Talk on Sheaf Representation

John Kennison

Clark University

Joint work with Mike Barr and Bob Raphael

Note: I didn't actually use slides, but if I had they would be something like the following.

I want to thank Bill Lawvere as so many of the issues, problems and puzzles that I enjoy working on derive their significance from his rich storehouse of ideas.

Introduction

We look at the limit closure of a full subcategory, A, of a complete category C. In this talk, C will be the category of commutative rings (with identity) and A a class of domains such that every field F is a subring of a field in A.

The limit-closure of \mathcal{A} is then reflective and determines a topology on the spectrum of any ring in \mathcal{C} such that, given some first-order conditions, there is a canonical sheaf over $\operatorname{Spec}(R)$.

Notation

Let \mathcal{A} be a full subcategory of domains as above.

- Let K be the limit-closure of A (in C = commutative rings with 1). (then K is a reflective subcategory on C)
- 2. Let \mathcal{B} be the subcategory of domains in \mathcal{K} .
- For each domain D, let F be a field in A with D ⊆ F and let G(D) denote the smallest subdomain of F which is in B and which contains D. (Then G(D) is, in effect, independent of the choice of F.)
- If R is in C, and P, Q ∈ Spec(R), we say that P ⊑ Q if the canonical map R/P → R/Q extends to an R-homomorphism G(R/P) → G(R/Q).

Topologies on the Spectrum

Let Spec(R) be the set of all prime ideals of R. For each $r \in R$ let $N(r) = \{P \in \text{Spec}(R) \mid r \in P\}.$

- 1. Zariski Topology on Spec(R): Smallest topology for which every N(r) is closed.
- 2. Domain Topology on Spec(R): Smallest topology for which every N(r) is open.
- 3. Patch Topology on Spec(R): Smallest topology for which every N(r) is clopen.
- 4. The \sqsubseteq -topology: Defined on the next slide.

The \sqsubseteq topology and the sheaf over it

We define the \sqsubseteq -topology on $\operatorname{Spec}(R)$ so that $V \subseteq \operatorname{Spec}(R)$ is open if and only if it is open in the patch topology and up-closed in the \sqsubseteq ordering ($P \in V$ and $P \sqsubseteq Q$ imply $Q \in V$).

If \mathcal{B} is determined by first-order conditions, there is a canonical sheaf over $\operatorname{Spec}(R)$ (with the above topology) and with stalk G(R/P) at the prime P.

Example: $\mathcal{A} =$ all fields. Then $\mathcal{K} =$ regular semiprime rings. Stalk at P is $\mathbf{Q}(R/P)$, the field of fractions (or quotient field) of R/P. (The global sections of the sheaf is known to be the reflection of R.)

Example: A = all domains. Then the topology on Spec(R) is the domain topology. The canonical sheaf has stalk R/P at P. (Its global sections is known to be the reflection of R into the limit closure of the domains.)

A key Proposition

Let $f(x_1, x_2, ..., x_n)$ be a polynomial in *n* variables with coefficients in *R*. We say that f = 0 has a solution in G(R/P) if there exist $t_1, ..., t_n$ in G(R/P) such that $f(t_1, ..., t_n) = 0$. Let *V* be the set of prime ideals for which f = 0 has a solution in G(R/P). Then *V* is open in the \sqsubseteq -topology on $\operatorname{Spec}(R)$.

Sketch of Proof:

It is readily shown that V is up-closed in the \sqsubseteq order on $\operatorname{Spec}(R)$, so it remains to show that V is open in the patch topology. If not there exists $P \in V$ and an ultrafilter **u** on W (the complement of V) such that **u** converges (in the patch topology) to P. Let $K_{\mathbf{u}}$ be the corresponding ultraproduct, given by the quotient map $\{G(R/P) \mid P \in V\} \longrightarrow K_{\mathbf{u}}.$

Diagram

Since **u** converges to *P*, the map from *R* to the ultraproduct $K_{\mathbf{u}}$ has kernel *P*. By definition of G(R/P) the map from *R* factors through $R \longrightarrow G(R/P)$ as shown.

Sketch of proof, continued

Since $P \in V$ there exists t_1, \ldots, t_n in G(R/P) which is a solution for f = 0. The above map sends this to a solution in the ultraproduct $(\prod_{Q \in W} R/Q)_{\mathbf{u}})$ which means there exists $U \in \mathbf{u}$ such that $Q \in U$ implies G(R/Q) has such a solution. But then $Q \in V$ which contradicts $Q \in W$. QED

Corollary:

If S is a finitely presented R-algebra, then the set of all prime ideals P for which there exists an R-homomorphism $S \longrightarrow G(R/P)$ is open in the \sqsubseteq topology.

The local sections of the sheaf

Let *E* be the disjoint union of G(R/P) for $P \in \text{Spec}(R)$. Let $\pi : E \longrightarrow \text{Spec}(R)$ be the map for which $\pi^{-1}(P) = G(R/P)$.

Let S be an R-algebra. Say that $s \in S$ is in the **dominion** of R if any pair of R-homomorphisms $S \longrightarrow T$ agree at s. Let $\zeta \in G(R/P)$ be given. By using the first-order conditions, we can show that every map $R \longrightarrow G(R/P)$ factors as $R \longrightarrow S \longrightarrow G(R/P)$ where S is a finitely presented R-algebra with a distinguished element s in the dominion of R which maps to ζ . By the above proposition, it follows that the map $R \longrightarrow G(R/P)$ factors through S in a neighborhood of P. Then the images of the special element $s \in S$ trace out what we define as a local section over the neighborhood of P. We give E the smallest topology for which every local section is continuous.

Conclusions

Then *E* is a sheaf of *R*-algebras over Spec(R).

The ring of global sections of this sheaf is in \mathcal{K} .

As far as we know, this ring is the reflection of R into \mathcal{K} and we have proved that it is the reflection whenever the \sqsubseteq -topology coincides with the domain topology or the patch topology.