P \rightarrow S$
$\forall f: A \rightarrow B(f a \neq f b \Rightarrow f$ monic $)$
$\Longleftrightarrow \operatorname{Con} S \backslash\left\{\Delta_{S}\right\}$ has a least element

Set: 2
$k$-Vec: $k$
$\underline{\text { CRng: }} \mathbb{Z}_{p}, \mathbb{Z}_{p^{2}}$

## HNB Theorem - Version 8

$f: A \rightarrow B$ morphism of an HNB-category with finite products
$\left(\left(p_{i}\right)_{i}\right.$ monic $)$


## $\mathrm{SET} / B \cong \mathrm{SET}^{\mathrm{B}}$

$$
\begin{aligned}
& f: A \rightarrow B \\
& A_{b}=f^{-1} b \\
& A=\bigcup_{b \in B} A_{b}, \quad f_{\left.\right|_{A_{b}}}=\text { const } b \\
& \left.f \text { sdi } \Longleftrightarrow \exists!A_{b}\right)_{b \in B} \in B:\left|A_{b_{0}}\right|=2 \text { and }\left|A_{b}\right| \leq 1 \quad\left(b \neq b_{0}\right)
\end{aligned}
$$

## Constructive? Functorial?

Generally: No! Zorn's Lemma everywhere!

Set: constructive, but not functorial:


## Residually small HNB-Categories

$\mathcal{A}$ residually small $\Longleftrightarrow\{A \in \mathcal{A} \mid A$ sdi $\} / \cong$ small
$\Longleftrightarrow \mathcal{A}$ has cogenerator (of sdi objects)
(if $\mathcal{A}$ is HNB, wellpowered)

Set, $\quad \underline{\text { AbGrp, }} \underline{\operatorname{Mod}}_{R}$ : yes
Grp, CompAbGrp : no
Residually small finitary varieties: Taylor (1972)

# Equivalent Completeness properties for RESIDUALLY SMALL HNB-CATEGORIES 

(i) $\mathcal{A}$ totally cocomplete $\quad\left(\mathcal{A} \rightarrow\left[\mathcal{A}^{\text {op }}, \underline{\text { Set }}\right]\right.$ has left adjoint $)$
(ii) $\mathcal{A}$ hypercomplete
(iii) $\mathcal{A}$ small-complete with large intersections of monos
(i) ${ }^{\text {op }} \mathcal{A}$ totally complete
(ii) ${ }^{\text {op }} \mathcal{A}$ hypercocomplete
(iii) ${ }^{\mathrm{op}} \mathcal{A}$ small-cocomplete with large cointersections of epis

## Applications of HNB TO Algebraic geometry

Recent work by M. Menni: An Exercise with Sufficient Cohesion, 2011

